A generalization of affine algebras

Eran Crockett

BLAST 2019
University of Colorado at Boulder
20 May 2019

Affine terms

Let A be a nonempty set and let $f: A^{n} \rightarrow A$ be an operation on A.

Affine terms

Let A be a nonempty set and let $f: A^{n} \rightarrow A$ be an operation on A. The operation f is said to be affine with respect the abelian group $\mathbb{A}=\langle A ;+,-, 0\rangle$ if there exist endomorphisms $r_{1}, r_{2}, \ldots, r_{n}$ of \mathbb{A} and an element a in A such that

Affine terms

Let A be a nonempty set and let $f: A^{n} \rightarrow A$ be an operation on A. The operation f is said to be affine with respect the abelian group $\mathbb{A}=\langle A ;+,-, 0\rangle$ if there exist endomorphisms $r_{1}, r_{2}, \ldots, r_{n}$ of \mathbb{A} and an element a in A such that

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=r_{1}\left(x_{1}\right)+r_{2}\left(x_{2}\right)+\cdots+r_{n}\left(x_{n}\right)+a
$$

Affine algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be affine if there is an abelian group \mathbb{A} such that

Affine algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be affine if there is an abelian group \mathbb{A} such that

- $x_{1}-x_{2}+x_{3}$ is in $\operatorname{Clo}(\mathbf{A})$, and

Affine algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be affine if there is an abelian group \mathbb{A} such that

- $x_{1}-x_{2}+x_{3}$ is in $\operatorname{Clo}(\mathbf{A})$, and
- every f in F is affine with respect to \mathbb{A}.

Examples of affine algebras

- every abelian group

Examples of affine algebras

- every abelian group
- every module over a ring

Examples of affine algebras

- every abelian group
- every module over a ring
- the quasigroup with Cayley table below

Examples of affine algebras

- every abelian group
- every module over a ring
- the quasigroup with Cayley table below

\circ	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Abelian Mal'cev algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be abelian if it satisfies

Abelian Mal'cev algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be abelian if it satisfies

$$
\forall m, n \geq 1
$$

Abelian Mal'cev algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be abelian if it satisfies

$$
\forall m, n \geq 1, \forall x, y \in A^{m}
$$

Abelian Mal'cev algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be abelian if it satisfies

$$
\forall m, n \geq 1, \forall x, y \in A^{m}, \forall z, w \in A^{n}
$$

Abelian Mal'cev algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be abelian if it satisfies

$$
\forall m, n \geq 1, \forall x, y \in A^{m}, \forall z, w \in A^{n}, \forall t \in \operatorname{Clo}_{m+n}(\mathbf{A})
$$

Abelian Mal'cev algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be abelian if it satisfies

$$
\begin{gathered}
\forall m, n \geq 1, \forall x, y \in A^{m}, \forall z, w \in A^{n}, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A}) \\
t(x, z)=t(x, w) \Longrightarrow t(y, z)=t(y, w)
\end{gathered}
$$

Abelian Mal'cev algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be abelian if it satisfies

$$
\begin{gathered}
\forall m, n \geq 1, \forall x, y \in A^{m}, \forall z, w \in A^{n}, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A}) \\
t(x, z)=t(x, w) \Longrightarrow t(y, z)=t(y, w)
\end{gathered}
$$

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be Mal'cev if there is q in $\mathrm{Clo}_{3}(\mathbf{A})$ that satisfies

Abelian Mal'cev algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be abelian if it satisfies

$$
\begin{gathered}
\forall m, n \geq 1, \forall x, y \in A^{m}, \forall z, w \in A^{n}, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A}) \\
t(x, z)=t(x, w) \Longrightarrow t(y, z)=t(y, w)
\end{gathered}
$$

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be Mal'cev if there is q in $\mathrm{Clo}_{3}(\mathbf{A})$ that satisfies

$$
\forall x, y \in A
$$

Abelian Mal'cev algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be abelian if it satisfies

$$
\begin{gathered}
\forall m, n \geq 1, \forall x, y \in A^{m}, \forall z, w \in A^{n}, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A}) \\
t(x, z)=t(x, w) \Longrightarrow t(y, z)=t(y, w)
\end{gathered}
$$

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be Mal'cev if there is q in $\mathrm{Clo}_{3}(\mathbf{A})$ that satisfies

$$
\begin{gathered}
\forall x, y \in A \\
q(x, y, y)=x=q(y, y, x)
\end{gathered}
$$

Examples of abelian Mal'cev algebras

- every group, ring, module, quasigroup, and nearring is Mal'cev.

