Defining n Choose k Algebras to Generate \mathbb{M}_{m} Representers

Thomas Cavin

Department of Mathematics Missouri University of Science and Technology

BLAST Conference, May 2019

Advisors: Matt Insall and David E. Grow
Support: Missouri S\&T Chancellor's Distinguished Fellowship Additional thanks to: Philip Thiem and Roger Bunn

Table of Contents

(1) Motivation and Notation
(2) Classification of \mathbb{M}_{m} Representers
(3) Generating n Choose k Algebras

4 Congruences of n Choose k Algebras
(5) Conclusion

Finite Lattice Representation Problem

Open Problem

Is every finite lattice isomorphic to the congruence lattice of some finite algebra?

Palfy and Pudlak proved that the following are equivalent:
(1) Any finite lattice is isomorphic to the congruence lattice of a finite algebra.
(2) Any finite lattice is isomorphic to the congruence lattice of a finite, transitive G-set.
Our goal is to use finite transitive G-sets to represent the \mathbb{M}_{m} lattices, e.g.

General Notation

- $\mathcal{A}=(A, G)$ denotes a transitive G-set.
- α, β, θ generally denote congruences of \mathcal{A} which are not Δ or ∇
- If S is a set, $\mathcal{P}(S)$ denotes the power set, and $\mathcal{P}_{k}(S)=\{E \in \mathcal{P}(S):|E|=k\}$.
- If X is a set and $Y \subseteq \mathcal{P}(X)$, then $X \times_{\in} Y=\{(x, y) \in X \times Y: x \in y\}$
- Δ and ∇ denote minimum and maximum congruences on an algebra, respectively.
- If $x \in A, \theta \in \operatorname{Con}(\mathcal{A}),[x]_{\theta}=\{y \in A:(x, y) \in \theta\}$. Pronounced " x $\bmod \theta^{\prime \prime}$
- If $a \in A$, then $G_{a}=\{f \in G: f(a)=a\}$. Called the "stabilizer of a in G".

Dot Diagrams

Definition

If $\alpha, \beta \in \operatorname{Con}(\mathcal{A})$ with $\alpha \wedge \beta=\Delta$, then \mathcal{A} can be represented as a dot diagram (wrt α and β) by plotting each $\left([x]_{\alpha},[x]_{\beta}\right)$ for $x \in A$ as Cartesian coordinates.

Each column of the dot diagram is an α class, and each row is a β class. Each $f \in G$ can be decomposed into a column permutation $f^{\mathcal{A} / \alpha}$ and a row permutation $f \mathcal{A} / \beta$.

Example Dot Diagrams: Dihedral Group D_{5}

Different choices of $\alpha, \beta \in \operatorname{Con}(\mathcal{A})$ can give different dot diagrams for the same algebra. Consider D_{5} acting on itself on the left, an \mathbb{M}_{6} representer.

- r is a rotation
- $\alpha=\Theta\left(e, r^{4} f\right)$
- f is a reflection
- $\beta=\Theta(e, f)$
- $\theta=\Theta(e, r)$

Row Shape

Definition

For a row $[x]_{\beta}$, its shape $\left[[x]_{\beta}\right]_{\alpha}$ is the set of columns it intersects.

$$
\left[[x]_{\beta}\right]_{\alpha}=\left\{[y]_{\alpha}: y \in[x]_{\beta}\right\}
$$

Definition

$$
\begin{gathered}
(A / \beta) / \alpha=\left\{\left[[x]_{\beta}\right]_{\alpha}: x \in A\right\} \\
\beta \alpha=\operatorname{ker}\left(x \mapsto\left[[x]_{\beta}\right]_{\alpha}\right)
\end{gathered}
$$

$\beta \alpha \in \operatorname{Con}(\mathcal{A})$ equates x and y if they are in rows with the same shape.

Table of Contents

(1) Motivation and Notation
(2) Classification of \mathbb{M}_{m} Representers
(3) Generating n Choose k Algebras

4 Congruences of n Choose k Algebras
(5) Conclusion

Row shapes of \mathbb{M}_{m} representers

Observation

$$
\beta \subseteq \beta \alpha \subseteq \alpha \vee \beta
$$

If $\operatorname{Con}(A, G) \cong \mathbb{M}_{m}$, then β is maximal, so there are 2 cases to consider:

Row shapes of \mathbb{M}_{m} representers

Observation

$$
\beta \subseteq \beta \alpha \subseteq \alpha \vee \beta
$$

If $\operatorname{Con}(A, G) \cong \mathbb{M}_{m}$, then β is maximal, so there are 2 cases to consider:

Figure: Case $1 D_{5}$ Diagram
$\beta \alpha=\beta$, so each row has a unique shape.

