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Structure of the talk

■ Motivation and examples
■ Congruences
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Structure of the talk

■ Motivation and examples
■ Congruences

Bunched Implication Logic

■ Motivated by separation logic used in pointer management in
computer science.
■ It is a substuctural logic and it combines an additive (Heyting)
implication and a multiplicative (linear) implication.
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A residuated lattice, is an algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.
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A residuated lattice, is an algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

If xy = x ∧ y then L is a Brouwerian algebra (Heyting algebra, if
there is a bottom element). In this case we write x → y for
x\y = y/x.
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A residuated lattice, is an algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

If xy = x ∧ y then L is a Brouwerian algebra (Heyting algebra, if
there is a bottom element). In this case we write x → y for
x\y = y/x.

In every residuated lattice multiplication distributes over join, so in a
Heyting algebra the lattice is distributive.
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A residuated lattice, is an algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

If xy = x ∧ y then L is a Brouwerian algebra (Heyting algebra, if
there is a bottom element). In this case we write x → y for
x\y = y/x.

In every residuated lattice multiplication distributes over join, so in a
Heyting algebra the lattice is distributive.

In general the lattice reduct need not be distributive, as in the lattice
of ideals of a ring.
I ∧ J = I ∩ J ,
I ∨ J = I + J , and
IJ contains finite sums of products ij, as usual.
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Also, the lattice could end up being distributive, even if
multiplication is not meet.
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Also, the lattice could end up being distributive, even if
multiplication is not meet.

■ MV-algebras
■ BL-algebras
■ Lattice-ordered groups
■ Relation algebras
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Also, the lattice could end up being distributive, even if
multiplication is not meet.

■ MV-algebras
■ BL-algebras
■ Lattice-ordered groups
■ Relation algebras

A Generlized Bunched Implication algebra (or GBI algebra)
A = (A∧,∨, ·, \, /, 1,→,⊤) supports two residuated structures: a
residuated lattice (A,∧,∨, ·, \, /, 1) and a Brouwerian/Heyting
algebra (A,∧,∨,→,⊤).
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B. Jóhnsson and A. Tarski studied relation algebras inspired by the
algebra of binary relations on a set.
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B. Jóhnsson and A. Tarski studied relation algebras inspired by the
algebra of binary relations on a set. B. Jóhnsson further studied
residuated structures with C. Tsinakis (Boolean monoids).
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B. Jóhnsson and A. Tarski studied relation algebras inspired by the
algebra of binary relations on a set. B. Jóhnsson further studied
residuated structures with C. Tsinakis (Boolean monoids). Our
interest with GBI algebras partly stems from these contributions.
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B. Jóhnsson and A. Tarski studied relation algebras inspired by the
algebra of binary relations on a set. B. Jóhnsson further studied
residuated structures with C. Tsinakis (Boolean monoids). Our
interest with GBI algebras partly stems from these contributions.

Given a set P for binary relations R,S ∈ P(P × P ), we define

■ R ∧ S = R ∩ S
■ R ∨ S = R ∪ S
■ R · S = R ◦ S (relational composition)
■ R → S = Rc ∪ S = (R ∩ Sc)c

■ R\S = (R∪ ◦ Sc)c (where R∪ is the converse of R)
■ S/R = (Sc ◦R∪)c
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B. Jóhnsson and A. Tarski studied relation algebras inspired by the
algebra of binary relations on a set. B. Jóhnsson further studied
residuated structures with C. Tsinakis (Boolean monoids). Our
interest with GBI algebras partly stems from these contributions.

Given a set P for binary relations R,S ∈ P(P × P ), we define

■ R ∧ S = R ∩ S
■ R ∨ S = R ∪ S
■ R · S = R ◦ S (relational composition)
■ R → S = Rc ∪ S = (R ∩ Sc)c

■ R\S = (R∪ ◦ Sc)c (where R∪ is the converse of R)
■ S/R = (Sc ◦R∪)c

This is an example of a GBI algebra, and part of is special nature is
the fact that the Heyting algebra reduct is actually Boolean. We
consider generalizations of these algebras called weakening relation
algebras.
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Instead of a set P we begin with a poset P = (P,≤). (We could
recover the previous case by taking the discrete order.)
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Instead of a set P we begin with a poset P = (P,≤). (We could
recover the previous case by taking the discrete order.)