Examples of abelian Mal'cev algebras

- every group, ring, module, quasigroup, and nearring is Mal'cev.
- a group is abelian if and only if it is an abelian group.

Examples of abelian Mal'cev algebras

- every group, ring, module, quasigroup, and nearring is Mal'cev.
- a group is abelian if and only if it is an abelian group.
- a ring is abelian if and only if the multiplication is zero.

Examples of abelian Mal'cev algebras

- every group, ring, module, quasigroup, and nearring is Mal'cev.
- a group is abelian if and only if it is an abelian group.
- a ring is abelian if and only if the multiplication is zero.
- every module is abelian.

Examples of abelian Mal'cev algebras

- every group, ring, module, quasigroup, and nearring is Mal'cev.
- a group is abelian if and only if it is an abelian group.
- a ring is abelian if and only if the multiplication is zero.
- every module is abelian.

Fundamental theorem of abelian algebras

Theorem (Herrmann, 1979)
Let \mathbf{A} belong to a modular variety. Then \mathbf{A} is affine if and only if it is abelian.

Classifying algebras

Goal
To classify or characterize affine algebras

Classifying algebras

Goal

To classify or characterize affine algebras
Consider the integers as an abelian group $\langle\mathbb{Z} ;+,-, 0\rangle$ and as a \mathbb{Z}-module $\left\langle\mathbb{Z} ;+,-, 0, \ell_{a}\right\rangle_{a \in \mathbb{Z}}$. Are these different algebras?

Classifying algebras

Goal

To classify or characterize affine algebras
Consider the integers as an abelian group $\langle\mathbb{Z} ;+,-, 0\rangle$ and as a \mathbb{Z}-module $\left\langle\mathbb{Z} ;+,-, 0, \ell_{a}\right\rangle_{a \in \mathbb{Z}}$. Are these different algebras? Two algebras on the same set are said to be term-equivalent if they have the same term operations.

Classifying algebras

Goal

To classify or characterize affine algebras
Consider the integers as an abelian group $\langle\mathbb{Z} ;+,-, 0\rangle$ and as a \mathbb{Z}-module $\left\langle\mathbb{Z} ;+,-, 0, \ell_{a}\right\rangle_{a \in \mathbb{Z}}$. Are these different algebras? Two algebras on the same set are said to be term-equivalent if they have the same term operations. We only want to classify algebras up to term equivalence.

Clones

A clone on a set A is a collection \mathcal{C} of operations on A such that

Clones

A clone on a set A is a collection \mathcal{C} of operations on A such that

- the projection operations $\operatorname{proj}_{i}^{k}: A^{k} \rightarrow A$ are in \mathcal{C}, and

Clones

A clone on a set A is a collection \mathcal{C} of operations on A such that

- the projection operations $\operatorname{proj}_{i}^{k}: A^{k} \rightarrow A$ are in \mathcal{C}, and
- if f is n-ary, and g_{1}, \ldots, g_{n} are k-ary operations in \mathcal{C}, then $f\left[g_{1}, \ldots, g_{n}\right]$ is in \mathcal{C} as well.

Clones

A clone on a set A is a collection \mathcal{C} of operations on A such that

- the projection operations $\operatorname{proj}_{i}^{k}: A^{k} \rightarrow A$ are in \mathcal{C}, and
- if f is n-ary, and g_{1}, \ldots, g_{n} are k-ary operations in \mathcal{C}, then $f\left[g_{1}, \ldots, g_{n}\right]$ is in \mathcal{C} as well.
Every algebra $\langle A ; F\rangle$ gives rise to the clone $\operatorname{Clo}(A ; F)$ generated by F.

Clones

A clone on a set A is a collection \mathcal{C} of operations on A such that

- the projection operations $\operatorname{proj}_{i}^{k}: A^{k} \rightarrow A$ are in \mathcal{C}, and
- if f is n-ary, and g_{1}, \ldots, g_{n} are k-ary operations in \mathcal{C}, then $f\left[g_{1}, \ldots, g_{n}\right]$ is in \mathcal{C} as well.
Every algebra $\langle A ; F\rangle$ gives rise to the clone $\operatorname{Clo}(A ; F)$ generated by F. Two algebras $\langle A ; F\rangle$ and $\langle A ; G\rangle$ are term equivalent if and only if $\operatorname{Clo}(A ; F)=\operatorname{Clo}(A ; G)$.

