Stone duality for infinitary logic

Ronnie Chen

University of Illinois at Urbana-Champaign
BLAST, May 21, 2019

Duality as completeness

Duality theorem $=$ strong completeness theorem for a logic.

Duality as completeness

Duality theorem $=$ strong completeness theorem for a logic.
Duality:
algebra $A \leadsto$ dual space A^{*}
where $A^{*}:=\operatorname{Hom}(A, K)$ for some fixed K

Duality as completeness

Duality theorem $=$ strong completeness theorem for a logic.
Duality:

$$
\text { algebra } A \nrightarrow \text { dual space } A^{*}
$$

where $A^{*}:=\operatorname{Hom}(A, K)$ for some fixed K
For a theory \mathcal{T} in a logic,
syntactical algebra $\langle\mathcal{T}\rangle \leftrightarrow \leadsto$ space of $\operatorname{models} \operatorname{Mod}(\mathcal{T})$

Duality as completeness

Duality theorem $=$ strong completeness theorem for a logic.
Duality:

$$
\text { algebra } A \nrightarrow \text { dual space } A^{*}
$$

where $A^{*}:=\operatorname{Hom}(A, K)$ for some fixed K
For a theory \mathcal{T} in a logic,

$$
\begin{gathered}
\text { syntactical algebra }\langle\mathcal{T}\rangle \leadsto \text { space of models } \operatorname{Mod}(\mathcal{T}) \\
\text { syntax } \rightsquigarrow \rightsquigarrow \text { semantics }
\end{gathered}
$$

Main examples

- propositional logic $\mathcal{L}_{\omega 0}$ (Stone duality)
- first-order logic $\mathcal{L}_{\omega \omega}$ (Makkai duality)
- infinitary first-order logic $\mathcal{L}_{\omega_{1} \omega}$

Propositional logic

\mathcal{L} : propositional language (set of atomic propositions)

Propositional logic

\mathcal{L} : propositional language (set of atomic propositions)
Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \wedge, \vee, \neg

Propositional logic

\mathcal{L} : propositional language (set of atomic propositions)
Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \wedge, \vee, \neg
$\mathcal{T}: \mathcal{L}_{\omega 0}$-theory (set of $\mathcal{L}_{\omega 0}$-formulas)

Propositional logic

\mathcal{L} : propositional language (set of atomic propositions)
Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \wedge, \vee, \neg
$\mathcal{T}: \mathcal{L}_{\omega 0}$-theory (set of $\mathcal{L}_{\omega 0}$-formulas)
Model of $\mathcal{T}: M: \mathcal{L} \rightarrow 2=\{0,1\}$ s.t. every $\phi \in \mathcal{T} \mapsto 1(M \mid \mathcal{T})$ $\operatorname{Mod}(\mathcal{L}, \mathcal{T}):=\{$ models of $\mathcal{T}\} \subseteq 2^{\mathcal{L}}$

Propositional logic

\mathcal{L} : propositional language (set of atomic propositions)
Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \wedge, \vee, \neg
$\mathcal{T}: \mathcal{L}_{\omega 0}$-theory (set of $\mathcal{L}_{\omega 0}$-formulas)
Model of $\mathcal{T}: M: \mathcal{L} \rightarrow 2=\{0,1\}$ s.t. every $\phi \in \mathcal{T} \mapsto 1(M \mid \mathcal{T})$ $\operatorname{Mod}(\mathcal{L}, \mathcal{T}):=\{$ models of $\mathcal{T}\} \subseteq 2^{\mathcal{L}}$

Lindenbaum-Tarski algebra $\langle\mathcal{L} \mid \mathcal{T}\rangle:=\left\{\mathcal{L}_{\omega 0}\right.$-formulas $\} / \sim$ where

$$
\phi \sim \psi: \Longleftrightarrow \mathcal{T} \vdash \phi \Leftrightarrow \psi
$$

$=$ Boolean algebra presented by generators \mathcal{L}, relations $\mathcal{T}(=1)$

Propositional logic

\mathcal{L} : propositional language (set of atomic propositions)
Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \wedge, \vee, \neg
$\mathcal{T}: \mathcal{L}_{\omega 0}$-theory (set of $\mathcal{L}_{\omega 0}$-formulas)
Model of $\mathcal{T}: M: \mathcal{L} \rightarrow 2=\{0,1\}$ s.t. every $\phi \in \mathcal{T} \mapsto 1(M \models \mathcal{T})$ $\operatorname{Mod}(\mathcal{L}, \mathcal{T}):=\{$ models of $\mathcal{T}\} \subseteq 2^{\mathcal{L}}$

Lindenbaum-Tarski algebra $\langle\mathcal{L} \mid \mathcal{T}\rangle:=\left\{\mathcal{L}_{\omega 0}\right.$-formulas $\} / \sim$ where

$$
\phi \sim \psi: \Longleftrightarrow \mathcal{T} \vdash \phi \Leftrightarrow \psi
$$

$=$ Boolean algebra presented by generators \mathcal{L}, relations $\mathcal{T}(=1)$ Hence,

$$
\operatorname{Mod}(\mathcal{L}, \mathcal{T}) \cong \operatorname{Bool}(\langle\mathcal{L} \mid \mathcal{T}\rangle, 2)
$$

(where $C(A, B):=\{$ morphisms $A \rightarrow B$ in category $C\}$)

Propositional logic

\mathcal{L} : propositional language (set of atomic propositions)
Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \wedge, \vee, \neg
$\mathcal{T}: \mathcal{L}_{\omega 0}$-theory (set of $\mathcal{L}_{\omega 0}$-formulas)
Model of $\mathcal{T}: M: \mathcal{L} \rightarrow 2=\{0,1\}$ s.t. every $\phi \in \mathcal{T} \mapsto 1(M \models \mathcal{T})$ $\operatorname{Mod}(\mathcal{L}, \mathcal{T}):=\{$ models of $\mathcal{T}\} \subseteq 2^{\mathcal{L}}$

Lindenbaum-Tarski algebra $\langle\mathcal{L} \mid \mathcal{T}\rangle:=\left\{\mathcal{L}_{\omega 0}\right.$-formulas $\} / \sim$ where

$$
\phi \sim \psi: \Longleftrightarrow \mathcal{T} \vdash \phi \Leftrightarrow \psi
$$

$=$ Boolean algebra presented by generators \mathcal{L}, relations $\mathcal{T}(=1)$ Hence,

$$
\operatorname{Mod}(\mathcal{L}, \mathcal{T}) \cong \operatorname{Bool}(\langle\mathcal{L} \mid \mathcal{T}\rangle, 2)=:\langle\mathcal{L} \mid \mathcal{T}\rangle^{*}
$$

(where $C(A, B):=\{$ morphisms $A \rightarrow B$ in category $C\}$)

Stone duality

2 is a dualizing object, i.e., has two commuting structures:

- $2 \in$ Bool;
- $2 \in$ Top (= topological spaces);
- these two structures on 2 commute: \wedge, \vee, \neg are continuous.

