# A generalization of affine algebras

Eran Crockett

BLAST 2019 University of Colorado at Boulder 20 May 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### Let A be a nonempty set and let $f : A^n \to A$ be an operation on A.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

#### Affine terms

Let *A* be a nonempty set and let  $f : A^n \to A$  be an operation on *A*. The operation *f* is said to be *affine with respect the abelian group*  $\mathbb{A} = \langle A; +, -, 0 \rangle$  if there exist endomorphisms  $r_1, r_2, \ldots, r_n$  of  $\mathbb{A}$  and an element *a* in *A* such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Affine terms

Let *A* be a nonempty set and let  $f : A^n \to A$  be an operation on *A*. The operation *f* is said to be *affine with respect the abelian group*  $\mathbb{A} = \langle A; +, -, 0 \rangle$  if there exist endomorphisms  $r_1, r_2, \ldots, r_n$  of  $\mathbb{A}$  and an element *a* in *A* such that

$$f(x_1, x_2, \ldots, x_n) = r_1(x_1) + r_2(x_2) + \cdots + r_n(x_n) + a.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Affine algebras

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *affine* if there is an abelian group A such that

#### Affine algebras

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *affine* if there is an abelian group A such that

• 
$$x_1 - x_2 + x_3$$
 is in Clo(**A**), and

#### Affine algebras

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *affine* if there is an abelian group  $\mathbb{A}$  such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $x_1 x_2 + x_3$  is in Clo(**A**), and
- every f in F is affine with respect to  $\mathbb{A}$ .

every abelian group



- every abelian group
- every module over a ring

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- every abelian group
- every module over a ring
- the quasigroup with Cayley table below

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- every abelian group
- every module over a ring
- the quasigroup with Cayley table below

| 0 | 0 | 1 | 2 |
|---|---|---|---|
| 0 | 0 | 2 | 1 |
| 1 | 1 | 0 | 2 |
| 2 | 2 | 1 | 0 |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *abelian* if it satisfies

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *abelian* if it satisfies

 $\forall m, n \geq 1,$ 



An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *abelian* if it satisfies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\forall m, n \geq 1, \forall x, y \in A^m,$ 

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *abelian* if it satisfies

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $\forall m, n \geq 1, \forall x, y \in A^m, \forall z, w \in A^n,$ 

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *abelian* if it satisfies

$$\forall m, n \geq 1, \forall x, y \in A^m, \forall z, w \in A^n, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A})$$

(ロ)、(型)、(E)、(E)、 E) の(の)

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *abelian* if it satisfies

 $\forall m, n \geq 1, \forall x, y \in A^m, \forall z, w \in A^n, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A})$ 

$$t(x,z) = t(x,w) \implies t(y,z) = t(y,w).$$

・ロト・日本・モート モー うへぐ

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *abelian* if it satisfies

 $\forall m, n \geq 1, \forall x, y \in A^m, \forall z, w \in A^n, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A})$ 

$$t(x,z) = t(x,w) \implies t(y,z) = t(y,w).$$

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *Mal'cev* if there is q in  $Clo_3(\mathbf{A})$  that satisfies

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *abelian* if it satisfies

 $\forall m, n \geq 1, \forall x, y \in A^m, \forall z, w \in A^n, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A})$ 

$$t(x,z) = t(x,w) \implies t(y,z) = t(y,w).$$

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *Mal'cev* if there is q in  $Clo_3(\mathbf{A})$  that satisfies

 $\forall x, y \in A$ 

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *abelian* if it satisfies

 $\forall m, n \geq 1, \forall x, y \in A^m, \forall z, w \in A^n, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A})$ 

$$t(x,z) = t(x,w) \implies t(y,z) = t(y,w).$$

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *Mal'cev* if there is q in  $Clo_3(\mathbf{A})$  that satisfies

$$\forall x, y \in A$$

$$q(x, y, y) = x = q(y, y, x).$$

 every group, ring, module, quasigroup, and nearring is Mal'cev.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- every group, ring, module, quasigroup, and nearring is Mal'cev.
- ▶ a group is abelian if and only if it is an abelian group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- every group, ring, module, quasigroup, and nearring is Mal'cev.
- ▶ a group is abelian if and only if it is an abelian group.
- ▶ a ring is abelian if and only if the multiplication is zero.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- every group, ring, module, quasigroup, and nearring is Mal'cev.
- ▶ a group is abelian if and only if it is an abelian group.
- ▶ a ring is abelian if and only if the multiplication is zero.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

every module is abelian.

