Defining *n* Choose *k* Algebras to Generate \mathbb{M}_m Representers

Thomas Cavin

Department of Mathematics Missouri University of Science and Technology

BLAST Conference, May 2019 Advisors: Matt Insall and David E. Grow Support: Missouri S&T Chancellor's Distinguished Fellowship Additional thanks to: Philip Thiem and Roger Bunn

Table of Contents

Motivation and Notation

- 2 Classification of \mathbb{M}_m Representers
- 3 Generating *n* Choose *k* Algebras
- 4 Congruences of n Choose k Algebras

5 Conclusion

Finite Lattice Representation Problem

Open Problem

Is every finite lattice isomorphic to the congruence lattice of some finite algebra?

Palfy and Pudlak proved that the following are equivalent:

- Any finite lattice is isomorphic to the congruence lattice of a finite algebra.
- Any finite lattice is isomorphic to the congruence lattice of a finite, transitive G-set.

Our goal is to use finite transitive G-sets to represent the \mathbb{M}_m lattices, e.g.

- $\mathcal{A} = (\mathcal{A}, \mathcal{G})$ denotes a transitive \mathcal{G} -set.
- lpha,eta, heta generally denote congruences of $\mathcal A$ which are not Δ or abla
- If S is a set, $\mathcal{P}(S)$ denotes the power set, and $\mathcal{P}_k(S) = \{E \in \mathcal{P}(S) : |E| = k\}.$
- If X is a set and $Y \subseteq \mathcal{P}(X)$, then $X \times_{\in} Y = \{(x, y) \in X \times Y : x \in y\}$
- Δ and ∇ denote minimum and maximum congruences on an algebra, respectively.
- If $x \in A$, $\theta \in Con(\mathcal{A})$, $[x]_{\theta} = \{y \in A : (x, y) \in \theta\}$. Pronounced "x mod θ "
- If $a \in A$, then $G_a = \{f \in G : f(a) = a\}$. Called the "stabilizer of a in G".

Definition

If $\alpha, \beta \in \text{Con}(\mathcal{A})$ with $\alpha \wedge \beta = \Delta$, then \mathcal{A} can be represented as a **dot diagram (wrt** α **and** β) by plotting each $([x]_{\alpha}, [x]_{\beta})$ for $x \in \mathcal{A}$ as Cartesian coordinates.

Each column of the dot diagram is an α class, and each row is a β class. Each $f \in G$ can be decomposed into a column permutation $f^{\mathcal{A}/\alpha}$ and a row permutation $f^{\mathcal{A}/\beta}$.

Example Dot Diagrams: Dihedral Group D_5

Different choices of $\alpha, \beta \in Con(\mathcal{A})$ can give different dot diagrams for the same algebra. Consider D_5 acting on itself on the left, an \mathbb{M}_6 representer.

- r is a rotation
- f is a reflection

α = Θ(e, r⁴f)
β = Θ(e, f)

•
$$\theta = \Theta(e, r)$$

Definition

For a row $[x]_{\beta}$, its **shape** $[[x]_{\beta}]_{\alpha}$ is the set of columns it intersects.

 $\left[[x]_{\beta} \right]_{\alpha} = \left\{ [y]_{\alpha} : y \in [x]_{\beta} \right\}$

Table of Contents

Motivation and Notation

- 2 Classification of \mathbb{M}_m Representers
 - 3 Generating *n* Choose *k* Algebras
 - Congruences of n Choose k Algebras

5 Conclusion

Row shapes of \mathbb{M}_m representers

Observation

$\beta\subseteq\beta\alpha\subseteq\alpha\vee\beta$

If $Con(A, G) \cong \mathbb{M}_m$, then β is maximal, so there are 2 cases to consider:

Row shapes of \mathbb{M}_m representers

Observation

$$\beta \subseteq \beta \alpha \subseteq \alpha \vee \beta$$

If $Con(A, G) \cong \mathbb{M}_m$, then β is maximal, so there are 2 cases to consider:

Row shapes of \mathbb{M}_m representers

Observation

 $\beta \subseteq \beta \alpha \subseteq \alpha \vee \beta$

If $Con(A, G) \cong \mathbb{M}_m$, then β is maximal, so there are 2 cases to consider:

Each row can be identified with its shape, so \mathcal{A} is embeddable in $(\mathcal{A}/\alpha) \times (\mathcal{A}/\beta)/\alpha$. The underlying set of this embedding is

$$(A/\alpha) \times_{\in} (A/\beta)/\alpha$$

Note that each $f \in G$ is fully determined by $f^{A/\alpha}$.

Definition

A transitive *G*-set A is an *n* choose *k* algebra $\binom{n}{k}$ algebra) if there exists a transitive *G*-set $(\underline{A}, \underline{G})$ with $|\underline{A}| = n$ and a transitive *G*-set $(\overline{A}, \overline{G})$ with $\overline{A} \subseteq \mathcal{P}_k(\underline{A})$ such that there is a non-trivial subdirect embedding of A with underlying set $\underline{A} \times_{\overline{A}} \overline{A}$.

$$\mathcal{A}$$
 is an $\binom{n}{k}$ algebra with $n = |\mathcal{A}/\alpha|$ and $k = |\mathcal{A}|/|\mathcal{A}/\beta|$.

Case 2: $\beta \alpha = \nabla$

In case 2, each $f \in G$ requires both $f^{A/\alpha}$ and $f^{A/\beta}$ to be specified, so case 1 is preferred.

Question

When is Case 2 unavoidable? i.e. when is $\beta \alpha = \nabla$ for all distinct $\alpha, \beta \in Con(\mathcal{A}) \setminus \{\Delta, \nabla\}$?

Case 2: $\beta \alpha = \nabla$

In case 2, each $f \in G$ requires both $f^{A/\alpha}$ and $f^{A/\beta}$ to be specified, so case 1 is preferred.

Question

When is Case 2 unavoidable? i.e. when is $\beta \alpha = \nabla$ for all distinct $\alpha, \beta \in Con(\mathcal{A}) \setminus \{\Delta, \nabla\}$?

Lemma

If $Con(\mathcal{A}) \cong \mathbb{M}_m$ for $m \ge 3$ and $\beta \alpha = \nabla$ for all distinct $\alpha, \beta \in Con(\mathcal{A}) \setminus \{\Delta, \nabla\}$, then

$$|A/\theta| = \sqrt{|A|}$$

for all $\theta \in \mathsf{Con}(\mathcal{A}) \setminus \{\Delta, \nabla\}$.

Thus, if every dot diagram representing ${\cal A}$ is a rectangle, then they must all be squares.

Thomas Cavin (MST)

Theorem

If \mathcal{A} is a transitive G-set and $Con(\mathcal{A}) \cong \mathbb{M}_m$ for $m \ge 3$, then one of the following holds:

- **1** For all $\theta \in \text{Con}(\mathcal{A}) \setminus \{\Delta, \nabla\}$, $|\mathcal{A}/\theta| = \sqrt{|\mathcal{A}|}$.
- **2** \mathcal{A} is an *n* choose *k* algebra for some $n \ge 3$ and $2 \le k \le n-1$.

Motivation and Notation

2 Classification of \mathbb{M}_m Representers

3 Generating n Choose k Algebras

Congruences of n Choose k Algebras

5 Conclusion

In general, an *n* choose *k* algebra \mathcal{A} will be identified with its subdirect embedding in $\underline{A} \times_{\in} \overline{A}$. *G*, *G*, and \overline{G} will be identified, as they are all different actions of the same group.

- \underline{A} is a club with *n* members.
- **2** \overline{A} is a collection of committees with k members each.
- A is the set of all teams that can be formed by choosing one member of a committee to be captain.
- Solution of committee x̄. Define a similar projection x̃ := x̄ \ {x̄}
- So Each $f \in G$ is a permutation on the club, which acts pointwise on teams in A.