Stone duality

2 is a dualizing object, i.e., has two commuting structures:

- $2 \in$ Bool;
- $2 \in$ Top (= topological spaces);
- these two structures on 2 commute: \wedge, \vee, \neg are continuous.

Hence for $A \in \operatorname{Bool}, A^{*}:=\operatorname{Bool}(A, 2) \subseteq 2^{A} \in \operatorname{Top} ;$

$$
A^{* *}:=\operatorname{Top}\left(A^{*}, 2\right) \subseteq 2^{A^{*}} \in \operatorname{Bool}
$$

Stone duality

2 is a dualizing object, i.e., has two commuting structures:

- $2 \in$ Bool;
- $2 \in$ Top (= topological spaces);
- these two structures on 2 commute: \wedge, \vee, \neg are continuous.

Hence for $A \in \operatorname{Bool}, A^{*}:=\operatorname{Bool}(A, 2) \subseteq 2^{A} \in \operatorname{Top} ;$ and we have a canonical evaluation map

$$
\begin{aligned}
\eta_{A}: A & \longrightarrow A^{* *}:=\operatorname{Top}\left(A^{*}, 2\right) \subseteq 2^{A^{*}} \in \operatorname{Bool} \\
& a \longmapsto(x \mapsto x(a)) .
\end{aligned}
$$

Stone duality

2 is a dualizing object, i.e., has two commuting structures:

- $2 \in$ Bool;
- $2 \in$ Top (= topological spaces);
- these two structures on 2 commute: \wedge, \vee, \neg are continuous.

Hence for $A \in \operatorname{Bool}, A^{*}:=\operatorname{Bool}(A, 2) \subseteq 2^{A} \in \operatorname{Top} ;$ and we have a canonical evaluation map

$$
\begin{aligned}
\eta_{A}: A & \longrightarrow A^{* *}:=\operatorname{Top}\left(A^{*}, 2\right) \subseteq 2^{A^{*}} \in \operatorname{Bool} \\
& a \longmapsto(x \mapsto x(a)) .
\end{aligned}
$$

Theorem (Stone duality - algebraic)
For every $A \in$ Bool, $\eta_{A}: A \rightarrow A^{* *}$ is an isomorphism.

Strong completeness for $\mathcal{L}_{\omega 0}$

When $A=\langle\mathcal{L} \mid \mathcal{T}\rangle$ for a propositional $\mathcal{L}_{\omega 0}$-theory \mathcal{T}, Stone duality becomes:

Theorem (Stone duality - logical)
For every $\mathcal{L}_{\omega 0}$-theory \mathcal{T}, we have an isomorphism

$$
\begin{aligned}
\eta_{\mathcal{T}}:\langle\mathcal{L} \mid \mathcal{T}\rangle & \longrightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *} \cong \operatorname{Mod}(\mathcal{L}, \mathcal{T})^{*} \cong \operatorname{Clopen}(\operatorname{Mod}(\mathcal{L}, \mathcal{T})) \\
{[\phi] } & \longmapsto M \in \operatorname{Mod}(\mathcal{L}, \mathcal{T})|M|=\phi\}
\end{aligned}
$$

Strong completeness for $\mathcal{L}_{\omega 0}$

When $A=\langle\mathcal{L} \mid \mathcal{T}\rangle$ for a propositional $\mathcal{L}_{\omega 0}$-theory \mathcal{T}, Stone duality becomes:

Theorem (Stone duality - logical)
For every $\mathcal{L}_{\omega 0}$-theory \mathcal{T}, we have an isomorphism

$$
\begin{aligned}
\eta_{\mathcal{T}}:\langle\mathcal{L} \mid \mathcal{T}\rangle & \longrightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *} \cong \operatorname{Mod}(\mathcal{L}, \mathcal{T})^{*} \cong \operatorname{Clopen}(\operatorname{Mod}(\mathcal{L}, \mathcal{T})) \\
{[\phi] } & \longmapsto M \in \operatorname{Mod}(\mathcal{L}, \mathcal{T})|M|=\phi\}
\end{aligned}
$$

- injectivity: for any two $\mathcal{L}_{\omega 0}$-formulas ϕ, ψ, if $\phi \Leftrightarrow \psi$ in all models of \mathcal{T}, then $\mathcal{T} \vdash \phi \Leftrightarrow \psi$ (completeness theorem)

Strong completeness for $\mathcal{L}_{\omega 0}$

When $A=\langle\mathcal{L} \mid \mathcal{T}\rangle$ for a propositional $\mathcal{L}_{\omega 0}$-theory \mathcal{T}, Stone duality becomes:

Theorem (Stone duality - logical)
For every $\mathcal{L}_{\omega 0}$-theory \mathcal{T}, we have an isomorphism

$$
\begin{aligned}
\eta_{\mathcal{T}}:\langle\mathcal{L} \mid \mathcal{T}\rangle & \longrightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *} \cong \operatorname{Mod}(\mathcal{L}, \mathcal{T})^{*} \cong \operatorname{Clopen}(\operatorname{Mod}(\mathcal{L}, \mathcal{T})) \\
{[\phi] } & \longmapsto M \in \operatorname{Mod}(\mathcal{L}, \mathcal{T})|M|=\phi\}
\end{aligned}
$$

- injectivity: for any two $\mathcal{L}_{\omega 0}$-formulas ϕ, ψ, if $\phi \Leftrightarrow \psi$ in all models of \mathcal{T}, then $\mathcal{T} \vdash \phi \Leftrightarrow \psi$ (completeness theorem)
- surjectivity: any clopen set of models is named by an $\mathcal{L}_{\omega 0}$-formula (definability theorem)

Dual adjunctions

Stone duality is usually phrased in terms of a dual adjunction

Dual adjunctions

Stone duality is usually phrased in terms of a dual adjunction

The adjunction unit is the evaluation map $\eta_{A}: A \rightarrow \operatorname{Top}(\operatorname{Bool}(A, 2), 2)$, an isomorphism.