- every group, ring, module, quasigroup, and nearring is Mal'cev.
- ▶ a group is abelian if and only if it is an abelian group.
- ▶ a ring is abelian if and only if the multiplication is zero.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

every module is abelian.

Fundamental theorem of abelian algebras

#### Theorem (Herrmann, 1979)

Let **A** belong to a modular variety. Then **A** is affine if and only if it is abelian.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Goal

To classify or characterize affine algebras



#### Goal

To classify or characterize affine algebras

Consider the integers as an abelian group  $\langle \mathbb{Z}; +, -, 0 \rangle$  and as a  $\mathbb{Z}$ -module  $\langle \mathbb{Z}; +, -, 0, \ell_a \rangle_{a \in \mathbb{Z}}$ . Are these different algebras?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Goal

To classify or characterize affine algebras

Consider the integers as an abelian group  $\langle \mathbb{Z}; +, -, 0 \rangle$  and as a  $\mathbb{Z}$ -module  $\langle \mathbb{Z}; +, -, 0, \ell_a \rangle_{a \in \mathbb{Z}}$ . Are these different algebras? Two algebras on the same set are said to be *term-equivalent* if they have the same term operations.

#### Goal

To classify or characterize affine algebras

Consider the integers as an abelian group  $\langle \mathbb{Z}; +, -, 0 \rangle$  and as a  $\mathbb{Z}$ -module  $\langle \mathbb{Z}; +, -, 0, \ell_a \rangle_{a \in \mathbb{Z}}$ . Are these different algebras? Two algebras on the same set are said to be *term-equivalent* if they have the same term operations. We only want to classify algebras up to term equivalence.

・ロト・西ト・ヨト・ヨト ウヘぐ



#### A clone on a set A is a collection C of operations on A such that

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

A *clone* on a set A is a collection C of operations on A such that  $\blacktriangleright$  the projection operations  $\operatorname{proj}_{i}^{k} : A^{k} \to A$  are in C, and

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A clone on a set A is a collection C of operations on A such that

- the projection operations  $\operatorname{proj}_i^k : A^k \to A$  are in  $\mathcal{C}$ , and
- ▶ if f is n-ary, and g<sub>1</sub>,..., g<sub>n</sub> are k-ary operations in C, then f[g<sub>1</sub>,...,g<sub>n</sub>] is in C as well.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A clone on a set A is a collection  $\mathcal C$  of operations on A such that

- the projection operations  $\operatorname{proj}_i^k : A^k \to A$  are in  $\mathcal{C}$ , and
- ▶ if f is n-ary, and g<sub>1</sub>,..., g<sub>n</sub> are k-ary operations in C, then f[g<sub>1</sub>,..., g<sub>n</sub>] is in C as well.

Every algebra  $\langle A; F \rangle$  gives rise to the clone Clo(A; F) generated by F.

A clone on a set A is a collection C of operations on A such that

- the projection operations  $\operatorname{proj}_i^k : A^k \to A$  are in  $\mathcal{C}$ , and
- ▶ if f is n-ary, and g<sub>1</sub>,..., g<sub>n</sub> are k-ary operations in C, then f[g<sub>1</sub>,...,g<sub>n</sub>] is in C as well.