Classifying affine clones

Let \mathbb{A} be an abelian group,

Classifying affine clones

Let \mathbb{A} be an abelian group, let \mathbf{R} be a unital subring of the ring of endomorphisms of \mathbb{A},

Classifying affine clones

Let \mathbb{A} be an abelian group, let \mathbf{R} be a unital subring of the ring of endomorphisms of \mathbb{A}, and let \mathbf{M} be a submodule of ${ }_{R} R \times_{R} A$.

Classifying affine clones

Let \mathbb{A} be an abelian group, let \mathbf{R} be a unital subring of the ring of endomorphisms of \mathbb{A}, and let \mathbf{M} be a submodule of ${ }_{R} R \times_{R} A$. Then

$$
\mathcal{K}(\mathbb{A}, \mathbf{R}, \mathbf{M})=\left\{\sum_{i=1}^{n} r_{i}\left(x_{i}\right)+a: r_{i} \in R,\left(1-\sum_{i=1}^{n} r_{i}, a\right) \in M\right\}
$$

is an affine clone on the set A. Conversely:

Classifying affine clones

Let \mathbb{A} be an abelian group, let \mathbf{R} be a unital subring of the ring of endomorphisms of \mathbb{A}, and let \mathbf{M} be a submodule of ${ }_{R} R \times_{R} A$. Then

$$
\mathcal{K}(\mathbb{A}, \mathbf{R}, \mathbf{M})=\left\{\sum_{i=1}^{n} r_{i}\left(x_{i}\right)+a: r_{i} \in R,\left(1-\sum_{i=1}^{n} r_{i}, a\right) \in M\right\}
$$

is an affine clone on the set A. Conversely:
Theorem (Szendrei, 1980)
If \mathcal{C} is an affine clone on a set A, then there exist \mathbb{A}, \mathbf{R}, and \mathbf{M} such that

$$
\mathcal{C}=\mathcal{K}(\mathbb{A}, \mathbf{R}, \mathbf{M})
$$

Commutator operation on congruences

Let α, β, γ be congruences of an algebra \mathbf{A}. We say α centralizes β modulo γ if

Commutator operation on congruences

Let α, β, γ be congruences of an algebra \mathbf{A}. We say α centralizes β modulo γ if

$$
\forall m, n \geq 1,
$$

Commutator operation on congruences

Let α, β, γ be congruences of an algebra \mathbf{A}. We say α centralizes β modulo γ if
$\forall m, n \geq 1, \forall x \alpha^{m} y$,

Commutator operation on congruences

Let α, β, γ be congruences of an algebra \mathbf{A}. We say α centralizes β modulo γ if

$$
\forall m, n \geq 1, \forall x \alpha^{m} y, \forall z \beta^{n} w
$$

Commutator operation on congruences

Let α, β, γ be congruences of an algebra \mathbf{A}. We say α centralizes β modulo γ if

$$
\forall m, n \geq 1, \forall x \alpha^{m} y, \forall z \beta^{n} w, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A})
$$

Commutator operation on congruences

Let α, β, γ be congruences of an algebra \mathbf{A}. We say α centralizes β modulo γ if

$$
\begin{gathered}
\forall m, n \geq 1, \forall x \alpha^{m} y, \forall z \beta^{n} w, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A}) \\
t(x, z) \gamma t(x, w) \Longrightarrow t(y, z) \gamma t(y, w)
\end{gathered}
$$

Commutator operation on congruences

Let α, β, γ be congruences of an algebra \mathbf{A}. We say α centralizes β modulo γ if

$$
\begin{gathered}
\forall m, n \geq 1, \forall x \alpha^{m} y, \forall z \beta^{n} w, \forall t \in \mathrm{Clo}_{m+n}(\mathbf{A}) \\
t(x, z) \gamma t(x, w) \Longrightarrow t(y, z) \gamma t(y, w)
\end{gathered}
$$

The commutator of α and β is

$$
[\alpha, \beta]=\bigcap\{\gamma: \alpha \text { centralizes } \beta \text { modulo } \gamma\}
$$

Nilpotent algebras

An algebra \mathbf{A} is nilpotent if there is a positive integer c and a sequence

$$
1_{A}=\theta_{0} \geq \theta_{1} \geq \cdots \geq \theta_{c}=0_{A}
$$

of congruences satisfying $\left[1_{A}, \theta_{i}\right] \leq \theta_{i+1}$.