Dual adjunctions

Stone duality is usually phrased in terms of a dual adjunction

The adjunction unit is the evaluation map
$\eta_{A}: A \rightarrow \operatorname{Top}(\operatorname{Bool}(A, 2), 2)$, an isomorphism.
By a general fact about adjunctions, this is equivalent to:
Theorem (Stone duality - algebraic, II)
The functor $\operatorname{Bool}(-, 2)$: Bool \rightarrow Top ${ }^{\text {op }}$ is fully faithful, i.e., a bijection $\operatorname{Bool}(A, B) \xrightarrow{\sim} \operatorname{Top}\left(B^{*}, A^{*}\right)$ on each homset.

Interpretations

An interpretation $F:(\mathcal{L}, \mathcal{T}) \rightarrow\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right)$ is a syntactic recipe for uniformly turning $M \in \operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \mapsto F^{*}(M) \in \operatorname{Mod}(\mathcal{L}, \mathcal{T})$.

Interpretations

An interpretation $F:(\mathcal{L}, \mathcal{T}) \rightarrow\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right)$ is a syntactic recipe for uniformly turning $M \in \operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \mapsto F^{*}(M) \in \operatorname{Mod}(\mathcal{L}, \mathcal{T})$.

Formally, F is a Boolean homomorphism $\langle\mathcal{L} \mid \mathcal{T}\rangle \rightarrow\left\langle\mathcal{L}^{\prime} \mid \mathcal{T}^{\prime}\right\rangle$, i.e.,

- for each $P \in \mathcal{L}$, we have an $\mathcal{L}_{\omega 0}^{\prime}$-formula $F(P)$;
- for each $\phi \in \mathcal{T}$, we have $\mathcal{T}^{\prime} \vdash F(\phi)$.

Interpretations

An interpretation $F:(\mathcal{L}, \mathcal{T}) \rightarrow\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right)$ is a syntactic recipe for uniformly turning $M \in \operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \mapsto F^{*}(M) \in \operatorname{Mod}(\mathcal{L}, \mathcal{T})$.

Formally, F is a Boolean homomorphism $\langle\mathcal{L} \mid \mathcal{T}\rangle \rightarrow\left\langle\mathcal{L}^{\prime} \mid \mathcal{T}^{\prime}\right\rangle$, i.e.,

- for each $P \in \mathcal{L}$, we have an $\mathcal{L}_{\omega 0}^{\prime}$-formula $F(P)$;
- for each $\phi \in \mathcal{T}$, we have $\mathcal{T}^{\prime} \vdash F(\phi)$.

Given $M \in \operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \cong \operatorname{Bool}\left(\left\langle\mathcal{L}^{\prime} \mid \mathcal{T}^{\prime}\right\rangle, 2\right)$,

$$
F^{*}(M):=M \circ F:\langle\mathcal{L} \mid \mathcal{T}\rangle \rightarrow 2
$$

In other words, $F^{*}=\operatorname{Bool}(F, 2):\left\langle\mathcal{L}^{\prime} \mid \mathcal{T}^{\prime}\right\rangle^{*} \rightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{*}$.

Interpretations

An interpretation $F:(\mathcal{L}, \mathcal{T}) \rightarrow\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right)$ is a syntactic recipe for uniformly turning $M \in \operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \mapsto F^{*}(M) \in \operatorname{Mod}(\mathcal{L}, \mathcal{T})$.

Formally, F is a Boolean homomorphism $\langle\mathcal{L} \mid \mathcal{T}\rangle \rightarrow\left\langle\mathcal{L}^{\prime} \mid \mathcal{T}^{\prime}\right\rangle$, i.e.,

- for each $P \in \mathcal{L}$, we have an $\mathcal{L}_{\omega 0}^{\prime}$-formula $F(P)$;
- for each $\phi \in \mathcal{T}$, we have $\mathcal{T}^{\prime} \vdash F(\phi)$.

Given $M \in \operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \cong \operatorname{Bool}\left(\left\langle\mathcal{L}^{\prime} \mid \mathcal{T}^{\prime}\right\rangle, 2\right)$,

$$
F^{*}(M):=M \circ F:\langle\mathcal{L} \mid \mathcal{T}\rangle \rightarrow 2
$$

In other words, $F^{*}=\operatorname{Bool}(F, 2):\left\langle\mathcal{L}^{\prime} \mid \mathcal{T}^{\prime}\right\rangle^{*} \rightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{*}$.

Theorem (Stone duality - logical, II)

For any two propositional theories $(\mathcal{L}, \mathcal{T}),\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right)$, every continuous map $\operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \rightarrow \operatorname{Mod}(\mathcal{L}, \mathcal{T})$ is induced by a unique interpretation $F:(\mathcal{L}, \mathcal{T}) \rightarrow\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right)$.

The spatial side

Theorem (Stone duality - spatial)
Up to homeomorphism, spaces of the form A^{*} for $A \in$ Bool (i.e., $\operatorname{Mod}(\mathcal{L}, \mathcal{T})$ for propositional theories $(\mathcal{L}, \mathcal{T}))$ are exactly the compact Hausdorff zero-dimensional spaces (Stone spaces).

The spatial side

Theorem (Stone duality - spatial)

Up to homeomorphism, spaces of the form A^{*} for $A \in$ Bool (i.e., $\operatorname{Mod}(\mathcal{L}, \mathcal{T})$ for propositional theories $(\mathcal{L}, \mathcal{T}))$ are exactly the compact Hausdorff zero-dimensional spaces (Stone spaces).

Corollary (Stone duality - complete)

We have a dual adjoint equivalence of categories

First-order logic

\mathcal{L} : first-order relational language (set of relation symbols, each with an arity $\in \mathbb{N}$)

First-order logic

\mathcal{L} : first-order relational language (set of relation symbols, each with an arity $\in \mathbb{N}$)

- functions can be replaced by their graphs as usual
- more generally, can consider multi-sorted languages/theories

First-order logic

\mathcal{L} : first-order relational language (set of relation symbols, each with an arity $\in \mathbb{N}$)

- functions can be replaced by their graphs as usual
- more generally, can consider multi-sorted languages/theories

First-order logic $\mathcal{L}_{\omega \omega}$: formulas built from atomic formulas $R\left(x_{1}, \ldots, x_{n}\right)$ for n-ary $R \in \mathcal{L} \cup\{=\}$ using finitary $\wedge, \vee, \neg, \exists x, \forall x$

First-order logic

\mathcal{L} : first-order relational language (set of relation symbols, each with an arity $\in \mathbb{N}$)

- functions can be replaced by their graphs as usual
- more generally, can consider multi-sorted languages/theories

