Stone duality for infinitary logic

Ronnie Chen

University of Illinois at Urbana-Champaign

BLAST, May 21, 2019

Duality theorem = strong completeness theorem for a logic.

Duality theorem = strong completeness theorem for a logic.

Duality:

algebra $A \iff$ dual space A^*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $A^* := \text{Hom}(A, K)$ for some fixed K

Duality theorem = strong completeness theorem for a logic.

Duality:

algebra $A \leftrightarrow dual$ space A^*

where $A^* := \text{Hom}(A, K)$ for some fixed K

For a theory \mathcal{T} in a logic,

syntactical algebra $\langle \mathcal{T} \rangle \iff$ space of models $\mathsf{Mod}(\mathcal{T})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Duality theorem = strong completeness theorem for a logic.

Duality:

algebra $A \leftrightarrow dual$ space A^*

where $A^* := \text{Hom}(A, K)$ for some fixed K

For a theory \mathcal{T} in a logic,

syntactical algebra $\langle \mathcal{T} \rangle \iff$ space of models $\mathsf{Mod}(\mathcal{T})$ syntax \iff semantics

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

• propositional logic $\mathcal{L}_{\omega 0}$ (Stone duality)

• first-order logic $\mathcal{L}_{\omega\omega}$ (Makkai duality)

• infinitary first-order logic $\mathcal{L}_{\omega_1\omega}$

 \mathcal{L} : propositional language (set of atomic propositions)

 \mathcal{L} : propositional language (set of atomic propositions)

Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \land, \lor, \neg

 \mathcal{L} : propositional language (set of atomic propositions)

Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \land, \lor, \neg

 \mathcal{T} : $\mathcal{L}_{\omega 0}$ -theory (set of $\mathcal{L}_{\omega 0}$ -formulas)

 \mathcal{L} : propositional language (set of atomic propositions)

Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \land, \lor, \neg

$$\mathcal{T}$$
 : $\mathcal{L}_{\omega 0}$ -theory (set of $\mathcal{L}_{\omega 0}$ -formulas)

Model of \mathcal{T} : $M : \mathcal{L} \to 2 = \{0, 1\}$ s.t. every $\phi \in \mathcal{T} \mapsto 1$ $(M \models \mathcal{T})$ Mod $(\mathcal{L}, \mathcal{T}) := \{$ models of $\mathcal{T}\} \subseteq 2^{\mathcal{L}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \mathcal{L} : propositional language (set of atomic propositions)

Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \land,\lor,\neg

$$\mathcal{T}$$
 : $\mathcal{L}_{\omega 0}$ -theory (set of $\mathcal{L}_{\omega 0}$ -formulas)

 $\begin{array}{l} \mathsf{Model of } \mathcal{T} \colon \mathcal{M} : \mathcal{L} \to 2 = \{0, 1\} \text{ s.t. every } \phi \in \mathcal{T} \mapsto 1 \ (\mathcal{M} \models \mathcal{T}) \\ \mathsf{Mod}(\mathcal{L}, \mathcal{T}) := \{\mathsf{models of } \mathcal{T}\} \subseteq 2^{\mathcal{L}} \end{array}$

Lindenbaum–Tarski algebra $\langle \mathcal{L} \mid \mathcal{T} \rangle := \{\mathcal{L}_{\omega 0}\text{-formulas}\}/\sim \text{where}$

$$\phi \sim \psi \iff \mathcal{T} \vdash \phi \Leftrightarrow \psi$$

= Boolean algebra presented by generators $\mathcal L$, relations $\mathcal T$ (= 1)

 \mathcal{L} : propositional language (set of atomic propositions)

Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \land,\lor,\neg

$$\mathcal{T}$$
 : $\mathcal{L}_{\omega 0}$ -theory (set of $\mathcal{L}_{\omega 0}$ -formulas)

 $\begin{array}{l} \mathsf{Model of } \mathcal{T} \colon \mathcal{M} : \mathcal{L} \to 2 = \{0, 1\} \text{ s.t. every } \phi \in \mathcal{T} \mapsto 1 \ (\mathcal{M} \models \mathcal{T}) \\ \mathsf{Mod}(\mathcal{L}, \mathcal{T}) := \{\mathsf{models of } \mathcal{T}\} \subseteq 2^{\mathcal{L}} \end{array}$

Lindenbaum–Tarski algebra $\langle \mathcal{L} \mid \mathcal{T} \rangle := \{\mathcal{L}_{\omega 0}\text{-formulas}\}/\sim \text{where}$

$$\phi \sim \psi \iff \mathcal{T} \vdash \phi \Leftrightarrow \psi$$

= Boolean algebra presented by generators $\mathcal L$, relations $\mathcal T$ (= 1)

Hence,

$$\mathsf{Mod}(\mathcal{L},\mathcal{T})\cong\mathsf{Bool}(\langle\mathcal{L}\mid\mathcal{T}\rangle,2)$$

(where $C(A, B) := \{ \text{morphisms } A \to B \text{ in category } C \}$)

 \mathcal{L} : propositional language (set of atomic propositions)

Propositional logic $\mathcal{L}_{\omega 0}$: formulas built from \mathcal{L} using finite \land, \lor, \neg

$$\mathcal{T}$$
 : $\mathcal{L}_{\omega 0}$ -theory (set of $\mathcal{L}_{\omega 0}$ -formulas)

 $\begin{array}{l} \mathsf{Model of } \mathcal{T} \colon \mathcal{M} : \mathcal{L} \to 2 = \{0, 1\} \text{ s.t. every } \phi \in \mathcal{T} \mapsto 1 \ (\mathcal{M} \models \mathcal{T}) \\ \mathsf{Mod}(\mathcal{L}, \mathcal{T}) := \{\mathsf{models of } \mathcal{T}\} \subseteq 2^{\mathcal{L}} \end{array}$

Lindenbaum–Tarski algebra $\langle \mathcal{L} \mid \mathcal{T} \rangle := \{\mathcal{L}_{\omega 0}\text{-formulas}\}/\sim \text{where}$

$$\phi \sim \psi \iff \mathcal{T} \vdash \phi \Leftrightarrow \psi$$

= Boolean algebra presented by generators $\mathcal L$, relations $\mathcal T$ (= 1)

Hence,

$$\mathsf{Mod}(\mathcal{L},\mathcal{T}) \cong \mathsf{Bool}(\langle \mathcal{L} \mid \mathcal{T} \rangle, 2) =: \langle \mathcal{L} \mid \mathcal{T} \rangle^*$$

(where $C(A, B) := \{ \text{morphisms } A \to B \text{ in category } C \}$)

2 is a dualizing object, i.e., has two commuting structures:

- ▶ 2 ∈ Bool;
- ▶ 2 ∈ Top (= topological spaces);
- these two structures on 2 commute: \land, \lor, \neg are continuous.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

2 is a dualizing object, i.e., has two commuting structures:

▶ 2 ∈ Bool;

• these two structures on 2 commute: \land, \lor, \neg are continuous.