Nilpotent algebras

An algebra \mathbf{A} is nilpotent if there is a positive integer c and a sequence

$$
1_{A}=\theta_{0} \geq \theta_{1} \geq \cdots \geq \theta_{c}=0_{A}
$$

of congruences satisfying $\left[1_{A}, \theta_{i}\right] \leq \theta_{i+1}$. The sequence above is called a central series.

Nilpotent algebras

An algebra \mathbf{A} is nilpotent if there is a positive integer c and a sequence

$$
1_{A}=\theta_{0} \geq \theta_{1} \geq \cdots \geq \theta_{c}=0_{A}
$$

of congruences satisfying $\left[1_{A}, \theta_{i}\right] \leq \theta_{i+1}$. The sequence above is called a central series. The integer c is the length of the central series.

Nilpotent algebras

An algebra \mathbf{A} is nilpotent if there is a positive integer c and a sequence

$$
1_{A}=\theta_{0} \geq \theta_{1} \geq \cdots \geq \theta_{c}=0_{A}
$$

of congruences satisfying $\left[1_{A}, \theta_{i}\right] \leq \theta_{i+1}$. The sequence above is called a central series. The integer c is the length of the central series. The nilpotence class of \mathbf{A} is the length of its shortest central series.

Nil-2-affine terms

Let A be a nonempty set and let $f: A^{n} \rightarrow A$ be an operation on A. Let \mathbb{A} be an abelian group with underlying set A and let θ be a congruence of \mathbb{A}.

Nil-2-affine terms

Let A be a nonempty set and let $f: A^{n} \rightarrow A$ be an operation on A. Let \mathbb{A} be an abelian group with underlying set A and let θ be a congruence of \mathbb{A}. The operation f is said to be nil-2-affine with respect to \mathbb{A}, θ if there exist θ-preserving endomorphisms $r_{1}, r_{2}, \ldots, r_{n}$ of \mathbb{A} and an operation $a: A^{n} \rightarrow A$ satisfying

- $x, y \in A^{n} \Longrightarrow a(x) \theta a(y)$, and
- $x \theta^{n} y \Longrightarrow a(x)=(y)$
such that

Nil-2-affine terms

Let A be a nonempty set and let $f: A^{n} \rightarrow A$ be an operation on A. Let \mathbb{A} be an abelian group with underlying set A and let θ be a congruence of \mathbb{A}. The operation f is said to be nil-2-affine with respect to \mathbb{A}, θ if there exist θ-preserving endomorphisms $r_{1}, r_{2}, \ldots, r_{n}$ of \mathbb{A} and an operation $a: A^{n} \rightarrow A$ satisfying

- $x, y \in A^{n} \Longrightarrow a(x) \theta a(y)$, and
- $x \theta^{n} y \Longrightarrow a(x)=(y)$
such that
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=r_{1}\left(x_{1}\right)+r_{2}\left(x_{2}\right)+\cdots+r_{n}\left(x_{n}\right)+a\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Nil-2-affine algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be nil-2-affine if there is an abelian group \mathbb{A} and a congruence θ of \mathbb{A} such that

Nil-2-affine algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be nil-2-affine if there is an abelian group \mathbb{A} and a congruence θ of \mathbb{A} such that

- $x_{1}-x_{2}+x_{3}$ is in $\operatorname{Clo}(\mathbf{A})$, and

Nil-2-affine algebras

An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be nil-2-affine if there is an abelian group \mathbb{A} and a congruence θ of \mathbb{A} such that

- $x_{1}-x_{2}+x_{3}$ is in $\operatorname{Clo}(\mathbf{A})$, and
- every f in F is nil-2-affine with respect to \mathbb{A}, θ.