First-order logic $\mathcal{L}_{\omega \omega}$: formulas built from atomic formulas $R\left(x_{1}, \ldots, x_{n}\right)$ for n-ary $R \in \mathcal{L} \cup\{=\}$ using finitary $\wedge, \vee, \neg, \exists x, \forall x$
$\mathcal{T}: \mathcal{L}_{\omega \omega}$-theory (set of $\mathcal{L}_{\omega \omega}$-sentences (formulas w/o free vars))

First-order logic

\mathcal{L} : first-order relational language (set of relation symbols, each with an arity $\in \mathbb{N}$)

- functions can be replaced by their graphs as usual
- more generally, can consider multi-sorted languages/theories

First-order logic $\mathcal{L}_{\omega \omega}$: formulas built from atomic formulas $R\left(x_{1}, \ldots, x_{n}\right)$ for n-ary $R \in \mathcal{L} \cup\{=\}$ using finitary $\wedge, \vee, \neg, \exists x, \forall x$ $\mathcal{T}: \mathcal{L}_{\omega \omega}$-theory (set of $\mathcal{L}_{\omega \omega}$-sentences (formulas w/o free vars)) $\operatorname{Mod}(\mathcal{L}, \mathcal{T}):=$ category of (set-based) models

$$
\mathcal{M}=\left(M, R^{\mathcal{M}} \subseteq M^{n}\right)_{n \text {-ary } R \in \mathcal{L}}
$$

of \mathcal{T} and elementary embeddings

Syntactic categories

The syntactic category $\langle\mathcal{L} \mid \mathcal{T}\rangle$ of \mathcal{T} is the category with

- objects: $\mathcal{L}_{\omega \omega}$-formulas $\alpha\left(x_{1}, \ldots, x_{n}\right)$ (for any $n \in \mathbb{N}$)

Syntactic categories

The syntactic category $\langle\mathcal{L} \mid \mathcal{T}\rangle$ of \mathcal{T} is the category with

- objects: $\mathcal{L}_{\omega \omega}$-formulas $\alpha\left(x_{1}, \ldots, x_{n}\right)$ (for any $n \in \mathbb{N}$)
- morphisms $\alpha\left(x_{1}, \ldots, x_{m}\right) \rightarrow \beta\left(y_{1}, \ldots, y_{n}\right): \mathcal{T}$-equiv classes [ϕ] of formulas $\phi\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ such that
$\mathcal{T} \vdash$ " ϕ is the graph of a function $\alpha \rightarrow \beta^{\prime}$

Syntactic categories

The syntactic category $\langle\mathcal{L} \mid \mathcal{T}\rangle$ of \mathcal{T} is the category with

- objects: $\mathcal{L}_{\omega \omega}$-formulas $\alpha\left(x_{1}, \ldots, x_{n}\right)$ (for any $n \in \mathbb{N}$)
- morphisms $\alpha\left(x_{1}, \ldots, x_{m}\right) \rightarrow \beta\left(y_{1}, \ldots, y_{n}\right): \mathcal{T}$-equiv classes $[\phi]$ of formulas $\phi\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ such that

$$
\mathcal{T} \vdash \text { " } \phi \text { is the graph of a function } \alpha \rightarrow \beta \text { " }
$$

$\langle\mathcal{L} \mid \mathcal{T}\rangle$ is the Boolean coherent category, i.e., category with

- finite limits and certain finite colimits, encoding \wedge, \vee, \exists,
- obeying certain compatibility conditions (that hold in Set),
- such that all subobjects have complements (giving \neg, \forall),

Syntactic categories

The syntactic category $\langle\mathcal{L} \mid \mathcal{T}\rangle$ of \mathcal{T} is the category with

- objects: $\mathcal{L}_{\omega \omega}$-formulas $\alpha\left(x_{1}, \ldots, x_{n}\right)$ (for any $n \in \mathbb{N}$)
- morphisms $\alpha\left(x_{1}, \ldots, x_{m}\right) \rightarrow \beta\left(y_{1}, \ldots, y_{n}\right): \mathcal{T}$-equiv classes $[\phi]$ of formulas $\phi\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ such that

$$
\mathcal{T} \vdash \text { " } \phi \text { is the graph of a function } \alpha \rightarrow \beta \text { " }
$$

$\langle\mathcal{L} \mid \mathcal{T}\rangle$ is the Boolean coherent category, i.e., category with

- finite limits and certain finite colimits, encoding \wedge, \vee, \exists,
- obeying certain compatibility conditions (that hold in Set),
- such that all subobjects have complements (giving \neg, \forall), "presented" by generators \mathcal{L} and relations \mathcal{T}, so that

$$
\operatorname{Mod}(\mathcal{L}, \mathcal{T}) \cong \operatorname{BoolCoh}(\langle\mathcal{L} \mid \mathcal{T}\rangle, \text { Set })=:\langle\mathcal{L} \mid \mathcal{T}\rangle^{*}
$$

(BoolCoh(A, B) := category of Boolean coherent functors $A \rightarrow B$)

Ultracategories and pretoposes

Makkai (1980s) defined a notion of ultracategory, capturing the algebraic behavior of ultraproducts in Set.

Theorem (Łos)
The ultracategory structure on Set commutes with the Boolean coherent category structure.

Ultracategories and pretoposes

Makkai (1980s) defined a notion of ultracategory, capturing the algebraic behavior of ultraproducts in Set.

Theorem (Łos)

The ultracategory structure on Set commutes with the Boolean coherent category structure.

Hence, for a Boolean coherent category A, A* := BoolCoh(A, Set) is an ultracategory; and we have an evaluation functor

$$
\left.\eta_{\mathrm{A}}: \mathrm{A} \longrightarrow \mathrm{~A}^{* *}:=\mathrm{Ultra}(\text { BoolCoh(A, Set) }) \text { Set }\right) \in \text { BoolCoh. }
$$

Ultracategories and pretoposes

Makkai (1980s) defined a notion of ultracategory, capturing the algebraic behavior of ultraproducts in Set.

Theorem (Łos)

The ultracategory structure on Set commutes with the Boolean coherent category structure.

Hence, for a Boolean coherent category A, A* := BoolCoh(A, Set) is an ultracategory; and we have an evaluation functor

$$
\left.\eta_{\mathrm{A}}: \mathrm{A} \longrightarrow \mathrm{~A}^{* *}:=\mathrm{Ultra}(\text { BoolCoh(A, Set) }) \text { Set }\right) \in \text { BoolCoh. }
$$

However, Set is a special Boolean coherent category, a pretopos:

- it has finite disjoint unions (well-behaved coproducts);
- it has quotients by equiv rels (well-behaved coequalizers).