Hence for $A \in \text{Bool}$, $A^* := \text{Bool}(A, 2) \subseteq 2^A \in \text{Top}$;

$$A^{**} := \mathsf{Top}(A^*, 2) \subseteq 2^{A^*} \in \mathsf{Bool}$$

2 is a dualizing object, i.e., has two commuting structures:

▶ 2 ∈ Bool;

• these two structures on 2 commute: \land, \lor, \neg are continuous.

Hence for $A \in \text{Bool}$, $A^* := \text{Bool}(A, 2) \subseteq 2^A \in \text{Top}$; and we have a canonical evaluation map

$$\eta_{\mathcal{A}}: \mathcal{A} \longrightarrow \mathcal{A}^{**} := \operatorname{Top}(\mathcal{A}^*, 2) \subseteq 2^{\mathcal{A}^*} \in \operatorname{Bool} a \longmapsto (x \mapsto x(a)).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2 is a dualizing object, i.e., has two commuting structures:

▶ 2 ∈ Bool;

• these two structures on 2 commute: \land, \lor, \neg are continuous.

Hence for $A \in \text{Bool}$, $A^* := \text{Bool}(A, 2) \subseteq 2^A \in \text{Top}$; and we have a canonical evaluation map

$$\eta_A : A \longrightarrow A^{**} := \operatorname{Top}(A^*, 2) \subseteq 2^{A^*} \in \operatorname{Bool} a \longmapsto (x \mapsto x(a)).$$

- ロ ト - 4 回 ト - 4 □ - 4

Theorem (Stone duality – algebraic)

For every $A \in \text{Bool}$, $\eta_A : A \to A^{**}$ is an isomorphism.

Strong completeness for $\mathcal{L}_{\omega 0}$

When $A = \langle \mathcal{L} | \mathcal{T} \rangle$ for a propositional $\mathcal{L}_{\omega 0}$ -theory \mathcal{T} , Stone duality becomes:

Theorem (Stone duality – logical)

For every $\mathcal{L}_{\omega 0}$ -theory \mathcal{T} , we have an isomorphism

$$\begin{split} \eta_{\mathcal{T}} : \langle \mathcal{L} \mid \mathcal{T} \rangle &\longrightarrow \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} \cong \mathsf{Mod}(\mathcal{L}, \mathcal{T})^* \cong \mathsf{Clopen}(\mathsf{Mod}(\mathcal{L}, \mathcal{T})) \\ [\phi] &\longmapsto \{ M \in \mathsf{Mod}(\mathcal{L}, \mathcal{T}) \mid M \models \phi \}. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Strong completeness for $\mathcal{L}_{\omega 0}$

When $A = \langle \mathcal{L} | \mathcal{T} \rangle$ for a propositional $\mathcal{L}_{\omega 0}$ -theory \mathcal{T} , Stone duality becomes:

Theorem (Stone duality – logical)

For every $\mathcal{L}_{\omega 0}$ -theory \mathcal{T} , we have an isomorphism

$$\begin{split} \eta_{\mathcal{T}} : \langle \mathcal{L} \mid \mathcal{T} \rangle &\longrightarrow \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} \cong \mathsf{Mod}(\mathcal{L}, \mathcal{T})^* \cong \mathsf{Clopen}(\mathsf{Mod}(\mathcal{L}, \mathcal{T}))\\ [\phi] &\longmapsto \{ M \in \mathsf{Mod}(\mathcal{L}, \mathcal{T}) \mid M \models \phi \}. \end{split}$$

injectivity: for any two L_{ω0}-formulas φ, ψ, if φ ⇔ ψ in all models of T, then T ⊢ φ ⇔ ψ (completeness theorem)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Strong completeness for $\mathcal{L}_{\omega 0}$

When $A = \langle \mathcal{L} | \mathcal{T} \rangle$ for a propositional $\mathcal{L}_{\omega 0}$ -theory \mathcal{T} , Stone duality becomes:

Theorem (Stone duality – logical)

For every $\mathcal{L}_{\omega 0}$ -theory \mathcal{T} , we have an isomorphism

$$\begin{split} \eta_{\mathcal{T}} : \langle \mathcal{L} \mid \mathcal{T} \rangle &\longrightarrow \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} \cong \mathsf{Mod}(\mathcal{L}, \mathcal{T})^* \cong \mathsf{Clopen}(\mathsf{Mod}(\mathcal{L}, \mathcal{T}))\\ [\phi] &\longmapsto \{ M \in \mathsf{Mod}(\mathcal{L}, \mathcal{T}) \mid M \models \phi \}. \end{split}$$

- injectivity: for any two L_{ω0}-formulas φ, ψ, if φ ⇔ ψ in all models of T, then T ⊢ φ ⇔ ψ (completeness theorem)
- surjectivity: any clopen set of models is named by an *L*_{ω0}-formula (definability theorem)

Dual adjunctions

Stone duality is usually phrased in terms of a dual adjunction

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

3

Dual adjunctions

Stone duality is usually phrased in terms of a dual adjunction

The adjunction unit is the evaluation map $\eta_A : A \to \text{Top}(\text{Bool}(A, 2), 2)$, an isomorphism.