We define the set Wk(P) of ≤-weakening relations, that is of all
binary relations R on P such that a ≤ b R c ≤ d implies a R d, for
all a, b, c, d ∈ P .
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Instead of a set P we begin with a poset P = (P,≤). (We could
recover the previous case by taking the discrete order.)

We define the set Wk(P) of ≤-weakening relations, that is of all
binary relations R on P such that a ≤ b R c ≤ d implies a R d, for
all a, b, c, d ∈ P . In other words Wk(P) = O(P×P∂), where O
denotes the downset operator.
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Instead of a set P we begin with a poset P = (P,≤). (We could
recover the previous case by taking the discrete order.)

We define the set Wk(P) of ≤-weakening relations, that is of all
binary relations R on P such that a ≤ b R c ≤ d implies a R d, for
all a, b, c, d ∈ P . In other words Wk(P) = O(P×P∂), where O
denotes the downset operator.

On linearly ordered sets, such relations have graphs that are left-up
closed. Some can be obtained by graphs of functions by closing
left-up.
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Instead of a set P we begin with a poset P = (P,≤). (We could
recover the previous case by taking the discrete order.)

We define the set Wk(P) of ≤-weakening relations, that is of all
binary relations R on P such that a ≤ b R c ≤ d implies a R d, for
all a, b, c, d ∈ P . In other words Wk(P) = O(P×P∂), where O
denotes the downset operator.

On linearly ordered sets, such relations have graphs that are left-up
closed. Some can be obtained by graphs of functions by closing
left-up.

We explain why Wk(P) supports a structure of a GBI-algebra, under
union and intersection, and composition of relations.
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(0, 1)

(1, 1)(0, 0)

(1, 0)

⊥

{(0, 1)} 0

↓{(1, 1)}↓{(0, 0)}

1

⊤
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(0, 2)

(1, 2)

(2, 2)

(0, 1)

(2, 1)

(0, 0)

(1, 0)

(2, 0)

⊥

{(0, 2)}

↓{(1, 2)}

↓{(2, 2)}

↓{(0, 1)}

0↓{(0, 0)}

↓{(2, 1)}1↓{(1, 0)}

⊤
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(0, 2)

(1, 2)

(2, 2)

(0, 1)

(2, 1)

(0, 0)

(1, 0)

(2, 0)

⊥

{(0, 2)}

↓{(1, 2)}

↓{(2, 2)}

↓{(0, 1)}

0↓{(0, 0)}

↓{(2, 1)}1↓{(1, 0)}

⊤

We also have that Wk(P) ∼= Res(O(P)).
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(0, 2)

(1, 2)

(2, 2)

(0, 1)

(2, 1)

(0, 0)

(1, 0)

(2, 0)

⊥

{(0, 2)}

↓{(1, 2)}

↓{(2, 2)}

↓{(0, 1)}

0↓{(0, 0)}

↓{(2, 1)}1↓{(1, 0)}

⊤

We also have that Wk(P) ∼= Res(O(P)). For a complete join
semilattice L, Res(L) is the residuated lattice of all residuated maps
on L;
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(0, 2)

(1, 2)

(2, 2)

(0, 1)

(2, 1)

(0, 0)

(1, 0)

(2, 0)

⊥

{(0, 2)}

↓{(1, 2)}

↓{(2, 2)}

↓{(0, 1)}

0↓{(0, 0)}

↓{(2, 1)}1↓{(1, 0)}

⊤

We also have that Wk(P) ∼= Res(O(P)). For a complete join
semilattice L, Res(L) is the residuated lattice of all residuated maps
on L;a map on f on a poset Q is called residuated if there exists a
map f∗ on Q such that f(x) ≤ y iff x ≤ f∗(y), for all x, y ∈ Q.
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A (weak) conucleus on a residuated lattice A is an interior operator
σ on A such that σ(x)σ(y) ≤ σ(xy), for all x, y ∈ A.
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A (weak) conucleus on a residuated lattice A is an interior operator
σ on A such that σ(x)σ(y) ≤ σ(xy), for all x, y ∈ A.