Every $\mathrm{A} \in$ BoolCoh has a pretopos completion $\overline{\mathrm{A}}$.

Makkai duality

Theorem (Makkai 1987)
For every $\mathrm{A} \in$ BoolCoh, $\eta_{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{A}^{* *}$ is the canonical embedding into its pretopos completion (i.e., $\mathrm{A}^{* *} \cong \overline{\mathrm{~A}}$).
In particular, if A is already a pretopos, then $\eta_{\mathrm{A}}: \mathrm{A} \cong \mathrm{A}^{* *}$.

Makkai duality

Theorem (Makkai 1987)

For every $\mathrm{A} \in \mathrm{Bool}$ Coh, $\eta_{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{A}^{* *}$ is the canonical embedding into its pretopos completion (i.e., $\mathrm{A}^{* *} \cong \overline{\mathrm{~A}}$).
In particular, if A is already a pretopos, then $\eta_{\mathrm{A}}: \mathrm{A} \cong \mathrm{A}^{* *}$.
For $\mathrm{A}=\langle\mathcal{L} \mid \mathcal{T}\rangle, \eta_{\mathrm{A}}$ is the functor

$$
\begin{aligned}
\eta_{\mathrm{A}}:\langle\mathcal{L} \mid \mathcal{T}\rangle & \longrightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *} \cong \operatorname{Ultra}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \text { Set }) \\
\alpha\left(x_{1}, \ldots, x_{n}\right) & \longmapsto\left(\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^{n}\right)
\end{aligned}
$$

Makkai duality

Theorem (Makkai 1987)

For every $\mathrm{A} \in$ BoolCoh, $\eta_{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{A}^{* *}$ is the canonical embedding into its pretopos completion (i.e., $\mathrm{A}^{* *} \cong \overline{\mathrm{~A}}$).
In particular, if A is already a pretopos, then $\eta_{\mathrm{A}}: \mathrm{A} \cong \mathrm{A}^{* *}$.
For $\mathrm{A}=\langle\mathcal{L} \mid \mathcal{T}\rangle, \eta_{\mathrm{A}}$ is the functor

$$
\begin{aligned}
\eta_{\mathrm{A}}:\langle\mathcal{L} \mid \mathcal{T}\rangle & \longrightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *} \cong \operatorname{Ultra}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \text { Set }) \\
\alpha\left(x_{1}, \ldots, x_{n}\right) & \longmapsto\left(\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^{n}\right)
\end{aligned}
$$

- conservativity (inj on subobj lattices): for any two $\mathcal{L}_{\omega \omega}$-formulas $\alpha, \beta \mathrm{w} /$ same free vars, if $\alpha^{\mathcal{M}}=\beta^{\mathcal{M}}$ for all $\mathcal{M} \in \operatorname{Mod}(\mathcal{L}, \mathcal{T})$, then $\mathcal{T} \vdash \alpha \Leftrightarrow \beta$ (completeness)

Makkai duality

Theorem (Makkai 1987)

For every $\mathrm{A} \in$ BoolCoh, $\eta_{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{A}^{* *}$ is the canonical embedding into its pretopos completion (i.e., $\mathrm{A}^{* *} \cong \overline{\mathrm{~A}}$).
In particular, if A is already a pretopos, then $\eta_{\mathrm{A}}: \mathrm{A} \cong \mathrm{A}^{* *}$.
For $\mathrm{A}=\langle\mathcal{L} \mid \mathcal{T}\rangle, \eta_{\mathrm{A}}$ is the functor

$$
\begin{aligned}
\eta_{\mathrm{A}}:\langle\mathcal{L} \mid \mathcal{T}\rangle & \longrightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *} \cong \operatorname{Ultra}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \text { Set }) \\
\alpha\left(x_{1}, \ldots, x_{n}\right) & \longmapsto\left(\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^{n}\right)
\end{aligned}
$$

- conservativity (inj on subobj lattices): for any two $\mathcal{L}_{\omega \omega}$-formulas $\alpha, \beta \mathrm{w} /$ same free vars, if $\alpha^{\mathcal{M}}=\beta^{\mathcal{M}}$ for all $\mathcal{M} \in \operatorname{Mod}(\mathcal{L}, \mathcal{T})$, then $\mathcal{T} \vdash \alpha \Leftrightarrow \beta$ (completeness)
- full on subobjects (surj on subobj lattices): any assignment $\mathcal{M} \in \operatorname{Mod}(\mathcal{L}, \mathcal{T}) \mapsto S_{\mathcal{M}} \subseteq M^{n}$ preserving elem embeddings and ultraproducts is $S_{\mathcal{M}}:=\alpha^{\mathcal{M}}$ for some α (definability) (cont'd)

Makkai duality

Theorem (Makkai 1987)

For every $\mathrm{A} \in$ BoolCoh, $\eta_{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{A}^{* *}$ is the canonical embedding into its pretopos completion (i.e., $\mathrm{A}^{* *} \cong \overline{\mathrm{~A}}$).
In particular, if A is already a pretopos, then $\eta_{\mathrm{A}}: \mathrm{A} \cong \mathrm{A}^{* *}$.
For $\mathrm{A}=\langle\mathcal{L} \mid \mathcal{T}\rangle, \eta_{\mathrm{A}}$ is the functor

$$
\begin{aligned}
\eta_{\mathrm{A}}:\langle\mathcal{L} \mid \mathcal{T}\rangle & \longrightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *} \cong \operatorname{Ultra}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \text { Set }) \\
\alpha\left(x_{1}, \ldots, x_{n}\right) & \longmapsto\left(\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^{n}\right)
\end{aligned}
$$

(cont'd)

- essentially surjective: any $\mathcal{M} \in \operatorname{Mod}(\mathcal{L}, \mathcal{T}) \mapsto S_{\mathcal{M}} \in$ Set functorial in \mathcal{M} and preserving ultraproducts is defined by an imaginary sort $A \in \overline{\langle\mathcal{L} \mid \mathcal{T}\rangle}$ (strong definability)
Recall: $\overline{\langle\mathcal{L} \mid \mathcal{T}\rangle}=$ completion of syntactic category $\langle\mathcal{L} \mid \mathcal{T}\rangle$ under finite disjoint unions and quotients by equiv rels.
So, an imaginary sort for \mathcal{T} is a quotient of a finite disjoint union of formulas (definable sets) by a definable equiv rel.

