Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work

Spectra of commutative BCK-algebras

Matt Evans

Binghamton University evans@math.binghamton.edu

BLAST 2019 University of Colorado, Boulder

May 23, 2019

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
0000	00	00000000	00	000
Overview				

1 Definition, facts, examples

2 Ideals

- Spectra
- 4 Connected Unions
- G Current/Future Work

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
●000	00	000000000	00	
cBCK-algebras				

A commutative BCK-algebra **A** is an algebra $\mathbf{A} = \langle A; \cdot, 0 \rangle$ of type (2,0) such that

A commutative BCK-algebra **A** is an algebra $\mathbf{A} = \langle A; \cdot, 0 \rangle$ of type (2,0) such that

$$(x \cdot y) \cdot z = (x \cdot z) \cdot y$$
$$x \cdot (x \cdot y) = y \cdot (y \cdot x)$$
$$x \cdot x = 0$$
$$x \cdot 0 = x$$

for all $x, y, z \in A$.

A commutative BCK-algebra **A** is an algebra $\mathbf{A} = \langle A; \cdot, 0 \rangle$ of type (2,0) such that

$$(x \cdot y) \cdot z = (x \cdot z) \cdot y$$
$$x \cdot (x \cdot y) = y \cdot (y \cdot x)$$
$$x \cdot x = 0$$
$$x \cdot 0 = x$$

for all $x, y, z \in A$.

Definition, facts, examples	ldeals	Spectra	Connected Unions	Current/Future Work
0●00	00	000000000	00	
Facts				

1 Every BCK-algebra is partially ordered via: $x \le y$ iff $x \cdot y = 0$.

Definition, facts, examples $0 \bullet 00$	ldeals	Spectra	Connected Unions	Current/Future Work
	00	00000000	00	000
Facts				

- 1 Every BCK-algebra is partially ordered via: $x \le y$ iff $x \cdot y = 0$.
- 2 Commutativity: $x \wedge y := y \cdot (y \cdot x)$

Definition, facts, examples $0 \bullet 00$	ldeals	Spectra	Connected Unions	Current/Future Work
	00	00000000	00	000
Facts				

- 1 Every BCK-algebra is partially ordered via: $x \le y$ iff $x \cdot y = 0$.
- 2 Commutativity: $x \wedge y := y \cdot (y \cdot x) = x \cdot (x \cdot y) = y \wedge x$.

Definition, facts, examples $0 \bullet 00$	ldeals	Spectra	Connected Unions	Current/Future Work
	00	00000000	00	000
Facts				

- 1 Every BCK-algebra is partially ordered via: $x \le y$ iff $x \cdot y = 0$.
- 2 Commutativity: $x \wedge y := y \cdot (y \cdot x) = x \cdot (x \cdot y) = y \wedge x$.

A BCK-algebra **A** is **bounded** if there exists an element $1 \in A$ such that $x \cdot 1 = 0$ for all $x \in A$.

Definition, facts, examples $0 \bullet 00$	ldeals 00	Spectra 00000000	Connected Unions	Current/Future Work 000
Facts				

- 1 Every BCK-algebra is partially ordered via: $x \le y$ iff $x \cdot y = 0$.
- 2 Commutativity: $x \wedge y := y \cdot (y \cdot x) = x \cdot (x \cdot y) = y \wedge x$.

A BCK-algebra **A** is **bounded** if there exists an element $1 \in A$ such that $x \cdot 1 = 0$ for all $x \in A$.

3 If **A** is bounded, then $\langle A; \wedge, \vee \rangle$ is a distributive lattice, where

$$x \lor y := 1 \cdot [(1 \cdot x) \land (1 \cdot y)].$$

(Traczyk, 1979)

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
00●0	00	000000000	00	000
Examples				

1 Let X be a set. Then $\langle \mathfrak{P}(X); -, \varnothing \rangle$ is a cBCK-algebra.

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
	00	00000000	00	000
Examples				

- Let X be a set. Then $\langle \mathfrak{P}(X); -, \varnothing \rangle$ is a cBCK-algebra.
- Ø More generally, any Boolean algebra B admits a cBCK-structure via x ⋅ y = x ∧ (¬y).

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
0000	00	00000000		000
Examples				

- Let X be a set. Then $\langle \mathcal{P}(X); -, \varnothing \rangle$ is a cBCK-algebra.
- Ø More generally, any Boolean algebra B admits a cBCK-structure via $x \cdot y = x \land (\neg y)$.
- **3** $\mathbf{R}_{\geq 0} = \langle \mathbb{R}_{\geq 0}; \cdot, 0 \rangle$ is a cBCK-algebra, where $x \cdot y = \max\{x y, 0\}$.