Then σ[A] = (σ[A],∧σ,∨, ·, \σ, /σ) is a residuated lattice-ordered
semigroup, where x •σ y = σ(x • y), where • ∈ {∧, \, /}.
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A (weak) conucleus on a residuated lattice A is an interior operator
σ on A such that σ(x)σ(y) ≤ σ(xy), for all x, y ∈ A.

Then σ[A] = (σ[A],∧σ,∨, ·, \σ, /σ) is a residuated lattice-ordered
semigroup, where x •σ y = σ(x • y), where • ∈ {∧, \, /}. We are
interested in the cases where this algebra also has an identity element
e and hence (σ[A], e) is a residuated lattice.
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A (weak) conucleus on a residuated lattice A is an interior operator
σ on A such that σ(x)σ(y) ≤ σ(xy), for all x, y ∈ A.

Then σ[A] = (σ[A],∧σ,∨, ·, \σ, /σ) is a residuated lattice-ordered
semigroup, where x •σ y = σ(x • y), where • ∈ {∧, \, /}. We are
interested in the cases where this algebra also has an identity element
e and hence (σ[A], e) is a residuated lattice.

A topological conucleus further satisfies σ(x) ∧ σ(y) ≤ σ(x ∧ y).
Then ∧σ = ∧.
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A (weak) conucleus on a residuated lattice A is an interior operator
σ on A such that σ(x)σ(y) ≤ σ(xy), for all x, y ∈ A.

Then σ[A] = (σ[A],∧σ,∨, ·, \σ, /σ) is a residuated lattice-ordered
semigroup, where x •σ y = σ(x • y), where • ∈ {∧, \, /}. We are
interested in the cases where this algebra also has an identity element
e and hence (σ[A], e) is a residuated lattice.

A topological conucleus further satisfies σ(x) ∧ σ(y) ≤ σ(x ∧ y).
Then ∧σ = ∧. So, a topological conucleus on a GBI-algebra A is a
conucleus on both the residuated lattice and the Brouwerian algebra
reducts of A. Given a GBI-algebra A and topological conucelus σ
with unit e on it, the algebra (σ[A], e) is a GBI-algebra.
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A (weak) conucleus on a residuated lattice A is an interior operator
σ on A such that σ(x)σ(y) ≤ σ(xy), for all x, y ∈ A.

Then σ[A] = (σ[A],∧σ,∨, ·, \σ, /σ) is a residuated lattice-ordered
semigroup, where x •σ y = σ(x • y), where • ∈ {∧, \, /}. We are
interested in the cases where this algebra also has an identity element
e and hence (σ[A], e) is a residuated lattice.

A topological conucleus further satisfies σ(x) ∧ σ(y) ≤ σ(x ∧ y).
Then ∧σ = ∧. So, a topological conucleus on a GBI-algebra A is a
conucleus on both the residuated lattice and the Brouwerian algebra
reducts of A. Given a GBI-algebra A and topological conucelus σ
with unit e on it, the algebra (σ[A], e) is a GBI-algebra.

Given a residuated lattice A and a positive idempotent element p
(1 ≤ p = p2), the map σp, where σp(x) = p\x/p, is a topological
conucleus called the double division conucleus by p.
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A (weak) conucleus on a residuated lattice A is an interior operator
σ on A such that σ(x)σ(y) ≤ σ(xy), for all x, y ∈ A.

Then σ[A] = (σ[A],∧σ,∨, ·, \σ, /σ) is a residuated lattice-ordered
semigroup, where x •σ y = σ(x • y), where • ∈ {∧, \, /}. We are
interested in the cases where this algebra also has an identity element
e and hence (σ[A], e) is a residuated lattice.

