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Duality as completeness

Duality theorem = strong completeness theorem for a logic.

Duality:

algebra A! dual space A∗

where A∗ := Hom(A,K ) for some fixed K

For a theory T in a logic,

syntactical algebra 〈T 〉! space of models Mod(T )

syntax! semantics



Duality as completeness

Duality theorem = strong completeness theorem for a logic.

Duality:

algebra A! dual space A∗

where A∗ := Hom(A,K ) for some fixed K

For a theory T in a logic,

syntactical algebra 〈T 〉! space of models Mod(T )

syntax! semantics



Duality as completeness

Duality theorem = strong completeness theorem for a logic.

Duality:

algebra A! dual space A∗

where A∗ := Hom(A,K ) for some fixed K

For a theory T in a logic,

syntactical algebra 〈T 〉! space of models Mod(T )

syntax! semantics



Duality as completeness

Duality theorem = strong completeness theorem for a logic.

Duality:

algebra A! dual space A∗

where A∗ := Hom(A,K ) for some fixed K

For a theory T in a logic,

syntactical algebra 〈T 〉! space of models Mod(T )

syntax! semantics



Main examples

I propositional logic Lω0 (Stone duality)

I first-order logic Lωω (Makkai duality)

I infinitary first-order logic Lω1ω



Propositional logic
L : propositional language (set of atomic propositions)

Propositional logic Lω0: formulas built from L using finite ∧,∨,¬

T : Lω0-theory (set of Lω0-formulas)

Model of T : M : L → 2 = {0, 1} s.t. every φ ∈ T 7→ 1 (M |= T )
Mod(L, T ) := {models of T } ⊆ 2L

Lindenbaum–Tarski algebra 〈L | T 〉 := {Lω0-formulas}/∼ where

φ ∼ ψ :⇐⇒ T ` φ⇔ ψ

= Boolean algebra presented by generators L, relations T (= 1)

Hence,

Mod(L, T ) ∼= Bool(〈L | T 〉, 2)

=: 〈L | T 〉∗

(where C(A,B) := {morphisms A→ B in category C})
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Stone duality

2 is a dualizing object, i.e., has two commuting structures:

I 2 ∈ Bool;

I 2 ∈ Top (= topological spaces);

I these two structures on 2 commute: ∧,∨,¬ are continuous.

Hence for A ∈ Bool, A∗ := Bool(A, 2) ⊆ 2A ∈ Top;

and we have a
canonical evaluation map

ηA : A −→

A∗∗ := Top(A∗, 2) ⊆ 2A
∗ ∈ Bool

a 7−→ (x 7→ x(a)).

Theorem (Stone duality – algebraic)

For every A ∈ Bool, ηA : A→ A∗∗ is an isomorphism.
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Strong completeness for Lω0

When A = 〈L | T 〉 for a propositional Lω0-theory T , Stone duality
becomes:

Theorem (Stone duality – logical)

For every Lω0-theory T , we have an isomorphism

ηT : 〈L | T 〉 −→ 〈L | T 〉∗∗ ∼= Mod(L, T )∗ ∼= Clopen(Mod(L, T ))

[φ] 7−→ {M ∈ Mod(L, T ) | M |= φ}.

I injectivity: for any two Lω0-formulas φ, ψ, if φ⇔ ψ in all
models of T , then T ` φ⇔ ψ (completeness theorem)

I surjectivity: any clopen set of models is named by an
Lω0-formula (definability theorem)
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Dual adjunctions

Stone duality is usually phrased in terms of a dual adjunction

Bool ⊥ Topop

Bool(−,2)

Top(−,2)

The adjunction unit is the evaluation map
ηA : A→ Top(Bool(A, 2), 2), an isomorphism.

By a general fact about adjunctions, this is equivalent to:

Theorem (Stone duality – algebraic, II)

The functor Bool(−, 2) : Bool→ Topop is fully faithful, i.e., a
bijection Bool(A,B)

∼−→ Top(B∗,A∗) on each homset.
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Interpretations
An interpretation F : (L, T )→ (L′, T ′) is a syntactic recipe for
uniformly turning M ∈ Mod(L′, T ′) 7→ F ∗(M) ∈ Mod(L, T ).

Formally, F is a Boolean homomorphism 〈L | T 〉 → 〈L′ | T ′〉, i.e.,

I for each P ∈ L, we have an L′ω0-formula F (P);

I for each φ ∈ T , we have T ′ ` F (φ).