Dual adjunctions

Stone duality is usually phrased in terms of a dual adjunction

The adjunction unit is the evaluation map $\eta_A : A \to \text{Top}(\text{Bool}(A, 2), 2)$, an isomorphism.

By a general fact about adjunctions, this is equivalent to:

Theorem (Stone duality – algebraic, II)

The functor Bool(-,2): $Bool \to Top^{op}$ is fully faithful, i.e., a bijection $Bool(A, B) \xrightarrow{\sim} Top(B^*, A^*)$ on each homset.

An interpretation $F : (\mathcal{L}, \mathcal{T}) \to (\mathcal{L}', \mathcal{T}')$ is a syntactic recipe for uniformly turning $M \in Mod(\mathcal{L}', \mathcal{T}') \mapsto F^*(M) \in Mod(\mathcal{L}, \mathcal{T})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An interpretation $F : (\mathcal{L}, \mathcal{T}) \to (\mathcal{L}', \mathcal{T}')$ is a syntactic recipe for uniformly turning $M \in Mod(\mathcal{L}', \mathcal{T}') \mapsto F^*(M) \in Mod(\mathcal{L}, \mathcal{T})$.

Formally, F is a Boolean homomorphism $\langle \mathcal{L} \mid \mathcal{T} \rangle \rightarrow \langle \mathcal{L}' \mid \mathcal{T}' \rangle$, i.e.,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- ▶ for each $P \in \mathcal{L}$, we have an $\mathcal{L}'_{\omega 0}$ -formula F(P);
- ▶ for each $\phi \in \mathcal{T}$, we have $\mathcal{T}' \vdash F(\phi)$.

An interpretation $F : (\mathcal{L}, \mathcal{T}) \to (\mathcal{L}', \mathcal{T}')$ is a syntactic recipe for uniformly turning $M \in Mod(\mathcal{L}', \mathcal{T}') \mapsto F^*(M) \in Mod(\mathcal{L}, \mathcal{T})$.

Formally, F is a Boolean homomorphism $\langle \mathcal{L} \mid \mathcal{T} \rangle \rightarrow \langle \mathcal{L}' \mid \mathcal{T}' \rangle$, i.e.,

- ▶ for each $P \in \mathcal{L}$, we have an $\mathcal{L}'_{\omega 0}$ -formula F(P);
- ▶ for each $\phi \in \mathcal{T}$, we have $\mathcal{T}' \vdash F(\phi)$.

Given $M \in Mod(\mathcal{L}', \mathcal{T}') \cong Bool(\langle \mathcal{L}' \mid \mathcal{T}' \rangle, 2)$,

$$F^*(M) := M \circ F : \langle \mathcal{L} \mid \mathcal{T} \rangle \to 2.$$

In other words, $F^* = \text{Bool}(F, 2) : \langle \mathcal{L}' \mid \mathcal{T}' \rangle^* \to \langle \mathcal{L} \mid \mathcal{T} \rangle^*.$

An interpretation $F : (\mathcal{L}, \mathcal{T}) \to (\mathcal{L}', \mathcal{T}')$ is a syntactic recipe for uniformly turning $M \in Mod(\mathcal{L}', \mathcal{T}') \mapsto F^*(M) \in Mod(\mathcal{L}, \mathcal{T})$.

Formally, F is a Boolean homomorphism $\langle \mathcal{L} \mid \mathcal{T} \rangle \rightarrow \langle \mathcal{L}' \mid \mathcal{T}' \rangle$, i.e.,

- ▶ for each $P \in \mathcal{L}$, we have an $\mathcal{L}'_{\omega 0}$ -formula F(P);
- ▶ for each $\phi \in \mathcal{T}$, we have $\mathcal{T}' \vdash F(\phi)$.

Given $M \in Mod(\mathcal{L}', \mathcal{T}') \cong Bool(\langle \mathcal{L}' \mid \mathcal{T}' \rangle, 2)$,

$$F^*(M) := M \circ F : \langle \mathcal{L} \mid \mathcal{T} \rangle \to 2.$$

In other words, $F^* = \text{Bool}(F, 2) : \langle \mathcal{L}' \mid \mathcal{T}' \rangle^* \to \langle \mathcal{L} \mid \mathcal{T} \rangle^*.$

Theorem (Stone duality – logical, II)

For any two propositional theories $(\mathcal{L}, \mathcal{T}), (\mathcal{L}', \mathcal{T}')$, every continuous map $Mod(\mathcal{L}', \mathcal{T}') \rightarrow Mod(\mathcal{L}, \mathcal{T})$ is induced by a unique interpretation $F : (\mathcal{L}, \mathcal{T}) \rightarrow (\mathcal{L}', \mathcal{T}')$.

The spatial side

Theorem (Stone duality – spatial)

Up to homeomorphism, spaces of the form A^* for $A \in Bool$ (i.e., $Mod(\mathcal{L}, \mathcal{T})$ for propositional theories $(\mathcal{L}, \mathcal{T})$) are exactly the compact Hausdorff zero-dimensional spaces (Stone spaces).

The spatial side

Theorem (Stone duality – spatial)

Up to homeomorphism, spaces of the form A^* for $A \in Bool$ (i.e., $Mod(\mathcal{L}, \mathcal{T})$ for propositional theories $(\mathcal{L}, \mathcal{T})$) are exactly the compact Hausdorff zero-dimensional spaces (Stone spaces).