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
	00	00000000	00	000
Examples				

- Let X be a set. Then $\langle \mathfrak{P}(X); -, \varnothing \rangle$ is a cBCK-algebra.
- Ø More generally, any Boolean algebra B admits a cBCK-structure via x ⋅ y = x ∧ (¬y).
- **3** $\mathbf{R}_{\geq 0} = \langle \mathbb{R}_{\geq 0}; \cdot, 0 \rangle$ is a cBCK-algebra, where $x \cdot y = \max\{x y, 0\}$.
- $\textcircled{0} \mathbb{N}_0 \text{ is a subalgebra of } \textbf{R}_{\geq 0}$

Definition, facts, examples	ldeals	Spectra	Connected Unions	Current/Future Work
0000	00	00000000	00	
Examples				

- Let X be a set. Then $\langle \mathfrak{P}(X); -, \varnothing \rangle$ is a cBCK-algebra.
- Ø More generally, any Boolean algebra B admits a cBCK-structure via $x \cdot y = x \land (\neg y)$.

3
$$\mathbf{R}_{\geq 0} = \langle \mathbb{R}_{\geq 0}; \cdot, 0 \rangle$$
 is a cBCK-algebra, where $x \cdot y = \max\{x - y, 0\}$.

6 Let $\mathbb{O} = \mathbb{N}_0 \overline{\oplus} \mathbb{N}_0^\partial$ denote the ordinal sum of \mathbb{N}_0 with its order-dual. Then \mathbb{O} admits a cBCK-structure.

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
000●	00	000000000	00	000
Example				

Let $\{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$ be a family of cBCK-algebras with $A_{\lambda} \cap A_{\mu} = \{0\}$.

Definition, facts, examples $000 \bullet$	Ideals 00	Spectra 000000000	Connected Unions 00	Current/Future Work
Example				

Let $\{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$ be a family of cBCK-algebras with $A_{\lambda} \cap A_{\mu} = \{0\}$. Put $\mathcal{U} = \bigcup_{\lambda \in \Lambda} A_{\lambda}$.

Definition, facts, examples $000 \bullet$	Ideals	Spectra	Connected Unions	Current/Future Work
	00	00000000	00	000
Example				

Let $\{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$ be a family of cBCK-algebras with $A_{\lambda} \cap A_{\mu} = \{0\}$. Put $\mathcal{U} = \bigcup_{\lambda \in \Lambda} A_{\lambda}$. Then \mathcal{U} is a cBCK-algebra with the operation $\int x \cdot_{\lambda} y \quad \text{if } x, y \in A_{\lambda}$

$$x \cdot y = \begin{cases} x \cdot_{\lambda} y & \text{if } x, y \in A \\ x & \text{otherwise} \end{cases}$$

Definition, facts, examples $000 \bullet$	Ideals	Spectra	Connected Unions	Current/Future Work
	00	00000000	00	000
Example				

Let $\{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$ be a family of cBCK-algebras with $A_{\lambda} \cap A_{\mu} = \{0\}$. Put $\mathcal{U} = \bigcup_{\lambda \in \Lambda} A_{\lambda}$. Then \mathcal{U} is a cBCK-algebra with the operation $x \cdot y = \begin{cases} x \cdot_{\lambda} y & \text{if } x, y \in A_{\lambda} \\ x & \text{otherwise }. \end{cases}$

We call \mathcal{U} the **BCK-union** of the \mathbf{A}_{λ} 's and we will write $\mathcal{U} = \bigsqcup \mathbf{A}_{\lambda}$

Definition, facts, examples 0000	ldeals ●O	Spectra 00000000	Connected Unions	Current/Future Work
Ideals				

Given a cBCK-algebra **A**, a subset *I* is an **ideal** if $0 \in I$

2 if $x \cdot y \in I$ and $y \in I$, then $x \in I$.

Definition, facts, examples	ldeals	Spectra	Connected Unions	Current/Future Work
0000	●0	000000000	00	000
Ideals				

Given a cBCK-algebra **A**, a subset *I* is an **ideal** if **1** $0 \in I$ **2** if $x \cdot y \in I$ and $y \in I$, then $x \in I$.

A proper ideal *P* of **A** is a **prime ideal** if $x \land y \in P$ implies $x \in P$ or $y \in P$.

Given a cBCK-algebra **A**, a subset *I* is an **ideal** if **1** $0 \in I$ **2** if $x \cdot y \in I$ and $y \in I$, then $x \in I$.