Row shapes of \mathbb{M}_{m} representers

Observation

$$
\beta \subseteq \beta \alpha \subseteq \alpha \vee \beta
$$

If $\operatorname{Con}(A, G) \cong \mathbb{M}_{m}$, then β is maximal, so there are 2 cases to consider:

Figure: Case $1 D_{5}$ Diagram

-

Figure: Case $2 D_{5}$ Diagram
$\beta \alpha=\nabla$, so all rows have the same shape, A / β. i.e. all rows intersect all columns.

Case 1: $\beta \alpha=\beta$

Each row can be identified with its shape, so \mathcal{A} is embeddable in $(\mathcal{A} / \alpha) \times(\mathcal{A} / \beta) / \alpha$. The underlying set of this embedding is

$$
(A / \alpha) \times \in(A / \beta) / \alpha
$$

Note that each $f \in G$ is fully determined by $f^{A / \alpha}$.

Definition

A transitive G-set \mathcal{A} is an n choose k algebra ($\binom{n}{k}$ algebra) if there exists a transitive G-set $(\underline{A}, \underline{G})$ with $|\underline{A}|=n$ and a transitive G-set (\bar{A}, \bar{G}) with $\bar{A} \subseteq \mathcal{P}_{k}(\underline{A})$ such that there is a non-trivial subdirect embedding of \mathcal{A} with underlying set $\underline{A} \times \in \bar{A}$.
\mathcal{A} is an $\binom{n}{k}$ algebra with $n=|A / \alpha|$ and $k=|A| /|A / \beta|$.

Case 2: $\beta \alpha=\nabla$

In case 2 , each $f \in G$ requires both $f \mathcal{A} / \alpha$ and $f \mathcal{A} / \beta$ to be specified, so case 1 is preferred.

Question

When is Case 2 unavoidable? i.e. when is $\beta \alpha=\nabla$ for all distinct $\alpha, \beta \in \operatorname{Con}(\mathcal{A}) \backslash\{\Delta, \nabla\} ?$

Case 2: $\beta \alpha=\nabla$

In case 2 , each $f \in G$ requires both $f \mathcal{A} / \alpha$ and $f \mathcal{A} / \beta$ to be specified, so case 1 is preferred.

Question

When is Case 2 unavoidable? i.e. when is $\beta \alpha=\nabla$ for all distinct $\alpha, \beta \in \operatorname{Con}(\mathcal{A}) \backslash\{\Delta, \nabla\}$?

Lemma

If $\operatorname{Con}(\mathcal{A}) \cong \mathbb{M}_{m}$ for $m \geq 3$ and $\beta \alpha=\nabla$ for all distinct $\alpha, \beta \in \operatorname{Con}(\mathcal{A}) \backslash\{\Delta, \nabla\}$, then

$$
|A / \theta|=\sqrt{|A|}
$$

for all $\theta \in \operatorname{Con}(\mathcal{A}) \backslash\{\Delta, \nabla\}$.
Thus, if every dot diagram representing \mathcal{A} is a rectangle, then they must all be squares.

Classification of \mathbb{M}_{m} representers

Theorem

If \mathcal{A} is a transitive G-set and $\operatorname{Con}(\mathcal{A}) \cong \mathbb{M}_{m}$ for $m \geq 3$, then one of the following holds:
(1) For all $\theta \in \operatorname{Con}(\mathcal{A}) \backslash\{\Delta, \nabla\},|A / \theta|=\sqrt{|A|}$.
(2) \mathcal{A} is an n choose k algebra for some $n \geq 3$ and $2 \leq k \leq n-1$.

