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Affine terms

Let A be a nonempty set and let f : An → A be an operation on A.

The operation f is said to be affine with respect the abelian group
A = 〈A; +,−, 0〉 if there exist endomorphisms r1, r2, . . . , rn of A
and an element a in A such that

f (x1, x2, . . . , xn) = r1(x1) + r2(x2) + · · ·+ rn(xn) + a.
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Affine algebras

An algebra A = 〈A;F 〉 is said to be affine if there is an abelian
group A such that

I x1 − x2 + x3 is in Clo(A), and

I every f in F is affine with respect to A.
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I every module over a ring
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1 1 0 2
2 2 1 0
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Abelian Mal’cev algebras

An algebra A = 〈A;F 〉 is said to be abelian if it satisfies

∀m, n ≥ 1,∀x , y ∈ Am,∀z ,w ∈ An,∀t ∈ Clom+n(A)

t(x , z) = t(x ,w) =⇒ t(y , z) = t(y ,w).

An algebra A = 〈A;F 〉 is said to be Mal’cev if there is q in
Clo3(A) that satisfies

∀x , y ∈ A

q(x , y , y) = x = q(y , y , x).
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I a group is abelian if and only if it is an abelian group.

I a ring is abelian if and only if the multiplication is zero.

I every module is abelian.
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Fundamental theorem of abelian algebras

Theorem (Herrmann, 1979)

Let A belong to a modular variety. Then A is affine if and only if it
is abelian.



Classifying algebras

Goal
To classify or characterize affine algebras

Consider the integers as an abelian group 〈Z; +,−, 0〉 and as a
Z-module 〈Z; +,−, 0, `a〉a∈Z. Are these different algebras?
Two algebras on the same set are said to be term-equivalent if
they have the same term operations. We only want to classify
algebras up to term equivalence.
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Clones

A clone on a set A is a collection C of operations on A such that

I the projection operations projki : Ak → A are in C, and

I if f is n-ary, and g1, . . . , gn are k-ary operations in C, then
f [g1, . . . , gn] is in C as well.

Every algebra 〈A;F 〉 gives rise to the clone Clo(A;F ) generated by
F . Two algebras 〈A;F 〉 and 〈A;G 〉 are term equivalent if and only
if Clo(A;F ) = Clo(A;G ).
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Classifying affine clones

Let A be an abelian group,

let R be a unital subring of the ring of
endomorphisms of A, and let M be a submodule of RR ×R A. Then

K(A,R,M) =

{
n∑

i=1

ri (xi ) + a : ri ∈ R, (1−
n∑

i=1

ri , a) ∈ M

}

is an affine clone on the set A. Conversely:

Theorem (Szendrei, 1980)

If C is an affine clone on a set A, then there exist A,R, and M
such that

C = K(A,R,M).
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Commutator operation on congruences

Let α, β, γ be congruences of an algebra A. We say α centralizes β
modulo γ if

∀m, n ≥ 1,∀x αm y ,∀z βn w ,∀t ∈ Clom+n(A)

t(x , z) γ t(x ,w) =⇒ t(y , z) γ t(y ,w).

The commutator of α and β is

[α, β] =
⋂
{γ : α centralizes β modulo γ}.
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An algebra A is nilpotent if there is a positive integer c and a
sequence

1A = θ0 ≥ θ1 ≥ · · · ≥ θc = 0A

of congruences satisfying [1A, θi ] ≤ θi+1.

The sequence above is
called a central series.The integer c is the length of the central
series.The nilpotence class of A is the length of its shortest central
series.



Nilpotent algebras

An algebra A is nilpotent if there is a positive integer c and a
sequence

1A = θ0 ≥ θ1 ≥ · · · ≥ θc = 0A

of congruences satisfying [1A, θi ] ≤ θi+1. The sequence above is
called a central series.

The integer c is the length of the central
series.The nilpotence class of A is the length of its shortest central
series.



Nilpotent algebras

An algebra A is nilpotent if there is a positive integer c and a
sequence

1A = θ0 ≥ θ1 ≥ · · · ≥ θc = 0A

of congruences satisfying [1A, θi ] ≤ θi+1. The sequence above is
called a central series.The integer c is the length of the central
series.

The nilpotence class of A is the length of its shortest central
series.



Nilpotent algebras

An algebra A is nilpotent if there is a positive integer c and a
sequence

1A = θ0 ≥ θ1 ≥ · · · ≥ θc = 0A

of congruences satisfying [1A, θi ] ≤ θi+1. The sequence above is
called a central series.The integer c is the length of the central
series.The nilpotence class of A is the length of its shortest central
series.



Nil-2-affine terms

Let A be a nonempty set and let f : An → A be an operation on A.
Let A be an abelian group with underlying set A and let θ be a
congruence of A.

The operation f is said to be nil-2-affine with
respect to A, θ if there exist θ-preserving endomorphisms
r1, r2, . . . , rn of A and an operation a : An → A satisfying

I x , y ∈ An =⇒ a(x) θ a(y), and

I x θn y =⇒ a(x) = (y)

such that

f (x1, x2, . . . , xn) = r1(x1) + r2(x2) + · · ·+ rn(xn) + a(x1, x2, . . . , xn).
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Relation to Mal’cev algebras of nilpotence class at most 2

Proposition (EC)

If A is nil-2-affine, then A is both Mal’cev and nilpotent of class at
most 2.