Corollary (Stone duality – complete)

We have a dual adjoint equivalence of categories

 \mathcal{L} : first-order relational language (set of relation symbols, each with an arity $\in \mathbb{N}$)

 \mathcal{L} : first-order relational language (set of relation symbols, each with an arity $\in \mathbb{N})$

- functions can be replaced by their graphs as usual
- more generally, can consider multi-sorted languages/theories

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal L$: first-order relational language (set of relation symbols, each with an arity $\in \mathbb N)$

- functions can be replaced by their graphs as usual
- more generally, can consider multi-sorted languages/theories

First-order logic $\mathcal{L}_{\omega\omega}$: formulas built from atomic formulas $R(x_1, \ldots, x_n)$ for *n*-ary $R \in \mathcal{L} \cup \{=\}$ using finitary $\land, \lor, \neg, \exists x, \forall x$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal L$: first-order relational language (set of relation symbols, each with an arity $\in \mathbb N)$

- functions can be replaced by their graphs as usual
- more generally, can consider multi-sorted languages/theories

First-order logic $\mathcal{L}_{\omega\omega}$: formulas built from atomic formulas $R(x_1, \ldots, x_n)$ for *n*-ary $R \in \mathcal{L} \cup \{=\}$ using finitary $\land, \lor, \neg, \exists x, \forall x \in \mathcal{L} : \mathcal{L}_{\omega\omega}$ -theory (set of $\mathcal{L}_{\omega\omega}$ -sentences (formulas w/o free vars))

 $\mathcal L$: first-order relational language (set of relation symbols, each with an arity $\in \mathbb N)$

- functions can be replaced by their graphs as usual
- more generally, can consider multi-sorted languages/theories

First-order logic $\mathcal{L}_{\omega\omega}$: formulas built from atomic formulas $R(x_1, \ldots, x_n)$ for *n*-ary $R \in \mathcal{L} \cup \{=\}$ using finitary $\land, \lor, \neg, \exists x, \forall x$ $\mathcal{T} : \mathcal{L}_{\omega\omega}$ -theory (set of $\mathcal{L}_{\omega\omega}$ -sentences (formulas w/o free vars)) $\mathsf{Mod}(\mathcal{L}, \mathcal{T}) := \mathsf{category}$ of (set-based) models

$$\mathcal{M} = (M, \ R^{\mathcal{M}} \subseteq M^n)_{n ext{-ary } R \in \mathcal{L}}$$

of \mathcal{T} and elementary embeddings

The syntactic category $\langle \mathcal{L} \mid \mathcal{T} \rangle$ of \mathcal{T} is the category with

▶ objects: $\mathcal{L}_{\omega\omega}$ -formulas $\alpha(x_1, \ldots, x_n)$ (for any $n \in \mathbb{N}$)

The syntactic category $\langle \mathcal{L} \mid \mathcal{T} \rangle$ of \mathcal{T} is the category with

- ▶ objects: $\mathcal{L}_{\omega\omega}$ -formulas $\alpha(x_1, \ldots, x_n)$ (for any $n \in \mathbb{N}$)
- ► morphisms α(x₁,...,x_m) → β(y₁,...,y_n): *T*-equiv classes [φ] of formulas φ(x₁,...,x_m,y₁,...,y_n) such that

 $\mathcal{T} \vdash "\phi \text{ is the graph of a function } \alpha \to \beta"$

The syntactic category $\langle \mathcal{L} \mid \mathcal{T} \rangle$ of \mathcal{T} is the category with

- ▶ objects: $\mathcal{L}_{\omega\omega}$ -formulas $\alpha(x_1, \ldots, x_n)$ (for any $n \in \mathbb{N}$)
- ▶ morphisms $\alpha(x_1, \ldots, x_m) \rightarrow \beta(y_1, \ldots, y_n)$: \mathcal{T} -equiv classes $[\phi]$ of formulas $\phi(x_1, \ldots, x_m, y_1, \ldots, y_n)$ such that

 $\mathcal{T} \vdash "\phi \text{ is the graph of a function } \alpha \to \beta"$

- $\langle \mathcal{L} \mid \mathcal{T} \rangle$ is the Boolean coherent category, i.e., category with
 - ▶ finite limits and certain finite colimits, encoding \land, \lor, \exists ,
 - obeying certain compatibility conditions (that hold in Set),
 - ▶ such that all subobjects have complements (giving \neg, \forall),

The syntactic category $\langle \mathcal{L} \mid \mathcal{T} \rangle$ of \mathcal{T} is the category with

- ▶ objects: $\mathcal{L}_{\omega\omega}$ -formulas $\alpha(x_1, \ldots, x_n)$ (for any $n \in \mathbb{N}$)
- ► morphisms α(x₁,..., x_m) → β(y₁,..., y_n): *T*-equiv classes [φ] of formulas φ(x₁,..., x_m, y₁,..., y_n) such that

 $\mathcal{T} \vdash "\phi \text{ is the graph of a function } \alpha \to \beta"$

- $\langle \mathcal{L} \mid \mathcal{T} \rangle$ is the Boolean coherent category, i.e., category with
 - ▶ finite limits and certain finite colimits, encoding \land, \lor, \exists ,
 - obeying certain compatibility conditions (that hold in Set),
 - ► such that all subobjects have complements (giving ¬, ∀),

"presented" by generators ${\mathcal L}$ and relations ${\mathcal T},$ so that

$$\mathsf{Mod}(\mathcal{L},\mathcal{T})\cong\mathsf{BoolCoh}(\langle\mathcal{L}\mid\mathcal{T}\rangle,\mathsf{Set})=:\langle\mathcal{L}\mid\mathcal{T}\rangle^*$$

 $(\mathsf{BoolCoh}(\mathsf{A},\mathsf{B}):=\mathsf{category} \text{ of Boolean coherent functors }\mathsf{A}\to\mathsf{B})$

Ultracategories and pretoposes

Makkai (1980s) defined a notion of ultracategory, capturing the algebraic behavior of ultraproducts in Set.

Theorem (Łos)

The ultracategory structure on Set commutes with the Boolean coherent category structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ultracategories and pretoposes

Makkai (1980s) defined a notion of ultracategory, capturing the algebraic behavior of ultraproducts in Set.

Theorem (Los)

The ultracategory structure on Set commutes with the Boolean coherent category structure.

Hence, for a Boolean coherent category A, $A^* := BoolCoh(A, Set)$ is an ultracategory; and we have an evaluation functor

$$\eta_{\mathsf{A}}: \mathsf{A} \longrightarrow \mathsf{A}^{**} := \mathsf{Ultra}(\mathsf{BoolCoh}(\mathsf{A},\mathsf{Set}),\mathsf{Set}) \in \mathsf{BoolCoh}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ultracategories and pretoposes

Makkai (1980s) defined a notion of ultracategory, capturing the algebraic behavior of ultraproducts in Set.

Theorem (Los)

The ultracategory structure on Set commutes with the Boolean coherent category structure.