A topological conucleus further satisfies σ(x) ∧ σ(y) ≤ σ(x ∧ y).
Then ∧σ = ∧. So, a topological conucleus on a GBI-algebra A is a
conucleus on both the residuated lattice and the Brouwerian algebra
reducts of A. Given a GBI-algebra A and topological conucelus σ
with unit e on it, the algebra (σ[A], e) is a GBI-algebra.

Given a residuated lattice A and a positive idempotent element p
(1 ≤ p = p2), the map σp, where σp(x) = p\x/p, is a topological
conucleus called the double division conucleus by p. Also, p is the
identity element of σp[A]; we denote the resulting residuated lattice
(σp[A], p) by p\A/p. If A is a GBI-algebra, then so is p\A/p.
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It turns out that for all x ∈ A, x = p\x/p iff x = pxp. Even though
these two maps are very different (one is an interior operator and the
other is a close operator), they have the same image/fixed elements.
So, σp[A] = {pxp : x ∈ A}.
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It turns out that for all x ∈ A, x = p\x/p iff x = pxp. Even though
these two maps are very different (one is an interior operator and the
other is a close operator), they have the same image/fixed elements.
So, σp[A] = {pxp : x ∈ A}.

If A is involutive then so is p\A/p and the latter is a subalgebra of
A with respect to the operations ∧,∨, ·,+,∼,−.
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It turns out that for all x ∈ A, x = p\x/p iff x = pxp. Even though
these two maps are very different (one is an interior operator and the
other is a close operator), they have the same image/fixed elements.
So, σp[A] = {pxp : x ∈ A}.

If A is involutive then so is p\A/p and the latter is a subalgebra of
A with respect to the operations ∧,∨, ·,+,∼,−.
Recall that an involutive residuated lattice is an expansion of a
residuated lattice with an extra constant 0 such that
∼(−x) = x = −(∼x), where ∼x = x\0 and −x = 0/x; we also
define x+ y = ∼(−y · −x).
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It turns out that for all x ∈ A, x = p\x/p iff x = pxp. Even though
these two maps are very different (one is an interior operator and the
other is a close operator), they have the same image/fixed elements.
So, σp[A] = {pxp : x ∈ A}.

If A is involutive then so is p\A/p and the latter is a subalgebra of
A with respect to the operations ∧,∨, ·,+,∼,−.
Recall that an involutive residuated lattice is an expansion of a
residuated lattice with an extra constant 0 such that
∼(−x) = x = −(∼x), where ∼x = x\0 and −x = 0/x; we also
define x+ y = ∼(−y · −x).
The involution is called cyclic if ∼x = −x for all x.
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Given a poset P = (P,≤), we set A = Rel(P ), to be the cyclic
involutive GBI algebra of all binary relations on the set P . Note that
p = ≤ is a positive idempotent element of A. It is easy to see that
p\A/p is exactly Wk(P), so the latter is a cyclic involutive
GBI-algebra.
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Given a poset P = (P,≤), we set A = Rel(P ), to be the cyclic
involutive GBI algebra of all binary relations on the set P . Note that
p = ≤ is a positive idempotent element of A. It is easy to see that
p\A/p is exactly Wk(P), so the latter is a cyclic involutive
GBI-algebra.The negation constant 0 is the relation 6≥.
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Given a poset P = (P,≤), we set A = Rel(P ), to be the cyclic
involutive GBI algebra of all binary relations on the set P . Note that
p = ≤ is a positive idempotent element of A. It is easy to see that
p\A/p is exactly Wk(P), so the latter is a cyclic involutive
GBI-algebra.The negation constant 0 is the relation 6≥.
For every relation r, ∼r = −r is the converse of the complement of
r. (Note that neither the complement nor the converse of a
weakening relation is again a weakening relation.)
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Given a poset P = (P,≤), we set A = Rel(P ), to be the cyclic
involutive GBI algebra of all binary relations on the set P . Note that
p = ≤ is a positive idempotent element of A. It is easy to see that
p\A/p is exactly Wk(P), so the latter is a cyclic involutive
GBI-algebra.The negation constant 0 is the relation 6≥.
For every relation r, ∼r = −r is the converse of the complement of
r. (Note that neither the complement nor the converse of a
weakening relation is again a weakening relation.)