A proper ideal *P* of **A** is a **prime ideal** if $x \land y \in P$ implies $x \in P$ or $y \in P$.

Let $Id(\mathbf{A})$ and $X(\mathbf{A})$ denote the set of ideals and prime ideals, respectively.

Definition, facts, examples 0000 ldeals ○●

Spectra 000000000 Connected Unions

Current/Future Work

Examples

$$\bullet \ \mathsf{Id}(\mathbb{N}_0) = \Big\{ \{0\}, \mathbb{N}_0 \Big\} \text{ and } X(\mathbb{N}_0) = \big\{ \{0\} \big\}.$$

Definition, facts, examples 0000 ldeals ○●

Spectra 000000000 Connected Unions

Current/Future Work

Examples

$$\begin{array}{l} \label{eq:constraint} \textbf{Id}(\mathbb{N}_0) = \Big\{\{0\}, \mathbb{N}_0\Big\} \text{ and } X(\mathbb{N}_0) = \big\{\{0\}\}. \\ \textbf{2} \mbox{ Id}(\mathbb{O}) = \Big\{\{0\}, \mathbb{N}_0, \mathbb{O}\Big\} \mbox{ and } X(\mathbb{O}) = \big\{\{0\}, \mathbb{N}_0, \big\}. \end{array}$$

Definition,		

ldeals ○●

Spectra 000000000 Connected Unions

Current/Future Work

Examples

$$\begin{array}{l} \bullet \ \mathsf{Id}(\mathbb{N}_0) = \Big\{\{0\}, \mathbb{N}_0\Big\} \ \mathsf{and} \ \mathrm{X}(\mathbb{N}_0) = \big\{\{0\}\}. \\ \\ \bullet \ \mathsf{Id}(\mathbb{O}) = \Big\{\{0\}, \mathbb{N}_0, \mathbb{O}\Big\} \ \mathsf{and} \ \mathrm{X}(\mathbb{O}) = \big\{\{0\}, \mathbb{N}_0, \big\}. \end{array}$$

Lemma

If $\mathcal{U} = \bigsqcup \mathbf{A}_{\lambda}$ is a BCK-union, then any ideal has the form $I = \bigsqcup I_{\lambda}$, where $I_{\lambda} \in Id(\mathbf{A}_{\lambda})$.

Definition,	examples	

Ideals

Spectra 000000000 Connected Unions

Current/Future Work

Examples

•
$$Id(\mathbb{N}_0) = \{\{0\}, \mathbb{N}_0\} \text{ and } X(\mathbb{N}_0) = \{\{0\}\}.$$

• $Id(\mathbb{O}) = \{\{0\}, \mathbb{N}_0, \mathbb{O}\} \text{ and } X(\mathbb{O}) = \{\{0\}, \mathbb{N}_0, \}.$

Lemma

If $\mathcal{U} = \bigsqcup \mathbf{A}_{\lambda}$ is a BCK-union, then any ideal has the form $I = \bigsqcup I_{\lambda}$, where $I_{\lambda} \in Id(\mathbf{A}_{\lambda})$.

Theorem (E., 2019)

An ideal P in a BCK-union U is prime iff there exists $\mu \in \Lambda$ and $Q \in X(\mathbf{A}_{\mu})$ such that

$$P = \bigsqcup \mathbf{A}_{\lambda,\mu}^Q,$$

where $\mathbf{A}_{\lambda,\mu}^{Q} = \begin{cases} \mathbf{A}_{\lambda} & \text{if } \lambda \neq \mu \\ Q & \text{if } \lambda = \mu \end{cases}$.

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
0000	00	●00000000	00	000
Spectra				

$$\sigma(S) = \left\{ P \in \mathcal{X}(\mathbf{A}) \mid S \not\subseteq P \right\} \,.$$

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
0000	00	●00000000		000
Spectra				

$$\sigma(S) = \left\{ P \in \mathcal{X}(\mathbf{A}) \mid S \not\subseteq P \right\} \,.$$

We will write $\sigma(a)$ for $\sigma(\{a\})$.

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
0000	00	●00000000	00	000
Spectra				

$$\sigma(S) = \left\{ P \in \mathcal{X}(\mathbf{A}) \mid S \not\subseteq P \right\} \,.$$

We will write $\sigma(a)$ for $\sigma(\{a\})$.

Proposition

The family $\mathfrak{T}(\mathbf{A}) = \{ \sigma(I) \mid I \in \mathsf{Id}(\mathbf{A}) \}$ is a topology on $X(\mathbf{A})$,

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
0000	00	●00000000	00	000
Spectra				

$$\sigma(S) = \left\{ P \in \mathcal{X}(\mathbf{A}) \mid S \not\subseteq P \right\} \,.$$

We will write $\sigma(a)$ for $\sigma(\{a\})$.