Every algebra  $\langle A; F \rangle$  gives rise to the clone  $\operatorname{Clo}(A; F)$  generated by F. Two algebras  $\langle A; F \rangle$  and  $\langle A; G \rangle$  are term equivalent if and only if  $\operatorname{Clo}(A; F) = \operatorname{Clo}(A; G)$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Classifying affine clones

Let  $\mathbbm{A}$  be an abelian group,
Let  $\mathbb A$  be an abelian group, let R be a unital subring of the ring of endomorphisms of  $\mathbb A,$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let  $\mathbb{A}$  be an abelian group, let **R** be a unital subring of the ring of endomorphisms of  $\mathbb{A}$ , and let **M** be a submodule of  $_{R}R \times_{R} A$ .

Let  $\mathbb{A}$  be an abelian group, let **R** be a unital subring of the ring of endomorphisms of  $\mathbb{A}$ , and let **M** be a submodule of  $_{R}R \times_{R} A$ . Then

$$\mathcal{K}(\mathbb{A}, \mathbf{R}, \mathbf{M}) = \left\{\sum_{i=1}^{n} r_i(x_i) + a : r_i \in R, (1 - \sum_{i=1}^{n} r_i, a) \in M\right\}$$

is an affine clone on the set A. Conversely:

Let  $\mathbb{A}$  be an abelian group, let **R** be a unital subring of the ring of endomorphisms of  $\mathbb{A}$ , and let **M** be a submodule of  $_{R}R \times_{R} A$ . Then

$$\mathcal{K}(\mathbb{A},\mathbf{R},\mathbf{M}) = \left\{\sum_{i=1}^n r_i(x_i) + a: r_i \in R, (1-\sum_{i=1}^n r_i,a) \in M\right\}$$

is an affine clone on the set A. Conversely:

#### Theorem (Szendrei, 1980)

If  ${\mathcal C}$  is an affine clone on a set A, then there exist  ${\mathbb A}, R,$  and M such that

$$\mathcal{C} = \mathcal{K}(\mathbb{A}, \mathbf{R}, \mathbf{M}).$$

Let  $\alpha,\beta,\gamma$  be congruences of an algebra  ${\bf A}.$  We say  $\alpha$  centralizes  $\beta$  modulo  $\gamma$  if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let  $\alpha,\beta,\gamma$  be congruences of an algebra  ${\bf A}.$  We say  $\alpha$  centralizes  $\beta$  modulo  $\gamma$  if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\forall m, n \geq 1,$ 

Let  $\alpha,\beta,\gamma$  be congruences of an algebra  ${\bf A}.$  We say  $\alpha$  centralizes  $\beta$  modulo  $\gamma$  if

 $\forall m, n \geq 1, \forall x \; \alpha^m \; y,$ 

Let  $\alpha,\beta,\gamma$  be congruences of an algebra  ${\bf A}.$  We say  $\alpha$  centralizes  $\beta$  modulo  $\gamma$  if

 $\forall m, n \geq 1, \forall x \; \alpha^m \; y, \forall z \; \beta^n \; w,$ 

Let  $\alpha,\beta,\gamma$  be congruences of an algebra  ${\bf A}.$  We say  $\alpha$  centralizes  $\beta$  modulo  $\gamma$  if

 $\forall m, n \geq 1, \forall x \; \alpha^m \; y, \forall z \; \beta^n \; w, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A})$ 

Let  $\alpha,\beta,\gamma$  be congruences of an algebra  ${\bf A}.$  We say  $\alpha$  centralizes  $\beta$  modulo  $\gamma$  if

$$\forall m, n \geq 1, \forall x \; \alpha^m \; y, \forall z \; \beta^n \; w, \forall t \in \mathrm{Clo}_{m+n}(\mathsf{A})$$

$$t(x,z) \gamma t(x,w) \implies t(y,z) \gamma t(y,w).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let  $\alpha,\beta,\gamma$  be congruences of an algebra  ${\bf A}.$  We say  $\alpha$  centralizes  $\beta$  modulo  $\gamma$  if

$$\forall m, n \geq 1, \forall x \; \alpha^m \; y, \forall z \; \beta^n \; w, \forall t \in \mathrm{Clo}_{m+n}(\mathsf{A})$$

$$t(x,z) \gamma t(x,w) \implies t(y,z) \gamma t(y,w).$$

The commutator of  $\alpha$  and  $\beta$  is

$$[\alpha,\beta] = \bigcap \{\gamma : \alpha \text{ centralizes } \beta \text{ modulo } \gamma \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$1_{\mathcal{A}} = heta_0 \ge heta_1 \ge \dots \ge heta_c = 0_{\mathcal{A}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

of congruences satisfying  $[1_A, \theta_i] \leq \theta_{i+1}$ .