Every lattice-ordered (pre)group can be embedded as a residuated
lattice in Wk(C), where C is a chain.
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Given a poset P = (P,≤), we set A = Rel(P ), to be the cyclic
involutive GBI algebra of all binary relations on the set P . Note that
p = ≤ is a positive idempotent element of A. It is easy to see that
p\A/p is exactly Wk(P), so the latter is a cyclic involutive
GBI-algebra.The negation constant 0 is the relation 6≥.
For every relation r, ∼r = −r is the converse of the complement of
r. (Note that neither the complement nor the converse of a
weakening relation is again a weakening relation.)

Every lattice-ordered (pre)group can be embedded as a residuated
lattice in Wk(C), where C is a chain. (Lattice-ordered pregroups are
involutive residuated lattices where x+ y = x · y.)
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Given a poset P = (P,≤), we set A = Rel(P ), to be the cyclic
involutive GBI algebra of all binary relations on the set P . Note that
p = ≤ is a positive idempotent element of A. It is easy to see that
p\A/p is exactly Wk(P), so the latter is a cyclic involutive
GBI-algebra.The negation constant 0 is the relation 6≥.
For every relation r, ∼r = −r is the converse of the complement of
r. (Note that neither the complement nor the converse of a
weakening relation is again a weakening relation.)

Every lattice-ordered (pre)group can be embedded as a residuated
lattice in Wk(C), where C is a chain. (Lattice-ordered pregroups are
involutive residuated lattices where x+ y = x · y.) The subalgebra of
Wk(C) that is the image of the embedding is also involutive, but
with negation constant 1 (and for pregroups it is not cyclic).
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We can take A to be P(M), where M is a monoid. The positive
idempotent elements (1 ≤ p = p2) of P(M) are exactly the
submonoids of M.
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We can take A to be P(M), where M is a monoid. The positive
idempotent elements (1 ≤ p = p2) of P(M) are exactly the
submonoids of M.
If M is a group and p a subgroup, then p\P(M)/p is Comer’s
double coset construction.
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We can take A to be P(M), where M is a monoid. The positive
idempotent elements (1 ≤ p = p2) of P(M) are exactly the
submonoids of M.
If M is a group and p a subgroup, then p\P(M)/p is Comer’s
double coset construction.

The elements of p\P(M)/p turn out to be the downsets under a
particular auxiliary order ≤p: x ≤p y iff x = ayb for some a, b ∈ p.
Since p is positive idempotent, the relation ≤p is a preorder and p is
its negative cone.
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We can take A to be P(M), where M is a monoid. The positive
idempotent elements (1 ≤ p = p2) of P(M) are exactly the
submonoids of M.
If M is a group and p a subgroup, then p\P(M)/p is Comer’s
double coset construction.

The elements of p\P(M)/p turn out to be the downsets under a
particular auxiliary order ≤p: x ≤p y iff x = ayb for some a, b ∈ p.
Since p is positive idempotent, the relation ≤p is a preorder and p is
its negative cone.

We can show that ↓ pX = pXp. So, the fixed elements of σp are
exactly the downsets under the preorder ≤p.
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We can take A to be P(M), where M is a monoid. The positive
idempotent elements (1 ≤ p = p2) of P(M) are exactly the
submonoids of M.
If M is a group and p a subgroup, then p\P(M)/p is Comer’s
double coset construction.

The elements of p\P(M)/p turn out to be the downsets under a
particular auxiliary order ≤p: x ≤p y iff x = ayb for some a, b ∈ p.
Since p is positive idempotent, the relation ≤p is a preorder and p is
its negative cone.