Proposition

The family $\mathcal{T}(\mathbf{A}) = \{\sigma(I) \mid I \in \mathsf{Id}(\mathbf{A})\}\$ is a topology on X(A), and $\mathcal{T}_0(\mathbf{A}) = \{\sigma(a) \mid a \in A\}\$ is a basis for this topology.

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
0000	00	●00000000	00	000
Spectra				

$$\sigma(S) = \left\{ P \in \mathcal{X}(\mathbf{A}) \mid S \not\subseteq P \right\} \,.$$

We will write $\sigma(a)$ for $\sigma(\{a\})$.

Proposition

The family $\mathcal{T}(\mathbf{A}) = \{\sigma(I) \mid I \in \mathsf{Id}(\mathbf{A})\}\$ is a topology on X(A), and $\mathcal{T}_0(\mathbf{A}) = \{\sigma(a) \mid a \in A\}\$ is a basis for this topology.

The space $(X(A), \mathcal{T}(A))$ is the **spectrum** of **A**.

Definition, facts, examples		Spectra	Connected Unions	Current/Future Work
0000	00	00000000	00	000

A topological space (X, \mathcal{T}) is a **Stone space** if it is compact, Hausdorff, and totally disconnected.

Definition, facts, examples	Spectra	Connected Unions	Current/Future Work
	00000000		

A topological space (X, \mathcal{T}) is a **Stone space** if it is compact, Hausdorff, and totally disconnected.

An ordered topological space (X, \mathcal{T}, \leq) is called a **Priestley space** if (X, \mathcal{T}) is a Stone space and (X, \leq) satisfies the following separation property:

if $x \not\leq y$, there exists a clopen up-set U such that $x \in U$ but $y \notin U$.

Definition, facts, examples	Spectra	Connected Unions	Current/Future Work
	00000000		

A topological space (X, \mathcal{T}) is a **Stone space** if it is compact, Hausdorff, and totally disconnected.

An ordered topological space (X, \mathcal{T}, \leq) is called a **Priestley space** if (X, \mathcal{T}) is a Stone space and (X, \leq) satisfies the following separation property:

if $x \not\leq y$, there exists a clopen up-set U such that $x \in U$ but $y \notin U$.

Theorem (Meng & Jun, 1998)

If **A** is a bounded cBCK-algebra, then X(A) is a Stone space.

Defin 0000		ldeals 00	Spectra 00000000	Connected Unions 00	Current/Future Work	
	Theorem (E., 2	2017)				
	If A is a bounded and involutory cBCK-algebra, then $X(A)$ is a					
	Priestley space	2.				

A BCK-algebra **A** is **involutory** if, for every pair of elements $x, y \in A$, the decreasing sequence

$$x \ge x \cdot y \ge (x \cdot y) \cdot y \ge ((x \cdot y) \cdot y) \cdot y \ge \cdots$$

eventually stabilizes.

A BCK-algebra **A** is **involutory** if, for every pair of elements $x, y \in A$, the decreasing sequence

$$x \ge x \cdot y \ge (x \cdot y) \cdot y \ge ((x \cdot y) \cdot y) \cdot y \ge \cdots$$

eventually stabilizes.

Proposition (E., 2018)

 $X(\mathbf{A})$ is locally compact for any cBCK-algebra \mathbf{A} .

A BCK-algebra **A** is **involutory** if, for every pair of elements $x, y \in A$, the decreasing sequence

$$x \ge x \cdot y \ge (x \cdot y) \cdot y \ge ((x \cdot y) \cdot y) \cdot y \ge \cdots$$

eventually stabilizes.

Proposition (E., 2018)

 $X(\mathbf{A})$ is locally compact for any cBCK-algebra \mathbf{A} .

Comm	Comm, Bdd	Comm, Invol	Comm, Bdd, Invol
locally compact	compact	locally compact	compact
	Hausdorff	Hausdorff	Hausdorff
	t.d.	t.d.	t.d.
		Pries. sep.	Pries. sep.

Definiti	on, facts, examples	Ideals Spectra	Connected Unio	ns Current/Future Work 000
	Comm	Comm, Bdd	Comm, Invol	Comm, Bdd, Invol
	locally compact	compact	locally compact	compact
		Hausdorff	Hausdorff	Hausdorff
		t.d.	t.d.	t.d.
			Pries. sep.	Pries. sep.