Examples of nil-2-affine algebras

- every affine algebra (just choose $\theta=1_{A}$ or $\theta=0_{A}$)

Examples of nil-2-affine algebras

- every affine algebra (just choose $\theta=1_{A}$ or $\theta=0_{A}$)
- the algebra $\mathbf{E}_{k}=\left\langle\mathbb{Z}_{4} ;+,-, 0,1,2 x_{1} \cdots x_{k}\right\rangle$

Examples of nil-2-affine algebras

- every affine algebra (just choose $\theta=1_{A}$ or $\theta=0_{A}$)
- the algebra $\mathbf{E}_{k}=\left\langle\mathbb{Z}_{4} ;+,-, 0,1,2 x_{1} \cdots x_{k}\right\rangle$
- the algebra $\mathbf{E}_{\infty}=\left\langle\mathbb{Z}_{4} ;+,-, 0,1,2 x_{1}, 2 x_{1} x_{2}, 2 x_{1} x_{2} x_{3}, \ldots,\right\rangle$

Examples of nil-2-affine algebras

- every affine algebra (just choose $\theta=1_{A}$ or $\theta=0_{A}$)
- the algebra $\mathbf{E}_{k}=\left\langle\mathbb{Z}_{4} ;+,-, 0,1,2 x_{1} \cdots x_{k}\right\rangle$
- the algebra $\mathbf{E}_{\infty}=\left\langle\mathbb{Z}_{4} ;+,-, 0,1,2 x_{1}, 2 x_{1} x_{2}, 2 x_{1} x_{2} x_{3}, \ldots,\right\rangle$
- the algebras $\mathbf{M}(p, q)$ from my dissertation

Examples of nil-2-affine algebras

- every affine algebra (just choose $\theta=1_{A}$ or $\theta=0_{A}$)
- the algebra $\mathbf{E}_{k}=\left\langle\mathbb{Z}_{4} ;+,-, 0,1,2 x_{1} \cdots x_{k}\right\rangle$
- the algebra $\mathbf{E}_{\infty}=\left\langle\mathbb{Z}_{4} ;+,-, 0,1,2 x_{1}, 2 x_{1} x_{2}, 2 x_{1} x_{2} x_{3}, \ldots,\right\rangle$
- the algebras $\mathbf{M}(p, q)$ from my dissertation

Relation to Mal'cev algebras of nilpotence class at most 2

Proposition (EC)
If \mathbf{A} is nil-2-affine, then \mathbf{A} is both Mal'cev and nilpotent of class at most 2.

Relation to Mal'cev algebras of nilpotence class at most 2

Proposition (EC)
If \mathbf{A} is nil-2-affine, then \mathbf{A} is both Mal'cev and nilpotent of class at most 2.

Open Question
Does there exist an algebra \mathbf{A} that is both Mal'cev and nilpotent of class 2 , but is not nil-2-affine?

My main result (so far)

Theorem (EC)
Let $\mathbf{A}=\langle A ; F\rangle$ be an algebra such that $x_{1}-x_{2}+x_{3} \in \operatorname{Clo}(\mathbf{A})$ for some abelian group \mathbb{A}. If

My main result (so far)

Theorem (EC)
Let $\mathbf{A}=\langle A ; F\rangle$ be an algebra such that $x_{1}-x_{2}+x_{3} \in \operatorname{Clo}(\mathbf{A})$ for some abelian group \mathbb{A}. If

- θ is a factor congruence of \mathbb{A},

My main result (so far)

Theorem (EC)
Let $\mathbf{A}=\langle A ; F\rangle$ be an algebra such that $x_{1}-x_{2}+x_{3} \in \operatorname{Clo}(\mathbf{A})$ for some abelian group \mathbb{A}. If

- θ is a factor congruence of \mathbb{A},
- $\left[1_{A}, 1_{A}\right] \leq \theta$,

My main result (so far)

Theorem (EC)
Let $\mathbf{A}=\langle A ; F\rangle$ be an algebra such that $x_{1}-x_{2}+x_{3} \in \operatorname{Clo}(\mathbf{A})$ for some abelian group \mathbb{A}. If

- θ is a factor congruence of \mathbb{A},
- $\left[1_{A}, 1_{A}\right] \leq \theta$, and
- $\left[1_{A}, \theta\right] \leq 0_{A}$,

My main result (so far)

Theorem (EC)
Let $\mathbf{A}=\langle A ; F\rangle$ be an algebra such that $x_{1}-x_{2}+x_{3} \in \operatorname{Clo}(\mathbf{A})$ for some abelian group \mathbb{A}. If

- θ is a factor congruence of \mathbb{A},
- $\left[1_{A}, 1_{A}\right] \leq \theta$, and
- $\left[1_{A}, \theta\right] \leq 0_{A}$,
then \mathbf{A} is nil-2-affine.