Given M ∈ Mod(L′, T ′) ∼= Bool(〈L′ | T ′〉, 2),

F ∗(M) := M ◦ F : 〈L | T 〉 → 2.

In other words, F ∗ = Bool(F , 2) : 〈L′ | T ′〉∗ → 〈L | T 〉∗.

Theorem (Stone duality – logical, II)

For any two propositional theories (L, T ), (L′, T ′), every
continuous map Mod(L′, T ′)→ Mod(L, T ) is induced by a unique
interpretation F : (L, T )→ (L′, T ′).
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The spatial side

Theorem (Stone duality – spatial)

Up to homeomorphism, spaces of the form A∗ for A ∈ Bool (i.e.,
Mod(L, T ) for propositional theories (L, T )) are exactly the
compact Hausdorff zero-dimensional spaces (Stone spaces).

Corollary (Stone duality – complete)

We have a dual adjoint equivalence of categories

Bool ⊥ Stoneop

Bool(−,2)

Stone(−,2)
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First-order logic

L : first-order relational language (set of relation symbols, each
with an arity ∈ N)

I functions can be replaced by their graphs as usual

I more generally, can consider multi-sorted languages/theories

First-order logic Lωω: formulas built from atomic formulas
R(x1, . . . , xn) for n-ary R ∈ L ∪ {=} using finitary ∧,∨,¬, ∃x , ∀x

T : Lωω-theory (set of Lωω-sentences (formulas w/o free vars))

Mod(L, T ) := category of (set-based) models

M = (M, RM ⊆ Mn)n-ary R∈L

of T and elementary embeddings
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Syntactic categories

The syntactic category 〈L | T 〉 of T is the category with

I objects: Lωω-formulas α(x1, . . . , xn) (for any n ∈ N)

I morphisms α(x1, . . . , xm)→ β(y1, . . . , yn): T -equiv classes [φ]
of formulas φ(x1, . . . , xm, y1, . . . , yn) such that

T ` “φ is the graph of a function α→ β”

〈L | T 〉 is the Boolean coherent category, i.e., category with

I finite limits and certain finite colimits, encoding ∧,∨,∃,

I obeying certain compatibility conditions (that hold in Set),

I such that all subobjects have complements (giving ¬,∀),

“presented” by generators L and relations T , so that

Mod(L, T ) ∼= BoolCoh(〈L | T 〉, Set) =: 〈L | T 〉∗

(BoolCoh(A,B) := category of Boolean coherent functors A→ B)
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Ultracategories and pretoposes

Makkai (1980s) defined a notion of ultracategory, capturing the
algebraic behavior of ultraproducts in Set.

Theorem ( Los)

The ultracategory structure on Set commutes with the Boolean
coherent category structure.

Hence, for a Boolean coherent category A, A∗ := BoolCoh(A,Set)
is an ultracategory; and we have an evaluation functor

ηA : A −→ A∗∗ := Ultra(BoolCoh(A, Set),Set) ∈ BoolCoh.

However, Set is a special Boolean coherent category, a pretopos:

I it has finite disjoint unions (well-behaved coproducts);

I it has quotients by equiv rels (well-behaved coequalizers).

Every A ∈ BoolCoh has a pretopos completion A.
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Makkai duality
Theorem (Makkai 1987)
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I essentially surjective: any M∈ Mod(L, T ) 7→ SM ∈ Set

functorial in M and preserving ultraproducts is defined by an
imaginary sort A ∈ 〈L | T 〉 (strong definability)

Recall: 〈L | T 〉 = completion of syntactic category 〈L | T 〉 under
finite disjoint unions and quotients by equiv rels.

So, an imaginary sort for T is a quotient of a finite disjoint union
of formulas (definable sets) by a definable equiv rel.



Makkai duality

Makkai duality is given by a 2-categorical adjunction
(ηA : A→ A∗∗ is adjunction unit), hence may be restated as

Corollary

The 2-functor A 7→ A∗ : BoolCoh→ Ultraop is fully faithful.
In other words, for any two first-order theories (L, T ), (L′, T ′),
every ultraproduct-preserving functor Mod(L′, T ′)→ Mod(L, T ) is
induced by an interpretation F : 〈L | T 〉 → 〈L′ | T ′〉.

