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cBCK-algebras

A commutative BCK-algebra A is an algebra A = 〈A; ·, 0〉 of
type (2, 0) such that

(x · y) · z = (x · z) · y
x · (x · y) = y · (y · x)

x · x = 0

x · 0 = x

for all x , y , z ∈ A.



Definition, facts, examples Ideals Spectra Connected Unions Current/Future Work

cBCK-algebras

A commutative BCK-algebra A is an algebra A = 〈A; ·, 0〉 of
type (2, 0) such that

(x · y) · z = (x · z) · y
x · (x · y) = y · (y · x)

x · x = 0

x · 0 = x

for all x , y , z ∈ A.



Definition, facts, examples Ideals Spectra Connected Unions Current/Future Work

cBCK-algebras

A commutative BCK-algebra A is an algebra A = 〈A; ·, 0〉 of
type (2, 0) such that

(x · y) · z = (x · z) · y
x · (x · y) = y · (y · x)

x · x = 0

x · 0 = x

for all x , y , z ∈ A.



Definition, facts, examples Ideals Spectra Connected Unions Current/Future Work

Facts

1 Every BCK-algebra is partially ordered via: x ≤ y iff x · y = 0.

2 Commutativity: x ∧ y := y · (y · x) = x · (x · y) = y ∧ x .

A BCK-algebra A is bounded if there exists an element 1 ∈ A
such that x · 1 = 0 for all x ∈ A.

3 If A is bounded, then 〈A;∧,∨〉 is a distributive lattice, where

x ∨ y := 1 ·
[
(1 · x) ∧ (1 · y)

]
.

(Traczyk, 1979)



Definition, facts, examples Ideals Spectra Connected Unions Current/Future Work

Facts

1 Every BCK-algebra is partially ordered via: x ≤ y iff x · y = 0.

2 Commutativity: x ∧ y := y · (y · x)

= x · (x · y) = y ∧ x .

A BCK-algebra A is bounded if there exists an element 1 ∈ A
such that x · 1 = 0 for all x ∈ A.

3 If A is bounded, then 〈A;∧,∨〉 is a distributive lattice, where

x ∨ y := 1 ·
[
(1 · x) ∧ (1 · y)

]
.

(Traczyk, 1979)



Definition, facts, examples Ideals Spectra Connected Unions Current/Future Work

Facts

1 Every BCK-algebra is partially ordered via: x ≤ y iff x · y = 0.

2 Commutativity: x ∧ y := y · (y · x) = x · (x · y) = y ∧ x .

A BCK-algebra A is bounded if there exists an element 1 ∈ A
such that x · 1 = 0 for all x ∈ A.

3 If A is bounded, then 〈A;∧,∨〉 is a distributive lattice, where

x ∨ y := 1 ·
[
(1 · x) ∧ (1 · y)

]
.

(Traczyk, 1979)



Definition, facts, examples Ideals Spectra Connected Unions Current/Future Work

Facts

1 Every BCK-algebra is partially ordered via: x ≤ y iff x · y = 0.

2 Commutativity: x ∧ y := y · (y · x) = x · (x · y) = y ∧ x .

A BCK-algebra A is bounded if there exists an element 1 ∈ A
such that x · 1 = 0 for all x ∈ A.

3 If A is bounded, then 〈A;∧,∨〉 is a distributive lattice, where

x ∨ y := 1 ·
[
(1 · x) ∧ (1 · y)

]
.

(Traczyk, 1979)



Definition, facts, examples Ideals Spectra Connected Unions Current/Future Work

Facts

1 Every BCK-algebra is partially ordered via: x ≤ y iff x · y = 0.

2 Commutativity: x ∧ y := y · (y · x) = x · (x · y) = y ∧ x .

A BCK-algebra A is bounded if there exists an element 1 ∈ A
such that x · 1 = 0 for all x ∈ A.

3 If A is bounded, then 〈A;∧,∨〉 is a distributive lattice, where

x ∨ y := 1 ·
[
(1 · x) ∧ (1 · y)

]
.

(Traczyk, 1979)



Definition, facts, examples Ideals Spectra Connected Unions Current/Future Work

Examples

1 Let X be a set. Then
〈
P(X );−,∅

〉
is a cBCK-algebra.

2 More generally, any Boolean algebra B admits a
cBCK-structure via x · y = x ∧ (¬y).

3 R≥0 = 〈R≥0; ·, 0〉 is a cBCK-algebra, where
x · y = max{x − y , 0} .

4 N0 is a subalgebra of R≥0

5 Let O = N0⊕N∂0 denote the ordinal sum of N0 with its
order-dual. Then O admits a cBCK-structure.
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Example

Let {Aλ}λ∈Λ be a family of cBCK-algebras with Aλ ∩ Aµ = {0}.

Put U =
⋃
λ∈Λ

Aλ.

Then U is a cBCK-algebra with the operation

x · y =

{
x ·λ y if x , y ∈ Aλ

x otherwise .

We call U the BCK-union of the Aλ’s and we will write U =
⊔
Aλ
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Ideals

Given a cBCK-algebra A, a subset I is an ideal if

1 0 ∈ I

2 if x · y ∈ I and y ∈ I , then x ∈ I .

A proper ideal P of A is a prime ideal if x ∧ y ∈ P implies x ∈ P
or y ∈ P.

Let Id(A) and X(A) denote the set of ideals and prime ideals,
respectively.
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Examples

1 Id(N0) =
{
{0},N0

}
and X(N0) =

{
{0}
}

.

2 Id(O) =
{
{0},N0,O

}
and X(O) =

{
{0},N0,

}
.

Lemma

If U =
⊔
Aλ is a BCK-union, then any ideal has the form I =

⊔
Iλ,

where Iλ ∈ Id(Aλ).