My main result (so far)

Theorem (EC)
Let $\mathbf{A}=\langle A ; F\rangle$ be an algebra such that $x_{1}-x_{2}+x_{3} \in \operatorname{Clo}(\mathbf{A})$ for some abelian group \mathbb{A}. If

- θ is a factor congruence of \mathbb{A},
- $\left[1_{A}, 1_{A}\right] \leq \theta$, and
- $\left[1_{A}, \theta\right] \leq 0_{A}$,
then \mathbf{A} is nil-2-affine.
Open Question
Is this true when θ is not a factor congruence?

A useful proposition

Let \mathbf{A} be an algebra with Mal'cev term operation q and let α, β, γ be congruences of \mathbf{A}. Define

$$
C(q, \alpha, \beta, \gamma)=\left\{(x, y, z, w) \in A^{4}: x \alpha y, y \beta z, q(x, y, z) \gamma w\right\}
$$

A useful proposition

Let \mathbf{A} be an algebra with Mal'cev term operation q and let α, β, γ be congruences of \mathbf{A}. Define

$$
C(q, \alpha, \beta, \gamma)=\left\{(x, y, z, w) \in A^{4}: x \alpha y, y \beta z, q(x, y, z) \gamma w\right\} .
$$

Proposition (Aichinger \& Mayr, 2007) $[\alpha, \beta] \leq \gamma$ if and only if $C(q, \alpha, \beta, \gamma)$ is a subuniverse of \mathbf{A}^{4}.

Sketch of proof of my result

Suppose $\left[1_{A}, 1_{A}\right] \leq \theta$ and $\left[1_{A}, \theta\right] \leq 0_{A}$. So
$C\left(x_{1}-x_{2}+x_{3}, 1_{A}, 1_{A}, \theta\right)$ and $C\left(x_{1}-x_{2}+x_{3}, 1_{A}, \theta, 0_{A}\right)$ are subuniverses of \boldsymbol{A}^{4}.

Sketch of proof of my result

Suppose $\left[1_{A}, 1_{A}\right] \leq \theta$ and $\left[1_{A}, \theta\right] \leq 0_{A}$. So
$C\left(x_{1}-x_{2}+x_{3}, 1_{A}, 1_{A}, \theta\right)$ and $C\left(x_{1}-x_{2}+x_{3}, 1_{A}, \theta, 0_{A}\right)$ are subuniverses of \mathbf{A}^{4}. Let $f: A^{n} \rightarrow A$ be in F.

Sketch of proof of my result

Suppose $\left[1_{A}, 1_{A}\right] \leq \theta$ and $\left[1_{A}, \theta\right] \leq 0_{A}$. So
$C\left(x_{1}-x_{2}+x_{3}, 1_{A}, 1_{A}, \theta\right)$ and $C\left(x_{1}-x_{2}+x_{3}, 1_{A}, \theta, 0_{A}\right)$ are subuniverses of \mathbf{A}^{4}. Let $f: A^{n} \rightarrow A$ be in F. Since θ is a factor congruence of \mathbb{A}, there is congruence ϕ of \mathbb{A} such that $\theta \circ \phi=1_{A}$ and $\theta \wedge \phi=0_{A}$.

Sketch of proof of my result

Suppose $\left[1_{A}, 1_{A}\right] \leq \theta$ and $\left[1_{A}, \theta\right] \leq 0_{A}$. So
$C\left(x_{1}-x_{2}+x_{3}, 1_{A}, 1_{A}, \theta\right)$ and $C\left(x_{1}-x_{2}+x_{3}, 1_{A}, \theta, 0_{A}\right)$ are subuniverses of \mathbf{A}^{4}. Let $f: A^{n} \rightarrow A$ be in F. Since θ is a factor congruence of \mathbb{A}, there is congruence ϕ of \mathbb{A} such that $\theta \circ \phi=1_{A}$ and $\theta \wedge \phi=0_{A}$. Let $U=0 / \theta$ and $V=0 / \phi$.