Unlike with Stone duality, the “spatial side” of Makkai duality
seems to be open:

Question

Is there a nice characterization of the ultracategories of the form
Mod(L, T )?
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Other dualities

I Stone–Priestley duality for distributive lattices  strong
completeness for positive propositional logic

I Hofmann–Mislove–Stralka duality for Horn propositional logic

I Gabriel–Ulmer (1971) duality for Cartesian first-order logic

I Adámek–Lawvere–Rosický (2001) duality for algebraic theories

I Barr–Makkai (1973, 1990) duality for positive primitive (or
regular) first-order logic

Countably infinitary propositional logic Lω10: extension of Lω0 with
countable

∧
,
∨

(Lindenbaum–Tarski algebras: Boolean σ-algebras)

Theorem (ess. Loomis–Sikorski)

σBoolω1 := {countably presented Boolean σ-algebras}
∼= Borelop := {standard Borel spaces}op.

This gives a strong completeness theorem for countable
Lω10-theories.
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Infinitary first-order logic

Countably infinitary first-order logic Lω1ω: extension of finitary
Lωω with countable

∧
,
∨

Syntactic category 〈L | T 〉 defined as for Lωω (formulas, definable
functions), is the Boolean σ-coherent category:

I finite limits and some countable colimits, encoding ∧,
∨
, ∃,

I obeying all compatibility conditions that hold in Set,

I such that all subobjects have complements (giving ¬,∀,
∧

),

presented by L, T .

Boolean σ-pretopos: Boolean σ-coherent category with countable
disjoint unions and quotients by equivalence relations

Every A ∈ BoolσCoh has a σ-pretopos completion A
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Infinitary first-order logic

T : countable Lω1ω-theory (in countable language L)

Mod(L, T ) := standard Borel groupoid of countable models of T
on one of the canonical countable sets 0, 1, 2(:= {0, 1}), . . . ,N,
together with isomorphisms

∼= BoolσCoh(〈L | T 〉,Count)

=: 〈L | T 〉∗

where Count := {0, 1, 2, . . . ,N}: both a Boolean σ-pretopos and a
standard Borel groupoid, and these structures commute

〈L | T 〉∗∗ := BorGpd(Mod(L, T ),Count) ∈ BoolσPreTop

= “Borel ∼=-equivariant assignments of a countable set

to each M∈ Mod(L, T )”
∼= {fiberwise countable Borel actions Mod(L, T ) y X}
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Duality for Lω1ω

Theorem (C.)

For every countable Lω1ω-theory T , the evaluation functor

ηT : 〈L | T 〉 −→ 〈L | T 〉∗∗ ∼= BorGpd(Mod(L, T ),Count)

α(x1, . . . , xn) 7−→ (M 7→ αM ⊆ Mn)

is the canonical embedding into the σ-pretopos completion 〈L | T 〉.
I conservative: completeness theorem for Lω1ω (Lopez-Escobar)

I full on subobjects: Lω1ω-definability theorem for ∼=-invariant
Borel sets (Lopez-Escobar)

I essentially surjective: every Borel functor Mod(L, T )→ Count
is defined by an Lω1ω-imaginary sort (quotient of a countable
union of Lω1ω-formulas by a definable equiv rel)

Proof uses ideas from invariant DST and topos theory.
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Duality for Lω1ω

Corollary (C.)

For any two countable Lω1ω-theories (L, T ), (L′, T ′), every Borel
functor Mod(L′, T ′)→ Mod(L, T ) is induced by an
Lω1ω-interpretation F : 〈L | T 〉 → 〈L′, T ′〉.

For ω-categorical theories this was proved by
(Harrison-Trainor–Miller–Montalbán 2016).

Theorem (C.)

Up to Borel equivalence, the standard Borel groupoids Mod(L, T )
are exactly the open non-Archimedean Polish groupoids.

Polish groupoid: internal groupoid in Pol (spaces of objects and
morphisms are Polish spaces, groupoid operations are continuous)
Open: product of open sets of morphisms is open
Non-Archimedean: every identity morphism has a neighborhood
basis of open subgroupoids
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Work in progress

Theorem (C.)

Every open Polish groupoid is Borel equivalent to Mod(L, T ) for
some Lω1ω-theory T in the continuous logic for metric structures.

Remains to develop theory of syntactic categories and prove
“algebraic” side of duality theorem for continuous Lω1ω.



Thank you


	Duality as completeness
	Main examples
	Propositional logic
	Stone duality
	Strong completeness for Lω0
	Dual adjunctions
	Interpretations
	The spatial side
	First-order logic
	Syntactic categories
	Ultracategories and pretoposes
	Makkai duality
	Makkai duality
	Other dualities
	Infinitary first-order logic
	Infinitary first-order logic
	Duality for Lω1ω
	Duality for Lω1ω
	Work in progress