Hence, for a Boolean coherent category A, $A^* := BoolCoh(A, Set)$ is an ultracategory; and we have an evaluation functor

 $\eta_{\mathsf{A}}: \mathsf{A} \longrightarrow \mathsf{A}^{**} := \mathsf{Ultra}(\mathsf{BoolCoh}(\mathsf{A}, \mathsf{Set}), \mathsf{Set}) \in \mathsf{BoolCoh}.$

However, Set is a special Boolean coherent category, a pretopos:

- it has finite disjoint unions (well-behaved coproducts);
- it has quotients by equiv rels (well-behaved coequalizers).

Every A \in BoolCoh has a pretopos completion \overline{A} .

Theorem (Makkai 1987)

For every $A \in BoolCoh$, $\eta_A : A \to A^{**}$ is the canonical embedding into its pretopos completion (i.e., $A^{**} \cong \overline{A}$). In particular, if A is already a pretopos, then $\eta_A : A \cong A^{**}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Makkai 1987)

For every $A \in BoolCoh$, $\eta_A : A \to A^{**}$ is the canonical embedding into its pretopos completion (i.e., $A^{**} \cong \overline{A}$). In particular, if A is already a pretopos, then $\eta_A : A \cong A^{**}$.

For A = $\langle \mathcal{L} \mid \mathcal{T} \rangle$, η_A is the functor

$$\eta_{\mathsf{A}} : \langle \mathcal{L} \mid \mathcal{T} \rangle \longrightarrow \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} \cong \mathsf{Ultra}(\mathsf{Mod}(\mathcal{L}, \mathcal{T}), \mathsf{Set})$$

$$\alpha(x_1, \dots, x_n) \longmapsto (\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^n).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Makkai 1987)

For every $A \in BoolCoh$, $\eta_A : A \to A^{**}$ is the canonical embedding into its pretopos completion (i.e., $A^{**} \cong \overline{A}$). In particular, if A is already a pretopos, then $\eta_A : A \cong A^{**}$.

For $A = \langle \mathcal{L} \mid \mathcal{T} \rangle$, η_A is the functor

$$\eta_{\mathsf{A}} : \langle \mathcal{L} \mid \mathcal{T} \rangle \longrightarrow \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} \cong \mathsf{UItra}(\mathsf{Mod}(\mathcal{L}, \mathcal{T}), \mathsf{Set})$$
$$\alpha(x_1, \dots, x_n) \longmapsto (\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^n).$$

conservativity (inj on subobj lattices): for any two *L*_{ωω}-formulas α, β w/ same free vars, if α^M = β^M for all *M* ∈ Mod(*L*, *T*), then *T* ⊢ α ⇔ β (completeness)

Theorem (Makkai 1987)

For every $A \in BoolCoh$, $\eta_A : A \to A^{**}$ is the canonical embedding into its pretopos completion (i.e., $A^{**} \cong \overline{A}$). In particular, if A is already a pretopos, then $\eta_A : A \cong A^{**}$.

For A = $\langle \mathcal{L} \mid \mathcal{T} \rangle$, η_A is the functor

$$\eta_{\mathsf{A}} : \langle \mathcal{L} \mid \mathcal{T} \rangle \longrightarrow \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} \cong \mathsf{UItra}(\mathsf{Mod}(\mathcal{L}, \mathcal{T}), \mathsf{Set})$$
$$\alpha(x_1, \dots, x_n) \longmapsto (\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^n).$$

- conservativity (inj on subobj lattices): for any two $\mathcal{L}_{\omega\omega}$ -formulas α, β w/ same free vars, if $\alpha^{\mathcal{M}} = \beta^{\mathcal{M}}$ for all $\mathcal{M} \in \mathsf{Mod}(\mathcal{L}, \mathcal{T})$, then $\mathcal{T} \vdash \alpha \Leftrightarrow \beta$ (completeness)
- full on subobjects (surj on subobj lattices): any assignment
 M ∈ Mod(L, T) → S_M ⊆ Mⁿ preserving elem embeddings and ultraproducts is S_M := α^M for some α (definability)
 (cont'd)

Theorem (Makkai 1987)

For every $A \in BoolCoh$, $\eta_A : A \to A^{**}$ is the canonical embedding into its pretopos completion (i.e., $A^{**} \cong \overline{A}$). In particular, if A is already a pretopos, then $\eta_A : A \cong A^{**}$.

For A = $\langle \mathcal{L} \mid \mathcal{T} \rangle$, η_A is the functor

$$\eta_{\mathsf{A}} : \langle \mathcal{L} \mid \mathcal{T} \rangle \longrightarrow \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} \cong \mathsf{UItra}(\mathsf{Mod}(\mathcal{L}, \mathcal{T}), \mathsf{Set})$$
$$\alpha(x_1, \dots, x_n) \longmapsto (\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^n).$$

(cont'd)

► essentially surjective: any *M* ∈ Mod(*L*, *T*) → *S_M* ∈ Set functorial in *M* and preserving ultraproducts is defined by an imaginary sort *A* ∈ ⟨*L* | *T*⟩ (strong definability)

Recall: $\overline{\langle \mathcal{L} \mid \mathcal{T} \rangle}$ = completion of syntactic category $\langle \mathcal{L} \mid \mathcal{T} \rangle$ under finite disjoint unions and quotients by equiv rels.

So, an imaginary sort for \mathcal{T} is a quotient of a finite disjoint union of formulas (definable sets) by a definable equiv rel.

Makkai duality is given by a 2-categorical adjunction $(\eta_A : A \rightarrow A^{**}$ is adjunction unit), hence may be restated as

Corollary

The 2-functor $A \mapsto A^*$: BoolCoh \rightarrow Ultra^{op} is fully faithful. In other words, for any two first-order theories $(\mathcal{L}, \mathcal{T}), (\mathcal{L}', \mathcal{T}')$, every ultraproduct-preserving functor $Mod(\mathcal{L}', \mathcal{T}') \rightarrow Mod(\mathcal{L}, \mathcal{T})$ is induced by an interpretation $F : \overline{\langle \mathcal{L} \mid \mathcal{T} \rangle} \rightarrow \overline{\langle \mathcal{L}' \mid \mathcal{T}' \rangle}$.