$$\mathbf{1}_{\mathcal{A}} = \theta_0 \geq \theta_1 \geq \cdots \geq \theta_c = \mathbf{0}_{\mathcal{A}}$$

of congruences satisfying  $[1_A, \theta_i] \leq \theta_{i+1}$ . The sequence above is called a *central series*.

$$\mathbf{1}_{\mathcal{A}} = \theta_0 \geq \theta_1 \geq \cdots \geq \theta_c = \mathbf{0}_{\mathcal{A}}$$

of congruences satisfying  $[1_A, \theta_i] \leq \theta_{i+1}$ . The sequence above is called a *central series*. The integer *c* is the *length* of the central series.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbf{1}_{A} = \theta_{0} \geq \theta_{1} \geq \cdots \geq \theta_{c} = \mathbf{0}_{A}$$

of congruences satisfying  $[1_A, \theta_i] \leq \theta_{i+1}$ . The sequence above is called a *central series*. The integer *c* is the *length* of the central series. The *nilpotence class of* **A** is the length of its shortest central series.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Nil-2-affine terms

Let A be a nonempty set and let  $f : A^n \to A$  be an operation on A. Let A be an abelian group with underlying set A and let  $\theta$  be a congruence of A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Nil-2-affine terms

Let *A* be a nonempty set and let  $f : A^n \to A$  be an operation on *A*. Let *A* be an abelian group with underlying set *A* and let  $\theta$  be a congruence of *A*. The operation *f* is said to be *nil-2-affine with respect to A*,  $\theta$  if there exist  $\theta$ -preserving endomorphisms  $r_1, r_2, \ldots, r_n$  of *A* and an operation  $a : A^n \to A$  satisfying

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• 
$$x, y \in A^n \implies a(x) \ \theta \ a(y)$$
, and

$$\blacktriangleright x \ \theta^n \ y \implies a(x) = (y)$$

such that

### Nil-2-affine terms

Let *A* be a nonempty set and let  $f : A^n \to A$  be an operation on *A*. Let *A* be an abelian group with underlying set *A* and let  $\theta$  be a congruence of *A*. The operation *f* is said to be *nil-2-affine with respect to A*,  $\theta$  if there exist  $\theta$ -preserving endomorphisms  $r_1, r_2, \ldots, r_n$  of *A* and an operation  $a : A^n \to A$  satisfying

• 
$$x, y \in A^n \implies a(x) \ \theta \ a(y)$$
, and

$$\blacktriangleright x \ \theta^n \ y \implies a(x) = (y)$$

such that

$$f(x_1, x_2, \ldots, x_n) = r_1(x_1) + r_2(x_2) + \cdots + r_n(x_n) + a(x_1, x_2, \ldots, x_n).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Nil-2-affine algebras

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *nil-2-affine* if there is an abelian group  $\mathbb{A}$  and a congruence  $\theta$  of  $\mathbb{A}$  such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Nil-2-affine algebras

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *nil-2-affine* if there is an abelian group  $\mathbb{A}$  and a congruence  $\theta$  of  $\mathbb{A}$  such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• 
$$x_1 - x_2 + x_3$$
 is in Clo(**A**), and

### Nil-2-affine algebras

An algebra  $\mathbf{A} = \langle A; F \rangle$  is said to be *nil-2-affine* if there is an abelian group  $\mathbb{A}$  and a congruence  $\theta$  of  $\mathbb{A}$  such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $x_1 x_2 + x_3$  is in Clo(**A**), and
- every f in F is nil-2-affine with respect to  $\mathbb{A}$ ,  $\theta$ .