Makkai duality

Makkai duality is given by a 2-categorical adjunction $\left(\eta_{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{A}^{* *}\right.$ is adjunction unit), hence may be restated as

Corollary

The 2-functor $\mathrm{A} \mapsto \mathrm{A}^{*}$: BoolCoh \rightarrow Ultra ${ }^{\text {op }}$ is fully faithful. In other words, for any two first-order theories $(\mathcal{L}, \mathcal{T}),\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right)$, every ultraproduct-preserving functor $\operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \rightarrow \operatorname{Mod}(\mathcal{L}, \mathcal{T})$ is induced by an interpretation $F: \overline{\langle\mathcal{L} \mid \mathcal{T}\rangle} \rightarrow \overline{\left\langle\mathcal{L}^{\prime} \mid \mathcal{T}^{\prime}\right\rangle}$.

Makkai duality

Makkai duality is given by a 2-categorical adjunction $\left(\eta_{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{A}^{* *}\right.$ is adjunction unit), hence may be restated as

Corollary

The 2-functor $\mathrm{A} \mapsto \mathrm{A}^{*}$: BoolCoh \rightarrow Ultra ${ }^{\mathrm{op}}$ is fully faithful. In other words, for any two first-order theories $(\mathcal{L}, \mathcal{T}),\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right)$, every ultraproduct-preserving functor $\operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \rightarrow \operatorname{Mod}(\mathcal{L}, \mathcal{T})$ is induced by an interpretation $F: \overline{\langle\mathcal{L} \mid \mathcal{T}\rangle} \rightarrow \overline{\left\langle\mathcal{L}^{\prime} \mid \mathcal{T}^{\prime}\right\rangle}$.

Unlike with Stone duality, the "spatial side" of Makkai duality seems to be open:

Question

Is there a nice characterization of the ultracategories of the form $\operatorname{Mod}(\mathcal{L}, \mathcal{T}) ?$

Other dualities

- Stone-Priestley duality for distributive lattices \rightsquigarrow strong completeness for positive propositional logic
- Hofmann-Mislove-Stralka duality for Horn propositional logic
- Gabriel-Ulmer (1971) duality for Cartesian first-order logic
- Adámek-Lawvere-Rosický (2001) duality for algebraic theories
- Barr-Makkai $(1973,1990)$ duality for positive primitive (or regular) first-order logic

Other dualities

- Stone-Priestley duality for distributive lattices \rightsquigarrow strong completeness for positive propositional logic
- Hofmann-Mislove-Stralka duality for Horn propositional logic
- Gabriel-Ulmer (1971) duality for Cartesian first-order logic
- Adámek-Lawvere-Rosický (2001) duality for algebraic theories
- Barr-Makkai $(1973,1990)$ duality for positive primitive (or regular) first-order logic

Countably infinitary propositional logic $\mathcal{L}_{\omega_{1} 0}$: extension of $\mathcal{L}_{\omega 0}$ with countable \bigwedge, \bigvee (Lindenbaum-Tarski algebras: Boolean σ-algebras)

Other dualities

- Stone-Priestley duality for distributive lattices \rightsquigarrow strong completeness for positive propositional logic
- Hofmann-Mislove-Stralka duality for Horn propositional logic
- Gabriel-Ulmer (1971) duality for Cartesian first-order logic
- Adámek-Lawvere-Rosický (2001) duality for algebraic theories
- Barr-Makkai $(1973,1990)$ duality for positive primitive (or regular) first-order logic

Countably infinitary propositional logic $\mathcal{L}_{\omega_{1} 0}$: extension of $\mathcal{L}_{\omega 0}$ with countable \bigwedge, \bigvee (Lindenbaum-Tarski algebras: Boolean σ-algebras)

Theorem (ess. Loomis-Sikorski)

σ Bool $_{\omega_{1}}:=\{$ countably presented Boolean σ-algebras\}
\cong Borel $^{\mathrm{OP}}:=\{\text { standard Borel spaces }\}^{\mathrm{Op}}$.

Other dualities

- Stone-Priestley duality for distributive lattices \rightsquigarrow strong completeness for positive propositional logic
- Hofmann-Mislove-Stralka duality for Horn propositional logic
- Gabriel-Ulmer (1971) duality for Cartesian first-order logic
- Adámek-Lawvere-Rosický (2001) duality for algebraic theories
- Barr-Makkai $(1973,1990)$ duality for positive primitive (or regular) first-order logic

Countably infinitary propositional logic $\mathcal{L}_{\omega_{1} 0}$: extension of $\mathcal{L}_{\omega 0}$ with countable \wedge, \bigvee (Lindenbaum-Tarski algebras: Boolean σ-algebras)

Theorem (ess. Loomis-Sikorski)

σ Bool $_{\omega_{1}}:=\{$ countably presented Boolean σ-algebras\}
\cong Borel $^{\mathrm{op}}:=\{\text { standard Borel spaces }\}^{\mathrm{op}}$.
This gives a strong completeness theorem for countable $\mathcal{L}_{\omega_{1} 0}$-theories.

Infinitary first-order logic

Countably infinitary first-order logic $\mathcal{L}_{\omega_{1} \omega}$: extension of finitary $\mathcal{L}_{\omega \omega}$ with countable \wedge, \bigvee

Infinitary first-order logic

Countably infinitary first-order logic $\mathcal{L}_{\omega_{1} \omega}$: extension of finitary $\mathcal{L}_{\omega \omega}$ with countable \wedge, \bigvee

Syntactic category $\langle\mathcal{L} \mid \mathcal{T}\rangle$ defined as for $\mathcal{L}_{\omega \omega}$ (formulas, definable functions), is the Boolean σ-coherent category:

- finite limits and some countable colimits, encoding \wedge, \bigvee, \exists,
- obeying all compatibility conditions that hold in Set,
- such that all subobjects have complements (giving \neg, \forall, \bigwedge), presented by \mathcal{L}, \mathcal{T}.

Infinitary first-order logic

Countably infinitary first-order logic $\mathcal{L}_{\omega_{1} \omega}$: extension of finitary $\mathcal{L}_{\omega \omega}$ with countable \wedge, \bigvee

Syntactic category $\langle\mathcal{L} \mid \mathcal{T}\rangle$ defined as for $\mathcal{L}_{\omega \omega}$ (formulas, definable functions), is the Boolean σ-coherent category:

- finite limits and some countable colimits, encoding \wedge, \bigvee, \exists,
- obeying all compatibility conditions that hold in Set,
- such that all subobjects have complements (giving \neg, \forall, \bigwedge), presented by \mathcal{L}, \mathcal{T}.