Makkai duality is given by a 2-categorical adjunction ($\eta_A : A \to A^{**}$ is adjunction unit), hence may be restated as

Corollary

The 2-functor $A \mapsto A^*$: BoolCoh \rightarrow Ultra^{op} is fully faithful. In other words, for any two first-order theories $(\mathcal{L}, \mathcal{T}), (\mathcal{L}', \mathcal{T}')$, every ultraproduct-preserving functor $Mod(\mathcal{L}', \mathcal{T}') \rightarrow Mod(\mathcal{L}, \mathcal{T})$ is induced by an interpretation $F : \overline{\langle \mathcal{L} \mid \mathcal{T} \rangle} \rightarrow \overline{\langle \mathcal{L}' \mid \mathcal{T}' \rangle}$.

Unlike with Stone duality, the "spatial side" of Makkai duality seems to be open:

Question

Is there a nice characterization of the ultracategories of the form $\mathsf{Mod}(\mathcal{L},\mathcal{T})?$

- Stone–Priestley duality for distributive lattices ~>> strong completeness for positive propositional logic
- Hofmann–Mislove–Stralka duality for Horn propositional logic
- ► Gabriel–Ulmer (1971) duality for Cartesian first-order logic
- Adámek–Lawvere–Rosický (2001) duality for algebraic theories

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Barr–Makkai (1973, 1990) duality for positive primitive (or regular) first-order logic

- Stone–Priestley duality for distributive lattices ~>> strong completeness for positive propositional logic
- Hofmann–Mislove–Stralka duality for Horn propositional logic
- ► Gabriel–Ulmer (1971) duality for Cartesian first-order logic
- Adámek–Lawvere–Rosický (2001) duality for algebraic theories
- Barr–Makkai (1973, 1990) duality for positive primitive (or regular) first-order logic

Countably infinitary propositional logic $\mathcal{L}_{\omega_1 0}$: extension of $\mathcal{L}_{\omega 0}$ with countable Λ, \bigvee (Lindenbaum–Tarski algebras: Boolean σ -algebras)

- Stone–Priestley duality for distributive lattices ~>> strong completeness for positive propositional logic
- Hofmann–Mislove–Stralka duality for Horn propositional logic
- ► Gabriel–Ulmer (1971) duality for Cartesian first-order logic
- Adámek–Lawvere–Rosický (2001) duality for algebraic theories
- Barr–Makkai (1973, 1990) duality for positive primitive (or regular) first-order logic

Countably infinitary propositional logic $\mathcal{L}_{\omega_1 0}$: extension of $\mathcal{L}_{\omega 0}$ with countable Λ, \bigvee (Lindenbaum–Tarski algebras: Boolean σ -algebras)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (ess. Loomis-Sikorski)

 $\sigma \mathsf{Bool}_{\omega_1} := \{ \text{countably presented Boolean } \sigma\text{-algebras} \}$ $\cong \mathsf{Borel}^{\mathsf{op}} := \{ \text{standard Borel spaces} \}^{\mathsf{op}}.$

- Stone–Priestley duality for distributive lattices ~>> strong completeness for positive propositional logic
- Hofmann–Mislove–Stralka duality for Horn propositional logic
- ► Gabriel–Ulmer (1971) duality for Cartesian first-order logic
- Adámek–Lawvere–Rosický (2001) duality for algebraic theories
- Barr–Makkai (1973, 1990) duality for positive primitive (or regular) first-order logic

Countably infinitary propositional logic $\mathcal{L}_{\omega_1 0}$: extension of $\mathcal{L}_{\omega 0}$ with countable Λ, \bigvee (Lindenbaum–Tarski algebras: Boolean σ -algebras)

Theorem (ess. Loomis-Sikorski)

 $\sigma \mathsf{Bool}_{\omega_1} := \{ \text{countably presented Boolean } \sigma\text{-algebras} \}$ $\cong \mathsf{Borel}^{\mathsf{op}} := \{ \text{standard Borel spaces} \}^{\mathsf{op}}.$

This gives a strong completeness theorem for *countable* $\mathcal{L}_{\omega_1 0}$ -theories.

Countably infinitary first-order logic $\mathcal{L}_{\omega_1\omega}$: extension of finitary $\mathcal{L}_{\omega\omega}$ with countable \bigwedge, \bigvee

Countably infinitary first-order logic $\mathcal{L}_{\omega_1\omega}$: extension of finitary $\mathcal{L}_{\omega\omega}$ with countable \bigwedge, \bigvee

Syntactic category $\langle \mathcal{L} | \mathcal{T} \rangle$ defined as for $\mathcal{L}_{\omega\omega}$ (formulas, definable functions), is the Boolean σ -coherent category:

- Finite limits and some countable colimits, encoding \land, \bigvee, \exists ,
- obeying all compatibility conditions that hold in Set,
- ▶ such that all subobjects have complements (giving \neg, \forall, \land), presented by \mathcal{L}, \mathcal{T} .

Countably infinitary first-order logic $\mathcal{L}_{\omega_1\omega}$: extension of finitary $\mathcal{L}_{\omega\omega}$ with countable \bigwedge, \bigvee

Syntactic category $\langle \mathcal{L} | \mathcal{T} \rangle$ defined as for $\mathcal{L}_{\omega\omega}$ (formulas, definable functions), is the Boolean σ -coherent category:

- Finite limits and some countable colimits, encoding \land, \bigvee, \exists ,
- obeying all compatibility conditions that hold in Set,
- ▶ such that all subobjects have complements (giving \neg, \forall, \land), presented by \mathcal{L}, \mathcal{T} .

Boolean σ -pretopos: Boolean σ -coherent category with countable disjoint unions and quotients by equivalence relations

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Countably infinitary first-order logic $\mathcal{L}_{\omega_1\omega}$: extension of finitary $\mathcal{L}_{\omega\omega}$ with countable \bigwedge, \bigvee

Syntactic category $\langle \mathcal{L} | \mathcal{T} \rangle$ defined as for $\mathcal{L}_{\omega\omega}$ (formulas, definable functions), is the Boolean σ -coherent category:

- Finite limits and some countable colimits, encoding \land, \bigvee, \exists ,
- obeying all compatibility conditions that hold in Set,
- ▶ such that all subobjects have complements (giving \neg, \forall, \land), presented by \mathcal{L}, \mathcal{T} .