Definiti	on, facts, examples	ldeals Spectra 00 000000	Connected Unio	ns Current/Future Work 000
	Comm	Comm, Bdd	Comm, Invol	Comm, Bdd, Invol
	locally compact	compact	locally compact	compact
		Hausdorff	Hausdorff	Hausdorff
		t.d.	t.d.	t.d.
			Pries. sep.	Pries. sep.

Is $\boldsymbol{\mathsf{A}}$ being involutory a necessary condition for $X(\boldsymbol{\mathsf{A}})$ to satisfy Priestley separation?

Definiti	on, facts, examples	Ideals Spectra	Connected Unio	ns Current/Future Work 000
	Comm	Comm, Bdd	Comm, Invol	Comm, Bdd, Invol
	locally compact	compact	locally compact	compact
		Hausdorff	Hausdorff	Hausdorff
		t.d.	t.d.	t.d.
			Pries. sep.	Pries. sep.

Is **A** being involutory a necessary condition for X(A) to satisfy Priestley separation?

Open Question

What is the precise relationship between boundedness of $\boldsymbol{\mathsf{A}}$ and compactness of $X(\boldsymbol{\mathsf{A}})?$

Definiti	on, facts, examples	ldeals Spectra 00 000000	Connected Unio	ns Current/Future Work 000
	Comm	Comm, Bdd	Comm, Invol	Comm, Bdd, Invol
	locally compact	compact	locally compact	compact
		Hausdorff	Hausdorff	Hausdorff
		t.d.	t.d.	t.d.
			Pries. sep.	Pries. sep.

Is **A** being involutory a necessary condition for X(A) to satisfy Priestley separation?

Open Question

What is the precise relationship between boundedness of A and compactness of X(A)? Specifically, is there an unbounded A with infinite compact spectrum?

Definiti	on, facts, examples	ldeals Spectra 00 000000	Connected Unio	ns Current/Future Work 000
	Comm	Comm, Bdd	Comm, Invol	Comm, Bdd, Invol
	locally compact	compact	locally compact	compact
		Hausdorff	Hausdorff	Hausdorff
		t.d.	t.d.	t.d.
			Pries. sep.	Pries. sep.

Is **A** being involutory a necessary condition for X(A) to satisfy Priestley separation?

Open Question

What is the precise relationship between boundedness of A and compactness of X(A)? Specifically, is there an unbounded A with infinite compact spectrum?

Open Question

What is the image of the functor $\mathrm{X}:\textbf{cBCK}\to\textbf{Top}$?

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
0000	00	0000●0000	00	000
Fxamples				

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
0000	00	0000●0000	00	000
Examples				

- **1** $X(\mathbb{N}_0)$ is a one-point space.
- **2** X(0) is the Sierpinski space. [Reminder: $0 = \mathbb{N}_0 \overline{\oplus} \mathbb{N}_0^{\partial}$.]

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
0000	00	0000●0000	00	000
Examples				

- **1** $X(\mathbb{N}_0)$ is a one-point space.
- **2** $X(\mathcal{O})$ is the Sierpinski space. [Reminder: $\mathcal{O} = \mathbb{N}_0 \overline{\oplus} \mathbb{N}_0^{\partial}$.]
- $\label{eq:constraint} \textbf{3} \ \mathrm{X} \Bigl(\bigsqcup_{\lambda \in \Lambda} \mathbb{N}_0 \Bigr) \text{ is a discrete space of cardinality } |\Lambda|.$

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
0000	00	000000000	00	000
Examples				

- $\bullet X(\mathbb{N}_0) \text{ is a one-point space.}$
- $\textbf{2} X(0) \text{ is the Sierpinski space. [Reminder: } 0 = \mathbb{N}_0 \overline{\oplus} \mathbb{N}_0^{\partial}.]$

$$\ \, \mathfrak{S} \, \operatorname{X} \Big(\bigsqcup_{\lambda \in \Lambda} \mathbb{N}_0 \Big) \text{ is a discrete space of cardinality } |\Lambda|.$$

$$\ \, \bullet \ \, \mathrm{X}\Big(\bigsqcup_{\lambda\in\Lambda} \mathbb{O}\Big) \text{ is actually interesting!}$$

Definition, facts, exan 0000		Ideals 00	Spectra 000000000	Connected Unions	Current/Future Work
Example:	$\mathcal{O}_1 \bigsqcup \mathcal{C}$) ₂			

Consider $\mathbf{A} = \mathcal{O}_1 \bigsqcup \mathcal{O}_2$ and for brevity let $X = X(\mathbf{A})$. The prime ideals of \mathbf{A} are:

$$Z_1 = \{0\} \sqcup \mathcal{O}_2 \quad N_1 = \mathbb{N}_0 \sqcup \mathcal{O}_2$$