Table of Contents

(1) Motivation and Notation
(2) Classification of \mathbb{M}_{m} Representers
(3) Generating n Choose k Algebras

4 Congruences of n Choose k Algebras
(5) Conclusion

Description of n Choose k algebras

In general, an n choose k algebra \mathcal{A} will be identified with its subdirect embedding in $\underline{A} \times_{\in} \bar{A} . G, \underline{G}$, and \bar{G} will be identified, as they are all different actions of the same group.
(1) \underline{A} is a club with n members.
(2) \bar{A} is a collection of committees with k members each.
(3) A is the set of all teams that can be formed by choosing one member of a committee to be captain.
(9) $x=(\underline{x}, \bar{x})$ denotes the team formed by choosing \underline{x} to be the captain of committee \bar{x}. Define a similar projection $\tilde{x}:=\bar{x} \backslash\{\underline{x}\}$
(6) Each $f \in G$ is a permutation on the club, which acts pointwise on teams in A.

Example of an n choose k Algebra

Definition

The n choose k algebra \mathcal{A} with $\bar{A}=\mathcal{P}_{k}(A)$ and $G=\operatorname{Sym}(\underline{A})$ is called the symmetric n choose k algebra ($\operatorname{Sym}_{k}^{n}$). If $G=\operatorname{Alt}(\underline{A})$ instead, then \mathcal{A} is called the alternating n choose k algebra ($\mathbf{A l t}_{k}^{n}$).

Every $\binom{n}{k}$ algebra is a subreduct of the symmetric $\binom{n}{k}$ algebra.

Properties of n choose k algebras

The structure of an n choose k algebra depends only on the collection $\bar{A} \subseteq \mathcal{P}_{k}(\underline{A})$ and the group G acting transitively on \underline{A}.

Question

What are necessary and sufficient conditions on \bar{A} and G defining an $\binom{n}{k}$ algebra?

Properties of n choose k algebras

The structure of an n choose k algebra depends only on the collection $\bar{A} \subseteq \mathcal{P}_{k}(\underline{A})$ and the group G acting transitively on \underline{A}.

Question

What are necessary and sufficient conditions on \bar{A} and G defining an $\binom{n}{k}$ algebra?

Conditions on \bar{A} and G

(1) $\forall a, b \in \underline{A},|\{E \in \bar{A}: a \in E\}|=|\{E \in \bar{A}: b \in E\}| \geq 2$
(2) For each $E \in \bar{A}, G_{E}$ acts transitively on E.

- \bar{A} is closed under G, and G acts transitively on \bar{A}.

General Methods for Obtaining n Choose k Algebras

Methods

(1) Choose a transitive group G on n elements, then find a compatible $\bar{A} \subseteq \mathcal{P}_{k}(\underline{A})$.
(2) Choose a G-set \mathcal{A} and show that either \mathcal{A} is an n choose k algebra or \mathcal{A} / θ is an n choose k algebra for some $\theta \in \operatorname{Con}(\mathcal{A})$.

A possible 3rd method is to choose some \bar{A}, then find a compatible group G. This will be the subject of future research.

Starting with G

Since \bar{A} is closed under G and G acts transitively on \bar{A}, for any $E \in \bar{A}$,

$$
\bar{A}=G(E)
$$

Thus, it suffices to find a single $E \in \bar{A}$ such that conditions 1 and 2 are satisfied.

Theorem

Let $|\underline{A}|=n, G$ be a group acting transitively on \underline{A}, and let $E \in \mathcal{P}_{k}(\underline{A})$ such that the following hold:
(1) G_{E} acts transitively on E
(2) For all $a \in E, G a \nsubseteq G_{E}$

Then $(\underline{A} \times \in G(E), G)$ is an n choose k algebra.
Choosing E to be the orbit of a permutation $f \in G$ ensures condition 1 is satisfied.

n choose k algebras as Factor Algebras

Theorem

Let \mathcal{A} be a transitive G-set, let $\alpha, \beta \in \operatorname{Con}(A, G) \backslash\{\Delta, \nabla\}$ such that $\beta \alpha \neq \alpha \vee \beta$ and $\alpha \wedge \beta=\Delta$. Then $A /(\alpha \wedge \beta \alpha)$ is an n choose k algebra, where

$$
\begin{align*}
n & =|A / \alpha| \tag{1}\\
k & =\frac{|A|}{|A / \beta|} \tag{2}
\end{align*}
$$

Corollary

If $\beta \alpha=\beta$ and $\alpha \wedge \beta=\Delta$, then \mathcal{A} is an n choose k algebra
Modding out $\alpha \wedge \beta \alpha$ identifies rows with the same shape. If $\beta \alpha=\alpha \vee \beta$, then each column only intersects one row shape, so the factor algebra is not an n choose k algebra.