Example of an n choose k Algebra

Definition

The *n* choose *k* algebra \mathcal{A} with $\overline{\mathcal{A}} = \mathcal{P}_k(\mathcal{A})$ and $G = \text{Sym}(\underline{\mathcal{A}})$ is called the **symmetric** *n* choose *k* algebra (Sym_k^n) . If $G = \text{Alt}(\underline{\mathcal{A}})$ instead, then \mathcal{A} is called the **alternating** *n* choose *k* algebra (Alt_k^n) .

Every $\binom{n}{k}$ algebra is a subreduct of the symmetric $\binom{n}{k}$ algebra.

15 / 28

The structure of an *n* choose *k* algebra depends only on the collection $\overline{A} \subseteq \mathcal{P}_k(\underline{A})$ and the group *G* acting transitively on <u>A</u>.

Question

What are necessary and sufficient conditions on \overline{A} and G defining an $\binom{n}{k}$ algebra?

The structure of an *n* choose *k* algebra depends only on the collection $\overline{A} \subseteq \mathcal{P}_k(\underline{A})$ and the group *G* acting transitively on \underline{A} .

Question

What are necessary and sufficient conditions on \overline{A} and G defining an $\binom{n}{k}$ algebra?

Conditions on \overline{A} and G

- **2** For each $E \in \overline{A}$, G_E acts transitively on E.
- **③** \overline{A} is closed under *G*, and *G* acts transitively on \overline{A} .

Methods

- Choose a transitive group G on n elements, then find a compatible $\overline{A} \subseteq \mathcal{P}_k(\underline{A})$.
- **2** Choose a *G*-set A and show that either A is an *n* choose *k* algebra or A/θ is an *n* choose *k* algebra for some $\theta \in \text{Con}(A)$.

A possible 3rd method is to choose some \overline{A} , then find a compatible group G. This will be the subject of future research.

Since \overline{A} is closed under G and G acts transitively on \overline{A} , for any $E \in \overline{A}$,

 $\overline{A} = G(E)$

Thus, it suffices to find a single $E \in \overline{A}$ such that conditions 1 and 2 are satisfied.

Theorem

Let $|\underline{A}| = n$, G be a group acting transitively on \underline{A} , and let $E \in \mathcal{P}_k(\underline{A})$ such that the following hold:

- G_E acts transitively on E
- **2** For all $a \in E$, $G_a \not\subseteq G_E$

Then $(\underline{A} \times_{\in} G(E), G)$ is an *n* choose *k* algebra.

Choosing *E* to be the orbit of a permutation $f \in G$ ensures condition 1 is satisfied.

Theorem

Let \mathcal{A} be a transitive G-set, let $\alpha, \beta \in \text{Con}(\mathcal{A}, \mathcal{G}) \setminus \{\Delta, \nabla\}$ such that $\beta \alpha \neq \alpha \lor \beta$ and $\alpha \land \beta = \Delta$. Then $\mathcal{A}/(\alpha \land \beta \alpha)$ is an n choose k algebra, where

$$n = |A/\alpha| \tag{1}$$

$$k = \frac{|A|}{|A/\beta|} \tag{2}$$

Corollary

If $\beta \alpha = \beta$ and $\alpha \wedge \beta = \Delta$, then \mathcal{A} is an *n* choose *k* algebra

Modding out $\alpha \wedge \beta \alpha$ identifies rows with the same shape. If $\beta \alpha = \alpha \lor \beta$, then each column only intersects one row shape, so the factor algebra is not an *n* choose *k* algebra.

Motivation and Notation

- 2 Classification of \mathbb{M}_m Representers
- 3 Generating *n* Choose *k* Algebras
- 4 Congruences of *n* Choose *k* Algebras

5 Conclusion

Canonical Congruences, Part 1

The maps $x \mapsto \underline{x}, x \mapsto \overline{x}$, and $x \mapsto \tilde{x}$ are homomorphisms, so their kernels are congruences.