Open Question

Does there exist an algebra A that is both Mal’cev and nilpotent
of class 2, but is not nil-2-affine?
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Let A = 〈A;F 〉 be an algebra such that x1 − x2 + x3 ∈ Clo(A) for
some abelian group A. If

I θ is a factor congruence of A,

I [1A, 1A] ≤ θ,and

I [1A, θ] ≤ 0A,

then A is nil-2-affine.

Open Question

Is this true when θ is not a factor congruence?
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Sketch of proof of my result

Suppose [1A, 1A] ≤ θ and [1A, θ] ≤ 0A. So
C (x1 − x2 + x3, 1A, 1A, θ) and C (x1 − x2 + x3, 1A, θ, 0A) are
subuniverses of A4.

Let f : An → A be in F . Since θ is a factor
congruence of A, there is congruence φ of A such that θ ◦ φ = 1A
and θ ∧ φ = 0A. Let U = 0/θ and V = 0/φ. Define
f ◦, g , h : An → A by

f ◦(x) = f (x)− f (0)

g(x) = f ◦(u) where u is the unique elt of Un with u φn x

h(x) is the unique elt of V with h(x) θ f ◦(x)
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Sketch continued

For 1 ≤ i ≤ n, define ri : A→ A by

ri (x) = g(0, . . . , 0,
i
x , 0, . . . , 0) + h(0, . . . , 0,

i
x , 0, . . . , 0)

Define a : An → A by

a(x) = f (x)− g(x)− h(x)

Claim:

f (x1, . . . , xn) = r1(x1) + · · ·+ rn(xn) + a(x1, . . . , xn)

where r1, . . . , rn and a satisfy the desired properties.
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Some useful propositions

Proposition (Exercise from Freese & McKenzie, 1987)

Every nilpotent Mal’cev algebra is polynomially equivalent to an
expansion of a nilpotent loop.

Proposition (Daly & Vojtechovsky, 2009)

If a finite nilpotent loop has a central congruence of index 2, then
it is an abelian group.
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Nilpotent Mal’cev algebras of order 2p

A (possibly true) proposition

Let A be a nilpotent Mal’cev algebra of order 2p for some odd
prime p. Further suppose A has a central congruence θ of index 2.
Then A is nil-2-affine.

Proof.
Since A is nilpotent and Mal’cev, it is p.e. to an expansion E of a
nilpotent loop L. Since p.e. algebras share the same congruences
and centrality relations, θ is a central congruence of L. So L is a
cyclic group and θ is a factor congruence. If x1 − x2 + x3 is a
polynomial operation of A, then must it be a term operation?



Nilpotent Mal’cev algebras of order 2p

A (possibly true) proposition

Let A be a nilpotent Mal’cev algebra of order 2p for some odd
prime p. Further suppose A has a central congruence θ of index 2.
Then A is nil-2-affine.

Proof.
Since A is nilpotent and Mal’cev, it is p.e. to an expansion E of a
nilpotent loop L.

Since p.e. algebras share the same congruences
and centrality relations, θ is a central congruence of L. So L is a
cyclic group and θ is a factor congruence. If x1 − x2 + x3 is a
polynomial operation of A, then must it be a term operation?



Nilpotent Mal’cev algebras of order 2p

A (possibly true) proposition

Let A be a nilpotent Mal’cev algebra of order 2p for some odd
prime p. Further suppose A has a central congruence θ of index 2.
Then A is nil-2-affine.

Proof.
Since A is nilpotent and Mal’cev, it is p.e. to an expansion E of a
nilpotent loop L. Since p.e. algebras share the same congruences
and centrality relations, θ is a central congruence of L.

So L is a
cyclic group and θ is a factor congruence. If x1 − x2 + x3 is a
polynomial operation of A, then must it be a term operation?



Nilpotent Mal’cev algebras of order 2p

A (possibly true) proposition

Let A be a nilpotent Mal’cev algebra of order 2p for some odd
prime p. Further suppose A has a central congruence θ of index 2.
Then A is nil-2-affine.

Proof.
Since A is nilpotent and Mal’cev, it is p.e. to an expansion E of a
nilpotent loop L. Since p.e. algebras share the same congruences
and centrality relations, θ is a central congruence of L. So L is a
cyclic group and θ is a factor congruence.

If x1 − x2 + x3 is a
polynomial operation of A, then must it be a term operation?



Nilpotent Mal’cev algebras of order 2p

A (possibly true) proposition

Let A be a nilpotent Mal’cev algebra of order 2p for some odd
prime p. Further suppose A has a central congruence θ of index 2.
Then A is nil-2-affine.

Proof.
Since A is nilpotent and Mal’cev, it is p.e. to an expansion E of a
nilpotent loop L. Since p.e. algebras share the same congruences
and centrality relations, θ is a central congruence of L. So L is a
cyclic group and θ is a factor congruence. If x1 − x2 + x3 is a
polynomial operation of A, then must it be a term operation?



Nilpotent Mal’cev algebras of order pq

Open Question

Is every nilpotent loop of order pq (where p and q are distinct
primes) nil-2-affine?

A (very partial) answer

Yes! At least when pq = 6.

Another (possibly true) proposition

Let A be a nilpotent Mal’cev algebra of order pq where p and q
are distinct primes. Further suppose a positive answer to the above
question. Then A is nil-2-affine.
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