Boolean σ-pretopos: Boolean σ-coherent category with countable disjoint unions and quotients by equivalence relations

Infinitary first-order logic

Countably infinitary first-order logic $\mathcal{L}_{\omega_{1} \omega}$: extension of finitary $\mathcal{L}_{\omega \omega}$ with countable \wedge, \bigvee

Syntactic category $\langle\mathcal{L} \mid \mathcal{T}\rangle$ defined as for $\mathcal{L}_{\omega \omega}$ (formulas, definable functions), is the Boolean σ-coherent category:

- finite limits and some countable colimits, encoding \wedge, \bigvee, \exists,
- obeying all compatibility conditions that hold in Set,
- such that all subobjects have complements (giving \neg, \forall, \bigwedge), presented by \mathcal{L}, \mathcal{T}.

Boolean σ-pretopos: Boolean σ-coherent category with countable disjoint unions and quotients by equivalence relations

Every $\mathrm{A} \in \operatorname{Bool} \sigma$ Coh has a σ-pretopos completion $\overline{\mathrm{A}}$

Infinitary first-order logic

\mathcal{T} : countable $\mathcal{L}_{\omega_{1} \omega}$-theory (in countable language \mathcal{L})
$\operatorname{Mod}(\mathcal{L}, \mathcal{T}):=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0,1,2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms

Infinitary first-order logic

\mathcal{T} : countable $\mathcal{L}_{\omega_{1} \omega}$-theory (in countable language \mathcal{L})
$\operatorname{Mod}(\mathcal{L}, \mathcal{T}):=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0,1,2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms
$\cong \operatorname{Bool} \sigma \operatorname{Coh}(\langle\mathcal{L} \mid \mathcal{T}\rangle$, Count $)$
where Count $:=\{0,1,2, \ldots, \mathbb{N}\}$: both a Boolean σ-pretopos and a standard Borel groupoid, and these structures commute

Infinitary first-order logic

\mathcal{T} : countable $\mathcal{L}_{\omega_{1} \omega}$-theory (in countable language \mathcal{L})
$\operatorname{Mod}(\mathcal{L}, \mathcal{T}):=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0,1,2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms

$$
\cong \operatorname{Bool} \sigma \operatorname{Coh}(\langle\mathcal{L} \mid \mathcal{T}\rangle, \text { Count })=:\langle\mathcal{L} \mid \mathcal{T}\rangle^{*}
$$

where Count $:=\{0,1,2, \ldots, \mathbb{N}\}$: both a Boolean σ-pretopos and a standard Borel groupoid, and these structures commute

Infinitary first-order logic

\mathcal{T} : countable $\mathcal{L}_{\omega_{1} \omega}$-theory (in countable language \mathcal{L})
$\operatorname{Mod}(\mathcal{L}, \mathcal{T}):=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0,1,2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms

$$
\cong \operatorname{Bool} \sigma \operatorname{Coh}(\langle\mathcal{L} \mid \mathcal{T}\rangle, \text { Count })=:\langle\mathcal{L} \mid \mathcal{T}\rangle^{*}
$$

where Count $:=\{0,1,2, \ldots, \mathbb{N}\}$: both a Boolean σ-pretopos and a standard Borel groupoid, and these structures commute

$$
\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *}:=\operatorname{BorGpd}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \text { Count }) \in \operatorname{Bool} \sigma \text { PreTop }
$$

Infinitary first-order logic

\mathcal{T} : countable $\mathcal{L}_{\omega_{1} \omega}$-theory (in countable language \mathcal{L})
$\operatorname{Mod}(\mathcal{L}, \mathcal{T}):=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0,1,2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms

$$
\cong \operatorname{Bool} \sigma \operatorname{Coh}(\langle\mathcal{L} \mid \mathcal{T}\rangle, \text { Count })=:\langle\mathcal{L} \mid \mathcal{T}\rangle^{*}
$$

where Count $:=\{0,1,2, \ldots, \mathbb{N}\}$: both a Boolean σ-pretopos and a standard Borel groupoid, and these structures commute

$$
\begin{aligned}
\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *}:= & \operatorname{BorGpd}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \text { Count }) \in \operatorname{Bool} \sigma \operatorname{PreTop} \\
= & \text { "Borel } \cong \text {-equivariant assignments of a countable set } \\
& \text { to each } \mathcal{M} \in \operatorname{Mod}(\mathcal{L}, \mathcal{T}) \text { " }
\end{aligned}
$$

Infinitary first-order logic

\mathcal{T} : countable $\mathcal{L}_{\omega_{1} \omega}$-theory (in countable language \mathcal{L})
$\operatorname{Mod}(\mathcal{L}, \mathcal{T}):=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0,1,2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms

$$
\cong \operatorname{Bool} \sigma \operatorname{Coh}(\langle\mathcal{L} \mid \mathcal{T}\rangle, \text { Count })=:\langle\mathcal{L} \mid \mathcal{T}\rangle^{*}
$$

where Count $:=\{0,1,2, \ldots, \mathbb{N}\}$: both a Boolean σ-pretopos and a standard Borel groupoid, and these structures commute

$$
\begin{aligned}
\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *}: & =\operatorname{BorGpd}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \text { Count }) \in \text { Bool } \sigma \text { PreTop } \\
= & \text { "Borel } \cong \text {-equivariant assignments of a countable set } \\
& \text { to each } \mathcal{M} \in \operatorname{Mod}(\mathcal{L}, \mathcal{T}) " \\
& \cong\{\text { fiberwise countable Borel actions } \operatorname{Mod}(\mathcal{L}, \mathcal{T}) \curvearrowright X\}
\end{aligned}
$$

Duality for $\mathcal{L}_{\omega_{1} \omega}$

Theorem (C.)

For every countable $\mathcal{L}_{\omega_{1} \omega}$-theory \mathcal{T}, the evaluation functor

$$
\begin{aligned}
\eta_{\mathcal{T}}:\langle\mathcal{L} \mid \mathcal{T}\rangle & \longrightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *} \cong \operatorname{BorGpd}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \text { Count }) \\
\alpha\left(x_{1}, \ldots, x_{n}\right) & \longmapsto\left(\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^{n}\right)
\end{aligned}
$$

is the canonical embedding into the σ-pretopos completion $\overline{\langle\mathcal{L} \mid \mathcal{T}\rangle}$.