Definition

Define congruences $\theta_1, \ \theta_2, \ \text{and} \ \theta_3$ by

$$\theta_1 = \{(x, y) \in A^2 : \underline{x} = \underline{y}\}$$

$$\theta_2 = \{(x, y) \in A^2 : \overline{x} = \overline{y}\}$$

$$\theta_3 = \{(x, y) \in A^2 : \tilde{x} = \tilde{y}\}$$

Canonical Congruences, Part 2

Identifying $E \in \mathcal{P}(A)$ with E^c gives 3 additional congruences.

Definition

Define congruences ρ_1 , ρ_2 , and ρ_3 by

$$\begin{array}{rcl} \rho_1 &=& \{(x,y) \in A^2 : (\tilde{x} = \overline{y}^c) \land (\tilde{y} = \overline{x}^c)\} \cup \Delta \\ \rho_2 &=& \{(x,y) \in A^2 : \overline{x} \in \{\overline{y}, \overline{y}^c\}\} \\ \rho_3 &=& \{(x,y) \in A^2 : \tilde{x} \in \{\tilde{y}, \tilde{y}^c\}\} \end{array}$$

Note that $\rho_1 \subseteq \theta_1$, but $\theta_2 \subseteq \rho_2$ and $\theta_3 \subseteq \rho_3$.

These congruences are redundant unless certain cardinality conditions hold

General Case	Necessary Condition	Necessary Condition for Exception		
• $\rho_1 = \Delta$	n = 2k - 1			
• $\rho_2 = \theta_2$	n = 2k			
• $\rho_3 = \theta_3$	n = 2k - 2			
Thomas Cavin (MST)	Defining <i>n</i> Choose <i>k</i> Algebras to Generate \mathbb{M}	BLAST 2019	22 / 28	

ρ Congruence Dot Diagrams

Thomas Cavin (MST)

Defining *n* Choose *k* Algebras to Generate \mathbb{M}

Congruence Lattices of Symmetric and Alternating n choose k Algebras

Theorem

Let $n \ge 4$ and $2 \le k \le n-2$. If $n \notin \{2k, 2k-1, 2k-2\}$ then Con $(Sym_k^n) \cong \mathbb{M}_3$ with atoms $\theta_1, \theta_2, \theta_3$. The remaining cases all give isomorphic congruence lattices, described on the next slide.

Theorem

If $n \ge 4$ and $2 \le k \le n - 2$, then $Con(Alt_k^n) = Con(Sym_k^n)$, except when (n, k) = (4, 2) or (n, k) = (5, 3).

Symmetric *n* choose *k* Congruence Lattices

Table of Contents

Motivation and Notation

- 2 Classification of \mathbb{M}_m Representers
- 3 Generating *n* Choose *k* Algebras
- Congruences of n Choose k Algebras

5 Conclusion

Conclusion

Goal

Find transitive *G*-sets \mathcal{A} such that $Con(\mathcal{A}) \cong \mathbb{M}_m$

Results

- Showed that all transitive G-set M_m representers are either n choose k algebras or have uniform congruence class size
- Developed methods of generating *n* choose *k* algebras.
- Examined congruences of *n* choose *k* algebras, especially the symmetric and alternating *n* choose *k* algebras.

Future Goals:

- Construct an *n* choose *k* algebra that represents a new \mathbb{M}_m .
- Develop method of generating *n* choose *k* algebras by starting with \overline{A} .
- Investigate \mathbb{M}_m representers with uniform congruence class size.
- Consider generalizations of *n* choose *k* algebras.

Thomas Cavin (MST)

Defining *n* Choose *k* Algebras to Generate \mathbb{M}

Acknowledgements

Thanks to:

- My advisors, Matt Insall and David Grow
- The Chancellor's Distinguished Fellowship
- Colorado University
- Philip Thiem and Roger Bunn
- and you!