Sketch of proof of my result

Suppose $\left[1_{A}, 1_{A}\right] \leq \theta$ and $\left[1_{A}, \theta\right] \leq 0_{A}$. So
$C\left(x_{1}-x_{2}+x_{3}, 1_{A}, 1_{A}, \theta\right)$ and $C\left(x_{1}-x_{2}+x_{3}, 1_{A}, \theta, 0_{A}\right)$ are subuniverses of \mathbf{A}^{4}. Let $f: A^{n} \rightarrow A$ be in F. Since θ is a factor congruence of \mathbb{A}, there is congruence ϕ of \mathbb{A} such that $\theta \circ \phi=1_{A}$ and $\theta \wedge \phi=0_{A}$. Let $U=0 / \theta$ and $V=0 / \phi$. Define $f^{\circ}, g, h: A^{n} \rightarrow A$ by

$$
f^{\circ}(x)=f(x)-f(0)
$$

Sketch of proof of my result

Suppose $\left[1_{A}, 1_{A}\right] \leq \theta$ and $\left[1_{A}, \theta\right] \leq 0_{A}$. So
$C\left(x_{1}-x_{2}+x_{3}, 1_{A}, 1_{A}, \theta\right)$ and $C\left(x_{1}-x_{2}+x_{3}, 1_{A}, \theta, 0_{A}\right)$ are subuniverses of \mathbf{A}^{4}. Let $f: A^{n} \rightarrow A$ be in F. Since θ is a factor congruence of \mathbb{A}, there is congruence ϕ of \mathbb{A} such that $\theta \circ \phi=1_{A}$ and $\theta \wedge \phi=0_{A}$. Let $U=0 / \theta$ and $V=0 / \phi$. Define $f^{\circ}, g, h: A^{n} \rightarrow A$ by

$$
f^{\circ}(x)=f(x)-f(0)
$$

$g(x)=f^{\circ}(u)$ where u is the unique elt of U^{n} with $u \phi^{n} x$

Sketch of proof of my result

Suppose $\left[1_{A}, 1_{A}\right] \leq \theta$ and $\left[1_{A}, \theta\right] \leq 0_{A}$. So
$C\left(x_{1}-x_{2}+x_{3}, 1_{A}, 1_{A}, \theta\right)$ and $C\left(x_{1}-x_{2}+x_{3}, 1_{A}, \theta, 0_{A}\right)$ are subuniverses of \mathbf{A}^{4}. Let $f: A^{n} \rightarrow A$ be in F. Since θ is a factor congruence of \mathbb{A}, there is congruence ϕ of \mathbb{A} such that $\theta \circ \phi=1_{A}$ and $\theta \wedge \phi=0_{A}$. Let $U=0 / \theta$ and $V=0 / \phi$. Define $f^{\circ}, g, h: A^{n} \rightarrow A$ by

$$
f^{\circ}(x)=f(x)-f(0)
$$

$g(x)=f^{\circ}(u)$ where u is the unique elt of U^{n} with $u \phi^{n} x$
$h(x)$ is the unique elt of V with $h(x) \theta f^{\circ}(x)$

Sketch continued

For $1 \leq i \leq n$, define $r_{i}: A \rightarrow A$ by

$$
r_{i}(x)=g(0, \ldots, 0, \stackrel{i}{x}, 0, \ldots, 0)+h(0, \ldots, 0, \stackrel{i}{x}, 0, \ldots, 0)
$$

Sketch continued

For $1 \leq i \leq n$, define $r_{i}: A \rightarrow A$ by

$$
r_{i}(x)=g(0, \ldots, 0, \stackrel{i}{x}, 0, \ldots, 0)+h(0, \ldots, 0, \stackrel{i}{x}, 0, \ldots, 0)
$$

Define $a: A^{n} \rightarrow A$ by

$$
a(x)=f(x)-g(x)-h(x)
$$

Sketch continued

For $1 \leq i \leq n$, define $r_{i}: A \rightarrow A$ by

$$
r_{i}(x)=g(0, \ldots, 0, \stackrel{i}{x}, 0, \ldots, 0)+h(0, \ldots, 0, \stackrel{i}{x}, 0, \ldots, 0)
$$

Define $a: A^{n} \rightarrow A$ by

$$
a(x)=f(x)-g(x)-h(x)
$$

Claim:

$$
f\left(x_{1}, \ldots, x_{n}\right)=r_{1}\left(x_{1}\right)+\cdots+r_{n}\left(x_{n}\right)+a\left(x_{1}, \ldots, x_{n}\right)
$$

where r_{1}, \ldots, r_{n} and a satisfy the desired properties.

Some useful propositions

Proposition (Exercise from Freese \& McKenzie, 1987)
Every nilpotent Mal'cev algebra is polynomially equivalent to an expansion of a nilpotent loop.