• every affine algebra (just choose  $\theta = 1_A$  or  $\theta = 0_A$ )

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• every affine algebra (just choose  $\theta = 1_A$  or  $\theta = 0_A$ )

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• the algebra  $\mathbf{E}_k = \langle \mathbb{Z}_4; +, -, 0, 1, 2x_1 \cdots x_k \rangle$ 

- every affine algebra (just choose  $\theta = 1_A$  or  $\theta = 0_A$ )
- ▶ the algebra  $\mathbf{E}_k = \langle \mathbb{Z}_4; +, -, 0, 1, 2x_1 \cdots x_k \rangle$
- ▶ the algebra  $\mathbf{E}_{\infty} = \langle \mathbb{Z}_4; +, -, 0, 1, 2x_1, 2x_1x_2, 2x_1x_2x_3, \dots, \rangle$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- every affine algebra (just choose  $\theta = 1_A$  or  $\theta = 0_A$ )
- ▶ the algebra  $\mathbf{E}_k = \langle \mathbb{Z}_4; +, -, 0, 1, 2x_1 \cdots x_k \rangle$
- ▶ the algebra  $\mathbf{E}_{\infty} = \langle \mathbb{Z}_4; +, -, 0, 1, 2x_1, 2x_1x_2, 2x_1x_2x_3, \dots, \rangle$

• the algebras  $\mathbf{M}(p,q)$  from my dissertation

- every affine algebra (just choose  $\theta = 1_A$  or  $\theta = 0_A$ )
- ▶ the algebra  $\mathbf{E}_k = \langle \mathbb{Z}_4; +, -, 0, 1, 2x_1 \cdots x_k \rangle$
- ▶ the algebra  $\mathbf{E}_{\infty} = \langle \mathbb{Z}_4; +, -, 0, 1, 2x_1, 2x_1x_2, 2x_1x_2x_3, \dots, \rangle$

• the algebras  $\mathbf{M}(p,q)$  from my dissertation

Relation to Mal'cev algebras of nilpotence class at most 2

#### Proposition (EC)

If **A** is nil-2-affine, then **A** is both Mal'cev and nilpotent of class at most 2.

Relation to Mal'cev algebras of nilpotence class at most 2

## Proposition (EC)

If **A** is nil-2-affine, then **A** is both Mal'cev and nilpotent of class at most 2.

#### **Open Question**

Does there exist an algebra **A** that is both Mal'cev and nilpotent of class 2, but is not nil-2-affine?

### Theorem (EC)

Let  $\mathbf{A} = \langle A; F \rangle$  be an algebra such that  $x_1 - x_2 + x_3 \in \operatorname{Clo}(\mathbf{A})$  for some abelian group  $\mathbb{A}$ . If

## Theorem (EC)

Let  $\mathbf{A} = \langle A; F \rangle$  be an algebra such that  $x_1 - x_2 + x_3 \in \operatorname{Clo}(\mathbf{A})$  for some abelian group  $\mathbb{A}$ . If

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

•  $\theta$  is a factor congruence of  $\mathbb{A}$ ,

## Theorem (EC)

Let  $\mathbf{A} = \langle A; F \rangle$  be an algebra such that  $x_1 - x_2 + x_3 \in \mathrm{Clo}(\mathbf{A})$  for some abelian group  $\mathbb{A}$ . If

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

•  $\theta$  is a factor congruence of  $\mathbb{A}$ ,

• 
$$[1_A, 1_A] \leq \theta$$
,

## Theorem (EC)

Let  $\mathbf{A} = \langle A; F \rangle$  be an algebra such that  $x_1 - x_2 + x_3 \in \mathrm{Clo}(\mathbf{A})$  for some abelian group  $\mathbb{A}$ . If

- $\theta$  is a factor congruence of  $\mathbb{A}$ ,
- $[1_A, 1_A] \leq \theta$ , and
- ▶  $[1_A, \theta] \leq 0_A$ ,

## Theorem (EC)

Let  $\mathbf{A} = \langle A; F \rangle$  be an algebra such that  $x_1 - x_2 + x_3 \in \mathrm{Clo}(\mathbf{A})$  for some abelian group  $\mathbb{A}$ . If

- $\theta$  is a factor congruence of  $\mathbb{A}$ ,
- $[1_A, 1_A] \leq \theta$ , and
- $[1_A, \theta] \leq 0_A$ ,

then **A** is nil-2-affine.