Consider $\mathbf{A} = \mathcal{O}_1 \bigsqcup \mathcal{O}_2$ and for brevity let $X = X(\mathbf{A})$. The prime ideals of \mathbf{A} are:

$$Z_1 = \{0\} \sqcup \mathcal{O}_2 \quad N_1 = \mathbb{N}_0 \sqcup \mathcal{O}_2 Z_2 = \mathcal{O}_1 \sqcup \{0\} \quad N_2 = \mathcal{O}_1 \sqcup \mathbb{N}_0$$

So ${\rm X}$ is a 4-point space and the topology is:

Example: $\mathcal{O}_1 \bigcup \mathcal{O}_2$

Ideals 00 Spectra 0000000000 Connected Unions

Current/Future Work

Some facts:

1 X is not Hausdorff.

Definition, facts, examples Ideals

Example: $\mathcal{O}_1 | | \mathcal{O}_2$

Spectra 0000000000 Connected Unions

Current/Future Work

Some facts:

- 1 X is not Hausdorff.
- Every irreducible closed set is the closure of a unique point; that is, X is a sober space.

 $\begin{array}{c} \begin{array}{c} \text{Definition, facts, examples} \\ \text{ooo} \end{array} & \begin{array}{c} \text{Ideal} \\ \text{oo} \end{array} \\ \hline \begin{array}{c} \text{Example: } \mathcal{O}_1 \mid \mathcal{O}_2 \end{array}$

Spectra 000000000 Connected Unions

Current/Future Work

Some facts:

- 1 X is not Hausdorff.
- Every irreducible closed set is the closure of a unique point; that is, X is a sober space.
- S The compact open sets form a basis and are closed under finite intersections.

Definition, facts, examples	lde
0000	OC
Example: O_1	$ \mathcal{O}_2$

eals D Spectra 000000000 Connected Unions

Current/Future Work

Some facts:

- 1 X is not Hausdorff.
- Every irreducible closed set is the closure of a unique point; that is, X is a sober space.
- The compact open sets form a basis and are closed under finite intersections.
- ④ X is compact.

Definition, facts, examples	Ide
0000	OC
Example: \mathcal{O}_1	$ \mathcal{O}_2 $

000000000

Spectra

Some facts:

- X is not Hausdorff.
- 2 Every irreducible closed set is the closure of a unique point; that is, X is a sober space.
- 3 The compact open sets form a basis and are closed under finite intersections.
- **4** X is compact.

Properties (2)-(4) tell us that X is a **spectral space**

Definition, facts, exar 0000		Ide OC
Example:	\mathcal{O}_1	02

als

Spectra 000000●00 Connected Unions

Current/Future Work

Some facts:

- 1 X is not Hausdorff.
- Every irreducible closed set is the closure of a unique point; that is, X is a sober space.
- S The compact open sets form a basis and are closed under finite intersections.
- ④ X is compact.

Properties (2)-(4) tell us that X is a **spectral space**; that is, X is homeomorphic to the spectrum of some commutative ring.

If we let Λ be an infinite indexing set, then the spectrum of $\bigsqcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ is no longer compact, but still has properties (2) and (3).

If we let Λ be an infinite indexing set, then the spectrum of $\bigsqcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ is no longer compact, but still has properties (2) and (3). This makes it a **generalized spectral space**, meaning it is homeomorphic to the spectrum of some distributive lattice with zero.

If we let Λ be an infinite indexing set, then the spectrum of $\bigsqcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ is no longer compact, but still has properties (2) and (3). This makes it a **generalized spectral space**, meaning it is homeomorphic to the spectrum of some distributive lattice with zero.

Definition, facts, examples		Spectra	Connected Unions	Current/Future Work
0000	00	00000000	00	000

Some associated facts:

Definition, facts, examples		Spectra	Connected Unions	Current/Future Work
0000	00	00000000	00	000

Some associated facts:

Proposition (E., 2019)

$X(\bigsqcup A_{\lambda}) \cong \bigsqcup X(A_{\lambda})$ with the disjoint union topology.

Definition, facts, examples	Spectra	Connected Unions	Current/Future Work
0000	00000000		

Some associated facts:

Proposition (E., 2019)

 $X(\bigsqcup A_{\lambda}) \cong \bigsqcup X(A_{\lambda})$ with the disjoint union topology.