Theorem (E., 2019)

An ideal P in a BCK-union U is prime iff there exists µ ∈ Λ and
Q ∈ X(Aµ) such that

P =
⊔

AQ
λ,µ ,

where AQ
λ,µ =

{
Aλ if λ 6= µ

Q if λ = µ .
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Spectra

For a subset S ⊆ A, define

σ(S) =
{
P ∈ X(A) | S 6⊆ P

}
.

We will write σ(a) for σ({a}).

Proposition

The family T(A) =
{
σ(I ) | I ∈ Id(A)

}
is a topology on X(A), and

T0(A) =
{
σ(a) | a ∈ A

}
is a basis for this topology.

The space
(
X(A) , T(A)

)
is the spectrum of A.
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A topological space (X ,T) is a Stone space if it is compact,
Hausdorff, and totally disconnected.

An ordered topological space (X ,T,≤) is called a Priestley space
if (X ,T) is a Stone space and (X ,≤) satisfies the following
separation property:

if x 6≤ y , there exists a clopen up-set U such that x ∈ U but y /∈ U .

Theorem (Meng & Jun, 1998)

If A is a bounded cBCK-algebra, then X(A) is a Stone space.
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Theorem (E., 2017)

If A is a bounded and involutory cBCK-algebra, then X(A) is a
Priestley space.

A BCK-algebra A is involutory if, for every pair of elements
x , y ∈ A, the decreasing sequence

x ≥ x · y ≥ (x · y) · y ≥
(
(x · y) · y

)
· y ≥ · · ·

eventually stabilizes.

Proposition (E., 2018)

X(A) is locally compact for any cBCK-algebra A.

Comm Comm, Bdd Comm, Invol Comm, Bdd, Invol

locally compact compact locally compact compact
Hausdorff Hausdorff Hausdorff

t.d. t.d. t.d.
Pries. sep. Pries. sep.
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Comm Comm, Bdd Comm, Invol Comm, Bdd, Invol

locally compact compact locally compact compact
Hausdorff Hausdorff Hausdorff

t.d. t.d. t.d.
Pries. sep. Pries. sep.

Open Question

Is A being involutory a necessary condition for X(A) to satisfy
Priestley separation?

Open Question

What is the precise relationship between boundedness of A and
compactness of X(A)? Specifically, is there an unbounded A with
infinite compact spectrum?

Open Question

What is the image of the functor X : cBCK→ Top ?
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Examples

1 X
(
N0

)
is a one-point space.

2 X
(
O
)

is the Sierpinski space. [Reminder: O = N0⊕N∂0 . ]

3 X
( ⊔
λ∈Λ

N0

)
is a discrete space of cardinality |Λ|.

4 X
( ⊔
λ∈Λ

O
)

is actually interesting!
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Example: O1

⊔
O2

Consider A = O1
⊔

O2 and for brevity let X = X(A). The prime
ideals of A are:

Z1 = {0} t O2 N1 = N0 t O2

Z2 = O1 t {0} N2 = O1 t N0

So X is a 4-point space and the topology is:
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Example: O1

⊔
O2

Some facts:

1 X is not Hausdorff.

2 Every irreducible closed set is the closure of a unique point;
that is, X is a sober space.

3 The compact open sets form a basis and are closed under
finite intersections.

4 X is compact.

Properties (2)-(4) tell us that X is a spectral space ; that is, X is
homeomorphic to the spectrum of some commutative ring.
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Examples:
n⊔

i=1

Oi and
⊔
λ∈Λ

Oλ

More generally, the spectrum of
n⊔

i=1
Oi is a non-Hausdorff spectral

space with cardinality 2n.

If we let Λ be an infinite indexing set, then the spectrum of
⊔
λ∈Λ

Oλ

is no longer compact, but still has properties (2) and (3). This
makes it a generalized spectral space, meaning it is
homeomorphic to the spectrum of some distributive lattice with
zero.
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Some associated facts:

Proposition (E., 2019)

X
(⊔

Aλ
)
∼=
⊔
X(Aλ) with the disjoint union topology.

Proposition (E., 2019)

X
( n∏
i=1

Ai

)
∼= X

( n⊔
i=1

Ai

)
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Connected Unions

A family {Aλ}λ∈Λ of BCK-algebras is connected if for all
λ, µ ∈ Λ:

1 The operations ·λ and ·µ coincide on Aλ ∩ Aµ, and

2 if x ∈ Aλ \ Aµ and y ∈ Aµ \ Aλ, then glb{x , y} ∈ Aλ ∩ Aµ.

Given a connected family A = {Aλ}λ∈Λ, we say A = 〈A; ·, 0〉 is a
connected BCK-union of the family A provided

1 A =
⋃
λ∈Λ

Aλ, and

2 the operation · agrees with ·λ when restricted to Aλ.

Note: the BCK-union we defined earlier is a special case of
connected BCK-union with Aλ ∩ Aµ = {0} for all pairs of indices.

Note: Any family of commutative BCK-algebras satisfying (1)
automatically satisfies (2).
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Connected Unions

Theorem (Pa lasinski, 1982)

1 The connected BCK-union for every connected family of
BCK-algebras exists and it is unique.

2 If {Aλ}λ∈Λ is a connected family of commutative
BCK-algebras, then their connected BCK-union is a
commutative BCK-algebra.

3 Every cBCK-algebra is the connected BCK-union of a
connected family of directed cBCK-algebras.
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Current/Future Work

Reminder:

Lemma

If U =
⊔
Aλ is a BCK-union, then any ideal has the form I =

⊔
Iλ,

where Iλ ∈ Id(Aλ).

Current Can we decompose the ideals of a connected BCK-union in
some “nice” way that is similar to the BCK-union?

Future Same question for prime ideals.
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Thank you!
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