## Theorem (EC)

Let  $\mathbf{A} = \langle A; F \rangle$  be an algebra such that  $x_1 - x_2 + x_3 \in \operatorname{Clo}(\mathbf{A})$  for some abelian group  $\mathbb{A}$ . If

- $\theta$  is a factor congruence of  $\mathbb{A}$ ,
- $[1_A, 1_A] \leq \theta$ , and
- $[1_A, \theta] \leq 0_A$ ,

then **A** is nil-2-affine.

**Open Question** 

Is this true when  $\theta$  is not a factor congruence?

Let **A** be an algebra with Mal'cev term operation q and let  $\alpha,\beta,\gamma$  be congruences of **A**. Define

$$C(q,\alpha,\beta,\gamma) = \{(x,y,z,w) \in A^4 : x \alpha y, y \beta z, q(x,y,z) \gamma w\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let **A** be an algebra with Mal'cev term operation q and let  $\alpha, \beta, \gamma$  be congruences of **A**. Define

$$C(q,\alpha,\beta,\gamma) = \{(x,y,z,w) \in A^4 : x \alpha y, y \beta z, q(x,y,z) \gamma w\}.$$

Proposition (Aichinger & Mayr, 2007)  $[\alpha, \beta] \leq \gamma$  if and only if  $C(q, \alpha, \beta, \gamma)$  is a subuniverse of  $\mathbf{A}^4$ .
Suppose  $[1_A, 1_A] \leq \theta$  and  $[1_A, \theta] \leq 0_A$ . So  $C(x_1 - x_2 + x_3, 1_A, 1_A, \theta)$  and  $C(x_1 - x_2 + x_3, 1_A, \theta, 0_A)$  are subuniverses of  $\mathbf{A}^4$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose  $[1_A, 1_A] \leq \theta$  and  $[1_A, \theta] \leq 0_A$ . So  $C(x_1 - x_2 + x_3, 1_A, 1_A, \theta)$  and  $C(x_1 - x_2 + x_3, 1_A, \theta, 0_A)$  are subuniverses of  $\mathbf{A}^4$ . Let  $f : A^n \to A$  be in F.

Suppose  $[1_A, 1_A] \leq \theta$  and  $[1_A, \theta] \leq 0_A$ . So  $C(x_1 - x_2 + x_3, 1_A, 1_A, \theta)$  and  $C(x_1 - x_2 + x_3, 1_A, \theta, 0_A)$  are subuniverses of  $\mathbf{A}^4$ . Let  $f : A^n \to A$  be in F. Since  $\theta$  is a factor congruence of  $\mathbb{A}$ , there is congruence  $\phi$  of  $\mathbb{A}$  such that  $\theta \circ \phi = 1_A$  and  $\theta \wedge \phi = 0_A$ .

Suppose  $[1_A, 1_A] \leq \theta$  and  $[1_A, \theta] \leq 0_A$ . So  $C(x_1 - x_2 + x_3, 1_A, 1_A, \theta)$  and  $C(x_1 - x_2 + x_3, 1_A, \theta, 0_A)$  are subuniverses of  $\mathbf{A}^4$ . Let  $f : A^n \to A$  be in F. Since  $\theta$  is a factor congruence of  $\mathbb{A}$ , there is congruence  $\phi$  of  $\mathbb{A}$  such that  $\theta \circ \phi = 1_A$  and  $\theta \wedge \phi = 0_A$ . Let  $U = 0/\theta$  and  $V = 0/\phi$ .