Boolean σ -pretopos: Boolean σ -coherent category with countable disjoint unions and quotients by equivalence relations

Every $A \in Bool\sigma Coh$ has a σ -pretopos completion \overline{A}

 \mathcal{T} : countable $\mathcal{L}_{\omega_1\omega}$ -theory (in countable language \mathcal{L})

 $\mathsf{Mod}(\mathcal{L}, \mathcal{T}) :=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0, 1, 2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms

 \mathcal{T} : *countable* $\mathcal{L}_{\omega_1\omega}$ -theory (in *countable* language \mathcal{L})

 $\mathsf{Mod}(\mathcal{L}, \mathcal{T}) :=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0, 1, 2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms

 $\cong \mathsf{Bool}\sigma\mathsf{Coh}(\langle \mathcal{L} \mid \mathcal{T} \rangle, \mathsf{Count})$

where Count := $\{0, 1, 2, ..., \mathbb{N}\}$: both a Boolean σ -pretopos and a standard Borel groupoid, and these structures commute

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \mathcal{T} : *countable* $\mathcal{L}_{\omega_1\omega}$ -theory (in *countable* language \mathcal{L})

 $\mathsf{Mod}(\mathcal{L}, \mathcal{T}) :=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0, 1, 2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms

 $\cong \mathsf{Bool}\sigma\mathsf{Coh}(\langle \mathcal{L} \mid \mathcal{T} \rangle, \mathsf{Count}) =: \langle \mathcal{L} \mid \mathcal{T} \rangle^*$

where $Count := \{0, 1, 2, ..., \mathbb{N}\}$: both a Boolean σ -pretopos and a standard Borel groupoid, and these structures commute

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \mathcal{T} : *countable* $\mathcal{L}_{\omega_1\omega}$ -theory (in *countable* language \mathcal{L})

 $\mathsf{Mod}(\mathcal{L}, \mathcal{T}) :=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0, 1, 2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms

 $\cong \mathsf{Bool}\sigma\mathsf{Coh}(\langle \mathcal{L} \mid \mathcal{T} \rangle, \mathsf{Count}) =: \langle \mathcal{L} \mid \mathcal{T} \rangle^*$

where Count := $\{0, 1, 2, ..., \mathbb{N}\}$: both a Boolean σ -pretopos and a standard Borel groupoid, and these structures commute

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\langle \mathcal{L} \mid \mathcal{T} \rangle^{**} := \mathsf{BorGpd}(\mathsf{Mod}(\mathcal{L}, \mathcal{T}), \mathsf{Count}) \in \mathsf{Bool}\sigma\mathsf{PreTop}$

 \mathcal{T} : *countable* $\mathcal{L}_{\omega_1\omega}$ -theory (in *countable* language \mathcal{L})

 $\mathsf{Mod}(\mathcal{L}, \mathcal{T}) :=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0, 1, 2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms

 $\cong \mathsf{Bool}\sigma\mathsf{Coh}(\langle \mathcal{L} \mid \mathcal{T} \rangle, \mathsf{Count}) =: \langle \mathcal{L} \mid \mathcal{T} \rangle^*$

where Count := $\{0, 1, 2, ..., \mathbb{N}\}$: both a Boolean σ -pretopos and a standard Borel groupoid, and these structures commute

 $\begin{aligned} \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} &:= \mathsf{BorGpd}(\mathsf{Mod}(\mathcal{L},\mathcal{T}),\mathsf{Count}) \in \mathsf{Bool}\sigma\mathsf{PreTop} \\ &= \mathsf{``Borel} \cong \mathsf{-equivariant} \text{ assignments of a countable set} \\ & \mathsf{to each} \ \mathcal{M} \in \mathsf{Mod}(\mathcal{L},\mathcal{T})\mathsf{''} \end{aligned}$

 \mathcal{T} : countable $\mathcal{L}_{\omega_1\omega}$ -theory (in countable language \mathcal{L})

 $Mod(\mathcal{L}, \mathcal{T}) :=$ standard Borel groupoid of countable models of \mathcal{T} on one of the canonical countable sets $0, 1, 2(:=\{0,1\}), \ldots, \mathbb{N}$, together with isomorphisms

 $\cong \mathsf{Bool}\sigma\mathsf{Coh}(\langle \mathcal{L} \mid \mathcal{T} \rangle, \mathsf{Count}) =: \langle \mathcal{L} \mid \mathcal{T} \rangle^*$

where Count := $\{0, 1, 2, ..., \mathbb{N}\}$: both a Boolean σ -pretopos and a standard Borel groupoid, and these structures commute

$$\langle \mathcal{L} \mid \mathcal{T} \rangle^{**} := \operatorname{BorGpd}(\operatorname{Mod}(\mathcal{L}, \mathcal{T}), \operatorname{Count}) \in \operatorname{Bool}\sigma\operatorname{PreTop}$$

= "Borel \approx-equivariant assignments of a countable set
to each $\mathcal{M} \in \operatorname{Mod}(\mathcal{L}, \mathcal{T})$ "

 \cong {fiberwise countable Borel actions $Mod(\mathcal{L}, \mathcal{T}) \frown X$ }

Theorem (C.)

For every countable $\mathcal{L}_{\omega_1\omega}$ -theory \mathcal{T} , the evaluation functor

$$\eta_{\mathcal{T}} : \langle \mathcal{L} \mid \mathcal{T} \rangle \longrightarrow \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} \cong \mathsf{BorGpd}(\mathsf{Mod}(\mathcal{L}, \mathcal{T}), \mathsf{Count})$$
$$\alpha(x_1, \dots, x_n) \longmapsto (\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^n)$$

is the canonical embedding into the σ -pretopos completion $\overline{\langle \mathcal{L} \mid \mathcal{T} \rangle}$.