- conservative: completeness theorem for $\mathcal{L}_{\omega_{1} \omega}$ (Lopez-Escobar)

Duality for $\mathcal{L}_{\omega_{1} \omega}$

Theorem (C.)

For every countable $\mathcal{L}_{\omega_{1} \omega}$-theory \mathcal{T}, the evaluation functor

$$
\begin{aligned}
\eta_{\mathcal{T}}:\langle\mathcal{L} \mid \mathcal{T}\rangle & \longrightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *} \cong \operatorname{BorGpd}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \text { Count }) \\
\alpha\left(x_{1}, \ldots, x_{n}\right) & \longmapsto\left(\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^{n}\right)
\end{aligned}
$$

is the canonical embedding into the σ-pretopos completion $\overline{\langle\mathcal{L} \mid \mathcal{T}\rangle}$.

- conservative: completeness theorem for $\mathcal{L}_{\omega_{1} \omega}$ (Lopez-Escobar)
- full on subobjects: $\mathcal{L}_{\omega_{1} \omega}$-definability theorem for \cong-invariant Borel sets (Lopez-Escobar)

Duality for $\mathcal{L}_{\omega_{1} \omega}$

Theorem (C.)

For every countable $\mathcal{L}_{\omega_{1} \omega}$-theory \mathcal{T}, the evaluation functor

$$
\begin{aligned}
\eta_{\mathcal{T}}:\langle\mathcal{L} \mid \mathcal{T}\rangle & \longrightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *} \cong \operatorname{BorGpd}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \text { Count }) \\
\alpha\left(x_{1}, \ldots, x_{n}\right) & \longmapsto\left(\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^{n}\right)
\end{aligned}
$$

is the canonical embedding into the σ-pretopos completion $\overline{\langle\mathcal{L} \mid \mathcal{T}\rangle}$.

- conservative: completeness theorem for $\mathcal{L}_{\omega_{1} \omega}$ (Lopez-Escobar)
- full on subobjects: $\mathcal{L}_{\omega_{1} \omega}$-definability theorem for \cong-invariant Borel sets (Lopez-Escobar)
- essentially surjective: every Borel functor $\operatorname{Mod}(\mathcal{L}, \mathcal{T}) \rightarrow$ Count is defined by an $\mathcal{L}_{\omega_{1} \omega}$-imaginary sort (quotient of a countable union of $\mathcal{L}_{\omega_{1} \omega}$-formulas by a definable equiv rel)

Duality for $\mathcal{L}_{\omega_{1} \omega}$

Theorem (C.)

For every countable $\mathcal{L}_{\omega_{1} \omega}$-theory \mathcal{T}, the evaluation functor

$$
\begin{aligned}
\eta_{\mathcal{T}}:\langle\mathcal{L} \mid \mathcal{T}\rangle & \longrightarrow\langle\mathcal{L} \mid \mathcal{T}\rangle^{* *} \cong \operatorname{BorGpd}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \text { Count }) \\
\alpha\left(x_{1}, \ldots, x_{n}\right) & \longmapsto\left(\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^{n}\right)
\end{aligned}
$$

is the canonical embedding into the σ-pretopos completion $\overline{\langle\mathcal{L} \mid \mathcal{T}\rangle}$.

- conservative: completeness theorem for $\mathcal{L}_{\omega_{1} \omega}$ (Lopez-Escobar)
- full on subobjects: $\mathcal{L}_{\omega_{1} \omega}$-definability theorem for \cong-invariant Borel sets (Lopez-Escobar)
- essentially surjective: every Borel functor $\operatorname{Mod}(\mathcal{L}, \mathcal{T}) \rightarrow$ Count is defined by an $\mathcal{L}_{\omega_{1} \omega}$-imaginary sort (quotient of a countable union of $\mathcal{L}_{\omega_{1} \omega}$-formulas by a definable equiv rel)

Proof uses ideas from invariant DST and topos theory.

Duality for $\mathcal{L}_{\omega_{1} \omega}$

Corollary (C.)

For any two countable $\mathcal{L}_{\omega_{1} \omega \text {-theories }}(\mathcal{L}, \mathcal{T}),\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right)$, every Borel functor $\operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \rightarrow \operatorname{Mod}(\mathcal{L}, \mathcal{T})$ is induced by an
$\mathcal{L}_{\omega_{1} \omega}$-interpretation $F: \overline{\langle\mathcal{L} \mid \mathcal{T}\rangle} \rightarrow \overline{\left\langle\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right\rangle}$.

Duality for $\mathcal{L}_{\omega_{1} \omega}$

Corollary (C.)

For any two countable $\mathcal{L}_{\omega_{1} \omega}$-theories $(\mathcal{L}, \mathcal{T}),\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right)$, every Borel functor $\operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \rightarrow \operatorname{Mod}(\mathcal{L}, \mathcal{T})$ is induced by an
$\mathcal{L}_{\omega_{1} \omega}$-interpretation $F: \overline{\langle\mathcal{L} \mid \mathcal{T}\rangle} \rightarrow \overline{\left\langle\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right\rangle}$.
For ω-categorical theories this was proved by
(Harrison-Trainor-Miller-Montalbán 2016).

Duality for $\mathcal{L}_{\omega_{1} \omega}$

Corollary (C.)

For any two countable $\mathcal{L}_{\omega_{1} \omega}$-theories $(\mathcal{L}, \mathcal{T}),\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right)$, every Borel functor $\operatorname{Mod}\left(\mathcal{L}^{\prime}, \mathcal{T}^{\prime}\right) \rightarrow \operatorname{Mod}(\mathcal{L}, \mathcal{T})$ is induced by an

For ω-categorical theories this was proved by (Harrison-Trainor-Miller-Montalbán 2016).

Theorem (C.)

Up to Borel equivalence, the standard Borel groupoids $\operatorname{Mod}(\mathcal{L}, \mathcal{T})$ are exactly the open non-Archimedean Polish groupoids.

Polish groupoid: internal groupoid in Pol (spaces of objects and morphisms are Polish spaces, groupoid operations are continuous) Open: product of open sets of morphisms is open Non-Archimedean: every identity morphism has a neighborhood basis of open subgroupoids

Work in progress

Theorem (C.)

Every open Polish groupoid is Borel equivalent to $\operatorname{Mod}(\mathcal{L}, \mathcal{T})$ for some $\mathcal{L}_{\omega_{1} \omega}$-theory \mathcal{T} in the continuous logic for metric structures.

Remains to develop theory of syntactic categories and prove "algebraic" side of duality theorem for continuous $\mathcal{L}_{\omega_{1} \omega}$.

Thank you