We can show that ↓ pX = pXp. So, the fixed elements of σp are
exactly the downsets under the preorder ≤p.

We can take M = Z and p = N. Then ≤p is the usual order on Z

and N\P(Z)/N is isomorphic to Z extended with a top and a bottom
element, which is an involutive GBI algebra.
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As another example we can take M = N and p = E, the set of even
numbers. The fixed sets of the conucleus are unions ↑ e ∪ ↑ o, where
e ∈ Ē and o ∈ Ō.
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As another example we can take M = N and p = E, the set of even
numbers. The fixed sets of the conucleus are unions ↑ e ∪ ↑ o, where
e ∈ Ē and o ∈ Ō. Here, Ē = E ∪ {∞} and Ō = O ∪ {∞}, where O
is the set of odd numbers. We also assume that they are ordered by
reverse of the usual ordering.
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As another example we can take M = N and p = E, the set of even
numbers. The fixed sets of the conucleus are unions ↑ e ∪ ↑ o, where
e ∈ Ē and o ∈ Ō. Here, Ē = E ∪ {∞} and Ō = O ∪ {∞}, where O
is the set of odd numbers. We also assume that they are ordered by
reverse of the usual ordering.

So, E\P(N)/E is isomorpic to Ē × Ō. The operation is given by
(e1, o1) + (e2, o2) = ((e1 + e2) ∧ (o1 + o2), (e1 + o2) ∧ (o1 + e2)).
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As another example we can take M = N and p = E, the set of even
numbers. The fixed sets of the conucleus are unions ↑ e ∪ ↑ o, where
e ∈ Ē and o ∈ Ō. Here, Ē = E ∪ {∞} and Ō = O ∪ {∞}, where O
is the set of odd numbers. We also assume that they are ordered by
reverse of the usual ordering.

So, E\P(N)/E is isomorpic to Ē × Ō. The operation is given by
(e1, o1) + (e2, o2) = ((e1 + e2) ∧ (o1 + o2), (e1 + o2) ∧ (o1 + e2)).
The operation is isomorphic to matrix multiplication in the set of
matrices of the form

(e, o) ≡

[

e o
o e

]
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The study of congruences of the algebraic models is important in
determining subdirectly irreducibles, subvarieties, deduction
theorems. We prove that congruences on an algebra correspond to
specific subsets.
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The study of congruences of the algebraic models is important in
determining subdirectly irreducibles, subvarieties, deduction
theorems. We prove that congruences on an algebra correspond to
specific subsets.

In residuated lattices congruences correspond to normal submonoid
filters.
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The study of congruences of the algebraic models is important in
determining subdirectly irreducibles, subvarieties, deduction
theorems. We prove that congruences on an algebra correspond to
specific subsets.

In residuated lattices congruences correspond to normal submonoid
filters. Given a, x ∈ A we define ρ′ax = ax/a and λ′

a(x) = a\xa
(which are akin to conjugates in group theory). A subset is called
normal if it is closed under ρ′a and λ′

a for all a ∈ A.
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The study of congruences of the algebraic models is important in
determining subdirectly irreducibles, subvarieties, deduction
theorems. We prove that congruences on an algebra correspond to
specific subsets.

In residuated lattices congruences correspond to normal submonoid
filters. Given a, x ∈ A we define ρ′ax = ax/a and λ′

a(x) = a\xa
(which are akin to conjugates in group theory). A subset is called
normal if it is closed under ρ′a and λ′

a for all a ∈ A.

It is known that if θ is a congruence on A then ↑[1]θ, the upset of
the equivalence class of 1, is a normal submonoid filter.
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The study of congruences of the algebraic models is important in
determining subdirectly irreducibles, subvarieties, deduction
theorems. We prove that congruences on an algebra correspond to
specific subsets.

In residuated lattices congruences correspond to normal submonoid
filters. Given a, x ∈ A we define ρ′ax = ax/a and λ′

a(x) = a\xa
(which are akin to conjugates in group theory). A subset is called
normal if it is closed under ρ′a and λ′

a for all a ∈ A.