Table of Contents

(1) Motivation and Notation
(2) Classification of \mathbb{M}_{m} Representers
(3) Generating n Choose k Algebras

4 Congruences of n Choose k Algebras

Canonical Congruences, Part 1

The maps $x \mapsto \underline{x}, x \mapsto \bar{x}$, and $x \mapsto \tilde{x}$ are homomorphisms, so their kernels are congruences.

Definition

Define congruences θ_{1}, θ_{2}, and θ_{3} by

$$
\begin{aligned}
& \theta_{1}=\left\{(x, y) \in A^{2}: \underline{x}=\underline{y}\right\} \\
& \theta_{2}=\left\{(x, y) \in A^{2}: \bar{x}=\bar{y}\right\} \\
& \theta_{3}=\left\{(x, y) \in A^{2}: \tilde{x}=\tilde{y}\right\}
\end{aligned}
$$

Canonical Congruences, Part 2

Identifying $E \in \mathcal{P}(\underline{A})$ with E^{c} gives 3 additional congruences.

Definition

Define congruences ρ_{1}, ρ_{2}, and ρ_{3} by

$$
\begin{aligned}
\rho_{1} & =\left\{(x, y) \in A^{2}:\left(\tilde{x}=\bar{y}^{c}\right) \wedge\left(\tilde{y}=\bar{x}^{c}\right)\right\} \cup \Delta \\
\rho_{2} & =\left\{(x, y) \in A^{2}: \bar{x} \in\left\{\bar{y}, \bar{y}^{c}\right\}\right\} \\
\rho_{3} & =\left\{(x, y) \in A^{2}: \tilde{x} \in\left\{\tilde{y}, \tilde{y}^{c}\right\}\right\}
\end{aligned}
$$

Note that $\rho_{1} \subseteq \theta_{1}$, but $\theta_{2} \subseteq \rho_{2}$ and $\theta_{3} \subseteq \rho_{3}$.
These congruences are redundant unless certain cardinality conditions hold

General Case

- $\rho_{1}=\Delta$

$$
\text { - } \rho_{2}=\theta_{2}
$$

$$
\text { - } \rho_{3}=\theta_{3}
$$

$$
\begin{aligned}
& n=2 k-1 \\
& n=2 k \\
& n=2 k-2
\end{aligned}
$$

ρ Congruence Dot Diagrams

Congruence Lattices of Symmetric and Alternating n

 choose k Algebras
Abstract

Theorem Let $n \geq 4$ and $2 \leq k \leq n-2$. If $n \notin\{2 k, 2 k-1,2 k-2\}$ then $\operatorname{Con}\left(\operatorname{Sym}_{k}^{n}\right) \cong \mathbb{M}_{3}$ with atoms $\theta_{1}, \theta_{2}, \theta_{3}$. The remaining cases all give isomorphic congruence lattices, described on the next slide.

Theorem

If $n \geq 4$ and $2 \leq k \leq n-2$, then $\operatorname{Con}\left(\operatorname{Alt}_{k}^{n}\right)=\operatorname{Con}\left(\operatorname{Sym}_{k}^{n}\right)$, except when $(n, k)=(4,2)$ or $(n, k)=(5,3)$.

Symmetric n choose k Congruence Lattices

$$
n \notin\{2 k, 2 k-1,2 k-2\}
$$

Table of Contents

(1) Motivation and Notation
(2) Classification of \mathbb{M}_{m} Representers
(3) Generating n Choose k Algebras

4 Congruences of n Choose k Algebras
(5) Conclusion

Conclusion

Goal

Find transitive G-sets \mathcal{A} such that $\operatorname{Con}(\mathcal{A}) \cong \mathbb{M}_{m}$

Results

- Showed that all transitive G-set \mathbb{M}_{m} representers are either n choose k algebras or have uniform congruence class size
- Developed methods of generating n choose k algebras.
- Examined congruences of n choose k algebras, especially the symmetric and alternating n choose k algebras.

Future Goals:

- Construct an n choose k algebra that represents a new \mathbb{M}_{m}.
- Develop method of generating n choose k algebras by starting with \bar{A}.
- Investigate \mathbb{M}_{m} representers with uniform congruence class size.
- Consider generalizations of n choose k algebras.

Acknowledgements

Thanks to:

- My advisors, Matt Insall and David Grow
- The Chancellor's Distinguished Fellowship
- Colorado University
- Philip Thiem and Roger Bunn
- and you!