Proposition (E., 2019)

$$\mathbf{X}\left(\prod_{i=1}^{n}\mathbf{A}_{i}\right)\cong\mathbf{X}\left(\bigsqcup_{i=1}^{n}\mathbf{A}_{i}\right)$$

Definition, facts, examples	Spectra	Connected Unions	Current/Future Work
		••	

A family $\{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$ of BCK-algebras is **connected** if for all $\lambda, \mu \in \Lambda$:

1 The operations \cdot_{λ} and \cdot_{μ} coincide on $\mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu}$, and

Definition, facts, examples	Spectra	Connected Unions	Current/Future Work
		•0	

A family $\{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$ of BCK-algebras is **connected** if for all $\lambda, \mu \in \Lambda$:

- 1 The operations \cdot_{λ} and \cdot_{μ} coincide on $\mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu}$, and
- \mathbf{O} if $x \in \mathbf{A}_{\lambda} \setminus \mathbf{A}_{\mu}$ and $y \in \mathbf{A}_{\mu} \setminus \mathbf{A}_{\lambda}$, then $\mathsf{glb}\{x, y\} \in \mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu}$.

Definition, facts, examples	Spectra	Connected Unions	Current/Future Work
		•0	

A family $\{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$ of BCK-algebras is **connected** if for all $\lambda, \mu \in \Lambda$:

- 1 The operations \cdot_{λ} and \cdot_{μ} coincide on $\mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu}$, and
- \mathbf{O} if $x \in \mathbf{A}_{\lambda} \setminus \mathbf{A}_{\mu}$ and $y \in \mathbf{A}_{\mu} \setminus \mathbf{A}_{\lambda}$, then $\mathsf{glb}\{x, y\} \in \mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu}$.

Given a connected family $\mathcal{A} = \{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$, we say $\mathbf{A} = \langle A; \cdot, 0 \rangle$ is a **connected BCK-union** of the family \mathcal{A} provided

Definition, facts, examples	Spectra	Connected Unions	Current/Future Work
		••	

A family $\{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$ of BCK-algebras is **connected** if for all $\lambda, \mu \in \Lambda$:

- 1 The operations \cdot_{λ} and \cdot_{μ} coincide on $\mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu}$, and
- \mathbf{O} if $x \in \mathbf{A}_{\lambda} \setminus \mathbf{A}_{\mu}$ and $y \in \mathbf{A}_{\mu} \setminus \mathbf{A}_{\lambda}$, then $\mathsf{glb}\{x, y\} \in \mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu}$.

Given a connected family $\mathcal{A} = \{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$, we say $\mathbf{A} = \langle A; \cdot, 0 \rangle$ is a **connected BCK-union** of the family \mathcal{A} provided

$$\ \, {\bf A} = \bigcup_{\lambda \in \Lambda} A_\lambda, \ \, {\rm anc} \ \,$$

2 the operation \cdot agrees with \cdot_{λ} when restricted to \mathbf{A}_{λ} .

Definition, facts, examples	Spectra	Connected Unions	Current/Future Wor
		00	

A family $\{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$ of BCK-algebras is **connected** if for all $\lambda, \mu \in \Lambda$:

- 1 The operations \cdot_{λ} and \cdot_{μ} coincide on $\mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu}$, and
- \mathbf{O} if $x \in \mathbf{A}_{\lambda} \setminus \mathbf{A}_{\mu}$ and $y \in \mathbf{A}_{\mu} \setminus \mathbf{A}_{\lambda}$, then $\mathsf{glb}\{x, y\} \in \mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu}$.

Given a connected family $\mathcal{A} = \{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$, we say $\mathbf{A} = \langle A; \cdot, 0 \rangle$ is a **connected BCK-union** of the family \mathcal{A} provided

• $A = \bigcup_{\lambda \in \Lambda} A_{\lambda}$, and • the operation \cdot agrees with \cdot_{λ} when restricted to \mathbf{A}_{λ} .

Note: the BCK-union we defined earlier is a special case of connected BCK-union with $\mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu} = \{0\}$ for all pairs of indices.

Definition, facts, examples	Spectra	Connected Unions	Current/Future Wor
		•0	

A family $\{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$ of BCK-algebras is **connected** if for all $\lambda, \mu \in \Lambda$:

- 1 The operations \cdot_{λ} and \cdot_{μ} coincide on $\mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu}$, and
- \mathbf{O} if $x \in \mathbf{A}_{\lambda} \setminus \mathbf{A}_{\mu}$ and $y \in \mathbf{A}_{\mu} \setminus \mathbf{A}_{\lambda}$, then $\mathsf{glb}\{x, y\} \in \mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu}$.