It is known that if θ is a congruence on A then ↑[1]θ, the upset of
the equivalence class of 1, is a normal submonoid filter. Conversely, if
F is a normal submonoid filter of a residuated lattice A, then the
relation θF is a congruence on A, where a θF b iff a\b ∧ b\a ∈ F .
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The study of congruences of the algebraic models is important in
determining subdirectly irreducibles, subvarieties, deduction
theorems. We prove that congruences on an algebra correspond to
specific subsets.

In residuated lattices congruences correspond to normal submonoid
filters. Given a, x ∈ A we define ρ′ax = ax/a and λ′

a(x) = a\xa
(which are akin to conjugates in group theory). A subset is called
normal if it is closed under ρ′a and λ′

a for all a ∈ A.

It is known that if θ is a congruence on A then ↑[1]θ, the upset of
the equivalence class of 1, is a normal submonoid filter. Conversely, if
F is a normal submonoid filter of a residuated lattice A, then the
relation θF is a congruence on A, where a θF b iff a\b ∧ b\a ∈ F .

Alternative subsets to F include convex normal (for
ρax = (ax/a) ∧ 1 and λa(x) = (a\xa) ∧ 1)) subalgebras, such as
{x : ∃f ∈ F. f ≤ x ≤ 1/f} and also convex normal negative
submonoids, such as the negative cone of F : {x ∈ F : x ≤ 1}.
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The study of congruences of the algebraic models is important in
determining subdirectly irreducibles, subvarieties, deduction
theorems. We prove that congruences on an algebra correspond to
specific subsets.

In residuated lattices congruences correspond to normal submonoid
filters. Given a, x ∈ A we define ρ′ax = ax/a and λ′

a(x) = a\xa
(which are akin to conjugates in group theory). A subset is called
normal if it is closed under ρ′a and λ′

a for all a ∈ A.

It is known that if θ is a congruence on A then ↑[1]θ, the upset of
the equivalence class of 1, is a normal submonoid filter. Conversely, if
F is a normal submonoid filter of a residuated lattice A, then the
relation θF is a congruence on A, where a θF b iff a\b ∧ b\a ∈ F .

Alternative subsets to F include convex normal (for
ρax = (ax/a) ∧ 1 and λa(x) = (a\xa) ∧ 1)) subalgebras, such as
{x : ∃f ∈ F. f ≤ x ≤ 1/f} and also convex normal negative
submonoids, such as the negative cone of F : {x ∈ F : x ≤ 1}.

Note that if A is a Brouwerian or a Heyting algebra, then all notions
coincide.
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GBI-congruences are RL-congruences with further closure conditions.
As a result the upset of the equivalence class of 1 is a normal
submonoid filter with further closure conditions. We identify these as
closure under
ra,b(x) = (a → b)/(xa → b) and
sa,b(x) = (a → bx)/(a → b), for all a, b.
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GBI-congruences are RL-congruences with further closure conditions.
As a result the upset of the equivalence class of 1 is a normal
submonoid filter with further closure conditions. We identify these as
closure under
ra,b(x) = (a → b)/(xa → b) and
sa,b(x) = (a → bx)/(a → b), for all a, b.

Alternatively, congruences are characterized by their equivalence
classes of ⊤. These are usual lattice filters that are closed under
ua,b(x) = a/(b ∧ x) → a/b,
u′

a,b(x) = (b ∧ x)\a → b\a,
va,b(x) = ab → (a ∧ x)b,
v′a,b(x) = ab → a(b ∧ x), and
w(x) = ⊤\x/⊤, for all a, b.
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GBI-congruences are RL-congruences with further closure conditions.
As a result the upset of the equivalence class of 1 is a normal
submonoid filter with further closure conditions. We identify these as
closure under
ra,b(x) = (a → b)/(xa → b) and
sa,b(x) = (a → bx)/(a → b), for all a, b.