• conservative: completeness theorem for $\mathcal{L}_{\omega_1\omega}$ (Lopez-Escobar)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (C.)

For every countable $\mathcal{L}_{\omega_1\omega}$ -theory \mathcal{T} , the evaluation functor

$$\eta_{\mathcal{T}} : \langle \mathcal{L} \mid \mathcal{T} \rangle \longrightarrow \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} \cong \mathsf{BorGpd}(\mathsf{Mod}(\mathcal{L}, \mathcal{T}), \mathsf{Count})$$
$$\alpha(x_1, \dots, x_n) \longmapsto (\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^n)$$

is the canonical embedding into the σ -pretopos completion $\langle \mathcal{L} \mid \mathcal{T} \rangle$.

- conservative: completeness theorem for $\mathcal{L}_{\omega_1\omega}$ (Lopez-Escobar)
- Full on subobjects: L_{ω1ω}-definability theorem for ≃-invariant Borel sets (Lopez-Escobar)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (C.)

For every countable $\mathcal{L}_{\omega_1\omega}$ -theory \mathcal{T} , the evaluation functor

 $\eta_{\mathcal{T}} : \langle \mathcal{L} \mid \mathcal{T} \rangle \longrightarrow \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} \cong \mathsf{BorGpd}(\mathsf{Mod}(\mathcal{L}, \mathcal{T}), \mathsf{Count})$ $\alpha(x_1, \dots, x_n) \longmapsto (\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^n)$

is the canonical embedding into the σ -pretopos completion $\langle \mathcal{L} \mid \mathcal{T} \rangle$.

- conservative: completeness theorem for $\mathcal{L}_{\omega_1\omega}$ (Lopez-Escobar)
- Full on subobjects: L_{ω1ω}-definability theorem for ≅-invariant Borel sets (Lopez-Escobar)
- ► essentially surjective: every Borel functor Mod(L, T) → Count is defined by an L_{ω1ω}-imaginary sort (quotient of a countable union of L_{ω1ω}-formulas by a definable equiv rel)

Theorem (C.)

For every countable $\mathcal{L}_{\omega_1\omega}$ -theory \mathcal{T} , the evaluation functor

 $\eta_{\mathcal{T}} : \langle \mathcal{L} \mid \mathcal{T} \rangle \longrightarrow \langle \mathcal{L} \mid \mathcal{T} \rangle^{**} \cong \mathsf{BorGpd}(\mathsf{Mod}(\mathcal{L}, \mathcal{T}), \mathsf{Count})$ $\alpha(x_1, \dots, x_n) \longmapsto (\mathcal{M} \mapsto \alpha^{\mathcal{M}} \subseteq M^n)$

is the canonical embedding into the σ -pretopos completion $\langle \mathcal{L} \mid \mathcal{T} \rangle$.

- conservative: completeness theorem for $\mathcal{L}_{\omega_1\omega}$ (Lopez-Escobar)
- Full on subobjects: L_{ω1ω}-definability theorem for ≃-invariant Borel sets (Lopez-Escobar)
- ► essentially surjective: every Borel functor Mod(L, T) → Count is defined by an L_{ω1ω}-imaginary sort (quotient of a countable union of L_{ω1ω}-formulas by a definable equiv rel)

Proof uses ideas from invariant DST and topos theory.

Corollary (C.)

For any two countable $\mathcal{L}_{\omega_1\omega}$ -theories $(\mathcal{L}, \mathcal{T}), (\mathcal{L}', \mathcal{T}')$, every Borel functor $Mod(\mathcal{L}', \mathcal{T}') \rightarrow Mod(\mathcal{L}, \mathcal{T})$ is induced by an $\mathcal{L}_{\omega_1\omega}$ -interpretation $F : \overline{\langle \mathcal{L} \mid \mathcal{T} \rangle} \rightarrow \overline{\langle \mathcal{L}', \mathcal{T}' \rangle}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corollary (C.)

For any two countable $\mathcal{L}_{\omega_1\omega}$ -theories $(\mathcal{L}, \mathcal{T}), (\mathcal{L}', \mathcal{T}')$, every Borel functor $Mod(\mathcal{L}', \mathcal{T}') \rightarrow Mod(\mathcal{L}, \mathcal{T})$ is induced by an $\mathcal{L}_{\omega_1\omega}$ -interpretation $F : \overline{\langle \mathcal{L} \mid \mathcal{T} \rangle} \rightarrow \overline{\langle \mathcal{L}', \mathcal{T}' \rangle}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For ω -categorical theories this was proved by (Harrison-Trainor-Miller-Montalbán 2016).

Corollary (C.)

For any two countable $\mathcal{L}_{\omega_1\omega}$ -theories $(\mathcal{L}, \mathcal{T}), (\mathcal{L}', \mathcal{T}')$, every Borel functor $Mod(\mathcal{L}', \mathcal{T}') \rightarrow Mod(\mathcal{L}, \mathcal{T})$ is induced by an $\mathcal{L}_{\omega_1\omega}$ -interpretation $F : \overline{\langle \mathcal{L} \mid \mathcal{T} \rangle} \rightarrow \overline{\langle \mathcal{L}', \mathcal{T}' \rangle}$.

For ω -categorical theories this was proved by (Harrison-Trainor-Miller-Montalbán 2016).

Theorem (C.)

Up to Borel equivalence, the standard Borel groupoids $Mod(\mathcal{L}, \mathcal{T})$ are exactly the open non-Archimedean Polish groupoids.

Polish groupoid: internal groupoid in Pol (spaces of objects and morphisms are Polish spaces, groupoid operations are continuous) Open: product of open sets of morphisms is open Non-Archimedean: every identity morphism has a neighborhood basis of open subgroupoids

Theorem (C.)

Every open Polish groupoid is Borel equivalent to $Mod(\mathcal{L}, \mathcal{T})$ for some $\mathcal{L}_{\omega_1\omega}$ -theory \mathcal{T} in the continuous logic for metric structures.

Remains to develop theory of syntactic categories and prove "algebraic" side of duality theorem for continuous $\mathcal{L}_{\omega_1\omega}$.

Thank you

(日) (월) (문) (문) (문)