Suppose  $[1_A, 1_A] \leq \theta$  and  $[1_A, \theta] \leq 0_A$ . So  $C(x_1 - x_2 + x_3, 1_A, 1_A, \theta)$  and  $C(x_1 - x_2 + x_3, 1_A, \theta, 0_A)$  are subuniverses of  $\mathbf{A}^4$ . Let  $f : A^n \to A$  be in F. Since  $\theta$  is a factor congruence of  $\mathbb{A}$ , there is congruence  $\phi$  of  $\mathbb{A}$  such that  $\theta \circ \phi = 1_A$ and  $\theta \wedge \phi = 0_A$ . Let  $U = 0/\theta$  and  $V = 0/\phi$ . Define  $f^\circ, g, h : A^n \to A$  by

$$f^{\circ}(x) = f(x) - f(0)$$

Suppose 
$$[1_A, 1_A] \leq \theta$$
 and  $[1_A, \theta] \leq 0_A$ . So  
 $C(x_1 - x_2 + x_3, 1_A, 1_A, \theta)$  and  $C(x_1 - x_2 + x_3, 1_A, \theta, 0_A)$  are  
subuniverses of  $\mathbf{A}^4$ . Let  $f : A^n \to A$  be in  $F$ . Since  $\theta$  is a factor  
congruence of  $\mathbb{A}$ , there is congruence  $\phi$  of  $\mathbb{A}$  such that  $\theta \circ \phi = 1_A$   
and  $\theta \wedge \phi = 0_A$ . Let  $U = 0/\theta$  and  $V = 0/\phi$ . Define  
 $f^\circ, g, h : A^n \to A$  by

$$f^{\circ}(x) = f(x) - f(0)$$

 $g(x) = f^{\circ}(u)$  where u is the unique elt of  $U^n$  with  $u \phi^n x$ 

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Suppose  $[1_A, 1_A] \leq \theta$  and  $[1_A, \theta] \leq 0_A$ . So  $C(x_1 - x_2 + x_3, 1_A, 1_A, \theta)$  and  $C(x_1 - x_2 + x_3, 1_A, \theta, 0_A)$  are subuniverses of  $\mathbf{A}^4$ . Let  $f : A^n \to A$  be in F. Since  $\theta$  is a factor congruence of  $\mathbb{A}$ , there is congruence  $\phi$  of  $\mathbb{A}$  such that  $\theta \circ \phi = 1_A$ and  $\theta \wedge \phi = 0_A$ . Let  $U = 0/\theta$  and  $V = 0/\phi$ . Define  $f^\circ, g, h : A^n \to A$  by

$$f^{\circ}(x) = f(x) - f(0)$$

 $g(x) = f^{\circ}(u)$  where u is the unique elt of  $U^n$  with  $u \phi^n x$ 

h(x) is the unique elt of V with  $h(x) \theta f^{\circ}(x)$ 

(日) (同) (三) (三) (三) (○) (○)

## Sketch continued

For 
$$1 \le i \le n$$
, define  $r_i : A \to A$  by  
 $r_i(x) = g(0, ..., 0, \overset{i}{x}, 0, ..., 0) + h(0, ..., 0, \overset{i}{x}, 0, ..., 0)$ 

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

## Sketch continued

For 
$$1 \le i \le n$$
, define  $r_i : A \to A$  by  
 $r_i(x) = g(0, \dots, 0, \overset{i}{x}, 0, \dots, 0) + h(0, \dots, 0, \overset{i}{x}, 0, \dots, 0)$   
Define  $a : A^n \to A$  by  
 $a(x) = f(x) - g(x) - h(x)$ 

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

## Sketch continued

For 
$$1 \le i \le n$$
, define  $r_i : A \to A$  by  
 $r_i(x) = g(0, \dots, 0, \overset{i}{x}, 0, \dots, 0) + h(0, \dots, 0, \overset{i}{x}, 0, \dots, 0)$   
Define  $a : A^n \to A$  by  
 $a(x) = f(x) - g(x) - h(x)$ 

Claim:

$$f(x_1,\ldots,x_n)=r_1(x_1)+\cdots+r_n(x_n)+a(x_1,\ldots,x_n)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

where  $r_1, \ldots, r_n$  and *a* satisfy the desired properties.