Alternatively, congruences are characterized by their equivalence
classes of ⊤. These are usual lattice filters that are closed under
ua,b(x) = a/(b ∧ x) → a/b,
u′

a,b(x) = (b ∧ x)\a → b\a,
va,b(x) = ab → (a ∧ x)b,
v′a,b(x) = ab → a(b ∧ x), and
w(x) = ⊤\x/⊤, for all a, b.

As a result we obtain a parameterized local deduction theorem for
the GBI.
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The congruence class of ⊤ in involutive GBI-algebras is characterized
as filters closed under the terms
¬∼x
¬−x
and ∼(⊤(−x)⊤),
where ∼x = x\0, −x = 0/x, ¬x = x → ⊥, ⊥ = ∼⊤.
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The congruence class of ⊤ in involutive GBI-algebras is characterized
as filters closed under the terms
¬∼x
¬−x
and ∼(⊤(−x)⊤),
where ∼x = x\0, −x = 0/x, ¬x = x → ⊥, ⊥ = ∼⊤.

The latter specialises to the known characterization of congruences in
relation algebras as ideals closed under the term ⊤x⊤.
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The equational theory of GBI-algebras is decidable (and generated by
its finite members).
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The equational theory of GBI-algebras is decidable (and generated by
its finite members). For certain subvarieties we can prove even
decidability of their universal theory via the Finite Embeddability
Property.
A variety V has the FEP if any finite subset B of an algebra A ∈ V
can be embedded (as a partial algebra) in a finite algebra D ∈ V .
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The equational theory of GBI-algebras is decidable (and generated by
its finite members). For certain subvarieties we can prove even
decidability of their universal theory via the Finite Embeddability
Property.
A variety V has the FEP if any finite subset B of an algebra A ∈ V
can be embedded (as a partial algebra) in a finite algebra D ∈ V .

Using well quasiorders and better quasiorders we can show the FEP
for many subvarieties of GBI for which multiplication distributes over
meet (fully distributive GBI algebras). [Joint work with Riquelmi
Cardona]
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The equational theory of GBI-algebras is decidable (and generated by
its finite members). For certain subvarieties we can prove even
decidability of their universal theory via the Finite Embeddability
Property.
A variety V has the FEP if any finite subset B of an algebra A ∈ V
can be embedded (as a partial algebra) in a finite algebra D ∈ V .

Using well quasiorders and better quasiorders we can show the FEP
for many subvarieties of GBI for which multiplication distributes over
meet (fully distributive GBI algebras). [Joint work with Riquelmi
Cardona]

For example, the FEP holds for fully distributive integral
GBI-algebras.
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The equational theory of GBI-algebras is decidable (and generated by
its finite members). For certain subvarieties we can prove even
decidability of their universal theory via the Finite Embeddability
Property.
A variety V has the FEP if any finite subset B of an algebra A ∈ V
can be embedded (as a partial algebra) in a finite algebra D ∈ V .

Using well quasiorders and better quasiorders we can show the FEP
for many subvarieties of GBI for which multiplication distributes over
meet (fully distributive GBI algebras). [Joint work with Riquelmi
Cardona]

For example, the FEP holds for fully distributive integral
GBI-algebras. Also, for fully distributive GBI-algebras that satisfy a
non-trivial equation of the form xn ≤ xm and commutativity
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The equational theory of GBI-algebras is decidable (and generated by
its finite members). For certain subvarieties we can prove even
decidability of their universal theory via the Finite Embeddability
Property.
A variety V has the FEP if any finite subset B of an algebra A ∈ V
can be embedded (as a partial algebra) in a finite algebra D ∈ V .

Using well quasiorders and better quasiorders we can show the FEP
for many subvarieties of GBI for which multiplication distributes over
meet (fully distributive GBI algebras). [Joint work with Riquelmi
Cardona]

For example, the FEP holds for fully distributive integral
GBI-algebras. Also, for fully distributive GBI-algebras that satisfy a
non-trivial equation of the form xn ≤ xm and commutativity (or
various generalizations of commutativity such as xyx = xxy).
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