Some useful propositions

Proposition (Exercise from Freese \& McKenzie, 1987)
Every nilpotent Mal'cev algebra is polynomially equivalent to an expansion of a nilpotent loop.

Proposition (Daly \& Vojtechovsky, 2009)
If a finite nilpotent loop has a central congruence of index 2, then it is an abelian group.

Nilpotent Mal'cev algebras of order $2 p$

A (possibly true) proposition
Let \mathbf{A} be a nilpotent Mal'cev algebra of order $2 p$ for some odd prime p. Further suppose \mathbf{A} has a central congruence θ of index 2 .
Then \mathbf{A} is nil-2-affine.

Nilpotent Mal'cev algebras of order $2 p$

A (possibly true) proposition
Let \mathbf{A} be a nilpotent Mal'cev algebra of order $2 p$ for some odd prime p. Further suppose \mathbf{A} has a central congruence θ of index 2 .
Then \mathbf{A} is nil-2-affine.
Proof.
Since \mathbf{A} is nilpotent and Mal'cev, it is p.e. to an expansion \mathbf{E} of a nilpotent loop \mathbb{L}.

Nilpotent Mal'cev algebras of order $2 p$

A (possibly true) proposition
Let \mathbf{A} be a nilpotent Mal'cev algebra of order $2 p$ for some odd prime p. Further suppose \mathbf{A} has a central congruence θ of index 2 .
Then \mathbf{A} is nil-2-affine.

Proof.

Since \mathbf{A} is nilpotent and Mal'cev, it is p.e. to an expansion \mathbf{E} of a nilpotent loop \mathbb{L}. Since p.e. algebras share the same congruences and centrality relations, θ is a central congruence of \mathbb{L}.

Nilpotent Mal'cev algebras of order $2 p$

A (possibly true) proposition
Let \mathbf{A} be a nilpotent Mal'cev algebra of order $2 p$ for some odd prime p. Further suppose \mathbf{A} has a central congruence θ of index 2 .
Then \mathbf{A} is nil-2-affine.

Proof.

Since \mathbf{A} is nilpotent and Mal'cev, it is p.e. to an expansion \mathbf{E} of a nilpotent loop \mathbb{L}. Since p.e. algebras share the same congruences and centrality relations, θ is a central congruence of \mathbb{L}. So \mathbb{L} is a cyclic group and θ is a factor congruence.

Nilpotent Mal'cev algebras of order $2 p$

A (possibly true) proposition
Let \mathbf{A} be a nilpotent Mal'cev algebra of order $2 p$ for some odd prime p. Further suppose \mathbf{A} has a central congruence θ of index 2 . Then \mathbf{A} is nil-2-affine.

Proof.

Since \mathbf{A} is nilpotent and Mal'cev, it is p.e. to an expansion \mathbf{E} of a nilpotent loop \mathbb{L}. Since p.e. algebras share the same congruences and centrality relations, θ is a central congruence of \mathbb{L}. So \mathbb{L} is a cyclic group and θ is a factor congruence. If $x_{1}-x_{2}+x_{3}$ is a polynomial operation of \mathbf{A}, then must it be a term operation?

Nilpotent Mal'cev algebras of order pq

Open Question
Is every nilpotent loop of order $p q$ (where p and q are distinct primes) nil-2-affine?

Nilpotent Mal'cev algebras of order pq

Open Question
Is every nilpotent loop of order $p q$ (where p and q are distinct primes) nil-2-affine?

A (very partial) answer
Yes!

Nilpotent Mal'cev algebras of order pq

Open Question
Is every nilpotent loop of order $p q$ (where p and q are distinct primes) nil-2-affine?

A (very partial) answer
Yes! At least when $p q=6$.

Nilpotent Mal'cev algebras of order pq

Open Question
Is every nilpotent loop of order $p q$ (where p and q are distinct primes) nil-2-affine?

A (very partial) answer
Yes! At least when $p q=6$.
Another (possibly true) proposition
Let \mathbf{A} be a nilpotent Mal'cev algebra of order $p q$ where p and q are distinct primes. Further suppose a positive answer to the above question. Then \mathbf{A} is nil-2-affine.

Future work

Future work

- generalize Szendrei's result to nil-2-affine algebras

Future work

- generalize Szendrei's result to nil-2-affine algebras
- extend to nil-c-affine algebras for $c>2$.