### Proposition (Exercise from Freese & McKenzie, 1987) Every nilpotent Mal'cev algebra is polynomially equivalent to an expansion of a nilpotent loop.

#### Proposition (Exercise from Freese & McKenzie, 1987)

Every nilpotent Mal'cev algebra is polynomially equivalent to an expansion of a nilpotent loop.

#### Proposition (Daly & Vojtechovsky, 2009)

If a finite nilpotent loop has a central congruence of index 2, then it is an abelian group.

#### A (possibly true) proposition

Let **A** be a nilpotent Mal'cev algebra of order 2p for some odd prime p. Further suppose **A** has a central congruence  $\theta$  of index 2. Then **A** is nil-2-affine.

### A (possibly true) proposition

Let **A** be a nilpotent Mal'cev algebra of order 2p for some odd prime p. Further suppose **A** has a central congruence  $\theta$  of index 2. Then **A** is nil-2-affine.

#### Proof.

Since **A** is nilpotent and Mal'cev, it is p.e. to an expansion **E** of a nilpotent loop  $\mathbb{L}$ .

### A (possibly true) proposition

Let **A** be a nilpotent Mal'cev algebra of order 2p for some odd prime *p*. Further suppose **A** has a central congruence  $\theta$  of index 2. Then **A** is nil-2-affine.

#### Proof.

Since **A** is nilpotent and Mal'cev, it is p.e. to an expansion **E** of a nilpotent loop  $\mathbb{L}$ . Since p.e. algebras share the same congruences and centrality relations,  $\theta$  is a central congruence of  $\mathbb{L}$ .

### A (possibly true) proposition

Let **A** be a nilpotent Mal'cev algebra of order 2p for some odd prime *p*. Further suppose **A** has a central congruence  $\theta$  of index 2. Then **A** is nil-2-affine.

#### Proof.

Since **A** is nilpotent and Mal'cev, it is p.e. to an expansion **E** of a nilpotent loop  $\mathbb{L}$ . Since p.e. algebras share the same congruences and centrality relations,  $\theta$  is a central congruence of  $\mathbb{L}$ . So  $\mathbb{L}$  is a cyclic group and  $\theta$  is a factor congruence.

#### A (possibly true) proposition

Let **A** be a nilpotent Mal'cev algebra of order 2p for some odd prime *p*. Further suppose **A** has a central congruence  $\theta$  of index 2. Then **A** is nil-2-affine.

#### Proof.

Since **A** is nilpotent and Mal'cev, it is p.e. to an expansion **E** of a nilpotent loop  $\mathbb{L}$ . Since p.e. algebras share the same congruences and centrality relations,  $\theta$  is a central congruence of  $\mathbb{L}$ . So  $\mathbb{L}$  is a cyclic group and  $\theta$  is a factor congruence. If  $x_1 - x_2 + x_3$  is a polynomial operation of **A**, then must it be a term operation?

#### **Open Question**

Is every nilpotent loop of order pq (where p and q are distinct primes) nil-2-affine?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### **Open Question**

Is every nilpotent loop of order pq (where p and q are distinct primes) nil-2-affine?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## A (very partial) answer Yes!

#### **Open Question**

Is every nilpotent loop of order pq (where p and q are distinct primes) nil-2-affine?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

# A (very partial) answer

Yes! At least when pq = 6.

#### **Open Question**

Is every nilpotent loop of order pq (where p and q are distinct primes) nil-2-affine?

### A (very partial) answer

Yes! At least when pq = 6.

#### Another (possibly true) proposition

Let **A** be a nilpotent Mal'cev algebra of order pq where p and q are distinct primes. Further suppose a positive answer to the above question. Then **A** is nil-2-affine.

### Future work

### Future work

generalize Szendrei's result to nil-2-affine algebras

#### Future work

generalize Szendrei's result to nil-2-affine algebras

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• extend to nil-*c*-affine algebras for c > 2.