Given a connected family $\mathcal{A} = \{\mathbf{A}_{\lambda}\}_{\lambda \in \Lambda}$, we say $\mathbf{A} = \langle A; \cdot, 0 \rangle$ is a **connected BCK-union** of the family \mathcal{A} provided

- $A = \bigcup_{\lambda \in \Lambda} A_{\lambda}$, and • the expectation express with when restricted to Λ
- **2** the operation \cdot agrees with \cdot_{λ} when restricted to \mathbf{A}_{λ} .

Note: the BCK-union we defined earlier is a special case of connected BCK-union with $\mathbf{A}_{\lambda} \cap \mathbf{A}_{\mu} = \{0\}$ for all pairs of indices.

Note: Any family of *commutative* BCK-algebras satisfying (1) automatically satisfies (2).

deals

Spectra 000000000 Connected Unions

Current/Future Work

Connected Unions

Theorem (Pałasinski, 1982)

 The connected BCK-union for every connected family of BCK-algebras exists and it is unique.

deals 00 Spectra 000000000 Connected Unions

Current/Future Work

Connected Unions

Theorem (Pałasinski, 1982)

- The connected BCK-union for every connected family of BCK-algebras exists and it is unique.
- If {A_λ}_{λ∈Λ} is a connected family of commutative BCK-algebras, then their connected BCK-union is a commutative BCK-algebra.

deals

Spectra 000000000 Connected Unions

Current/Future Work

Connected Unions

Theorem (Pałasinski, 1982)

- The connected BCK-union for every connected family of BCK-algebras exists and it is unique.
- If {A_λ}_{λ∈Λ} is a connected family of commutative BCK-algebras, then their connected BCK-union is a commutative BCK-algebra.
- Every cBCK-algebra is the connected BCK-union of a connected family of directed cBCK-algebras.

deals

Spectra 000000000 Connected Unions

Current/Future Work

Connected Unions

Theorem (Pałasinski, 1982)

- The connected BCK-union for every connected family of BCK-algebras exists and it is unique.
- If {A_λ}_{λ∈Λ} is a connected family of commutative BCK-algebras, then their connected BCK-union is a commutative BCK-algebra.
- Every cBCK-algebra is the connected BCK-union of a connected family of directed cBCK-algebras.
Definition, facts, examples 0000 ldeals 00 Spectra 000000000 Connected Unions

 $\begin{array}{c} {\sf Current}/{\sf Future} \ {\sf Work} \\ \bullet \circ \circ \end{array}$

Current/Future Work

Reminder:

Lemma

If $\mathcal{U} = \bigsqcup \mathbf{A}_{\lambda}$ is a BCK-union, then any ideal has the form $I = \bigsqcup I_{\lambda}$, where $I_{\lambda} \in Id(\mathbf{A}_{\lambda})$.

Definition, facts, examples

Ideals 00 Spectra 000000000 Connected Unions

Current/Future Work

Current/Future Work

Reminder:

Lemma

If $\mathcal{U} = \bigsqcup \mathbf{A}_{\lambda}$ is a BCK-union, then any ideal has the form $I = \bigsqcup I_{\lambda}$, where $I_{\lambda} \in Id(\mathbf{A}_{\lambda})$.

Current Can we decompose the ideals of a connected BCK-union in some "nice" way that is similar to the BCK-union?

Definition, facts, examples

Ideals 00 Spectra 000000000 Connected Unions

Current/Future Work

Current/Future Work

Reminder:

Lemma

If $\mathcal{U} = \bigsqcup \mathbf{A}_{\lambda}$ is a BCK-union, then any ideal has the form $I = \bigsqcup I_{\lambda}$, where $I_{\lambda} \in Id(\mathbf{A}_{\lambda})$.

Current Can we decompose the ideals of a connected BCK-union in some "nice" way that is similar to the BCK-union?

Future Same question for prime ideals.

Definition, facts, examples	Ideals	Spectra	Connected Unions	Current/Future Work
				000

Thank you!

Definition,		

deals 00 Spectra 000000000 Connected Unions

Current/Future Work

References

lseki, Tanaka

An introduction to the theory of BCK-algebras Mathematica Japonica, 1978, **23** (1), 1-26.

Meng, Jun

The spectral space of MV-algebras is a Stone space Scientiae Mathematicae, 1998, 1 (2), 211-215.

Pałasinski

Representation theorem for commutative BCK-algebras Mathematics Seminar Notes, Kobe University, 1982, **10**, 473-478.

Traczyk

On the variety of bounded commutative BCK-algebras Mathematica Japonica, 1979, **24** (3), 283-292.