Seven questions about ω^{\ast}

Will Brian

University of North Carolina at Charlotte

BLAST, 2019 University of Colorado Boulder

(D) (A) (A) (A)

臣

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

• • 3 • •

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

The Stone-Čech compactification of ω , denoted $\beta \omega$, is the space of all ultrafilters on ω .

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

The Stone-Čech compactification of ω , denoted $\beta \omega$, is the space of all ultrafilters on ω . Equivalently, it is the Stone space of the Boolean algebra $\mathcal{P}(\omega)$.

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

The Stone-Čech compactification of ω , denoted $\beta \omega$, is the space of all ultrafilters on ω . Equivalently, it is the Stone space of the Boolean algebra $\mathcal{P}(\omega)$.

 $\beta\omega$ is the "largest" compactification of ω :

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

The Stone-Čech compactification of ω , denoted $\beta \omega$, is the space of all ultrafilters on ω . Equivalently, it is the Stone space of the Boolean algebra $\mathcal{P}(\omega)$.

 $\beta\omega$ is the "largest" compactification of ω : i.e., if $\gamma\omega$ is any other compactification of ω , then there is a continuous surjection $\pi: \beta\omega \to \gamma\omega$ that fixes ω .

• • = • • = •

 $\beta\omega$ is the unique compactification of ω with the following extension property:

• every function mapping ω into a compact Hausdorff space extends continuously to $\beta\omega$.

 $\beta\omega$ is the unique compactification of ω with the following extension property:

• every function mapping ω into a compact Hausdorff space extends continuously to $\beta\omega$.

The image of some $u \in \beta \omega$ in this extension is often denoted by $u - \lim_{n \in \omega} f(n).$

 $\beta\omega$ is the unique compactification of ω with the following extension property:

• every function mapping ω into a compact Hausdorff space extends continuously to $\beta\omega$.

The image of some $u \in \beta \omega$ in this extension is often denoted by $u - \lim_{n \in \omega} f(n).$

The fact that $\beta\omega$ is the largest compactification of ω follows from the extension property.

The space ω^*

The space of all non-principal ultrafilters on ω , known as the *Stone-Čech remainder* of ω , is denoted

$$\omega^* = \beta \omega \setminus \omega.$$

It is the Stone space of the Boolean algebra $\mathcal{P}(\omega)/\text{fin}$.

• • E • •

The space ω^*

The space of all non-principal ultrafilters on ω , known as the *Stone-Čech remainder* of ω , is denoted

$$\omega^* = \beta \omega \setminus \omega.$$

It is the Stone space of the Boolean algebra $\mathcal{P}(\omega)/_{\mathrm{fin}}$.

Theorem (Parovičenko, 1963)

Every compact Hausdorff space of weight $\leq \aleph_1$ is a continuous image of ω^* .

The space ω^*

The space of all non-principal ultrafilters on ω , known as the *Stone-Čech remainder* of ω , is denoted

$$\omega^* = \beta \omega \setminus \omega.$$

It is the Stone space of the Boolean algebra $\mathcal{P}(\omega)/_{\mathrm{fin}}$.

Theorem (Parovičenko, 1963)

Every compact Hausdorff space of weight $\leq \aleph_1$ is a continuous image of ω^* .

Corollary

Assuming the Continuum Hypothesis (CH), ω^* is a universal compact Hausdorff space of weight $\leq \aleph_1$; i.e., it is such a space, and it has every other such space as a continuous image.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< E >

Question 1: Efimov's problem

Does every infinite compact Hausdorff space contain either a nontrivial convergent sequence, or else a copy of ω^* ?

▲ □ ► < □ ► </p>

Question 1: Efimov's problem

Does every infinite compact Hausdorff space contain either a nontrivial convergent sequence, or else a copy of ω^* ?

An *Efimov space* is defined to be an infinite compact Hausdorff space containing neither a non-trivial convergent sequence nor a copy of ω^* , should such a space exist.

Question 1: Efimov's problem

Does every infinite compact Hausdorff space contain either a nontrivial convergent sequence, or else a copy of ω^* ?

An *Efimov space* is defined to be an infinite compact Hausdorff space containing neither a non-trivial convergent sequence nor a copy of ω^* , should such a space exist.

• It is consistent that Efimov spaces do exist.

Question 1: Efimov's problem

Does every infinite compact Hausdorff space contain either a nontrivial convergent sequence, or else a copy of ω^* ?

An *Efimov space* is defined to be an infinite compact Hausdorff space containing neither a non-trivial convergent sequence nor a copy of ω^* , should such a space exist.

- It is consistent that Efimov spaces do exist.
- Assuming CH there is, for each n ∈ N, a compact Hausdorff space having only n-dimensional infinite closed subspaces.
 Such spaces are Efimov, because converging sequences and ω* are both 0-dimensional.

Question 1: Efimov's problem

Does every infinite compact Hausdorff space contain either a nontrivial convergent sequence, or else a copy of ω^* ?

An *Efimov space* is defined to be an infinite compact Hausdorff space containing neither a non-trivial convergent sequence nor a copy of ω^* , should such a space exist.

- It is consistent that Efimov spaces do exist.
- Assuming CH there is, for each n ∈ N, a compact Hausdorff space having only n-dimensional infinite closed subspaces.
 Such spaces are Efimov, because converging sequences and ω* are both 0-dimensional.
- How small can an Efimov space be? Recently a consistent example was found with weight < the dominating number 0.

Question 2: Gillman's problem

Is $\omega^* \setminus \{u\}$ non-normal for every $u \in \omega^*$?

・ロト ・回ト ・ヨト ・ヨト

Question 2: Gillman's problem

Is $\omega^* \setminus \{u\}$ non-normal for every $u \in \omega^*$?

• Consistently, yes: it follows from CH that $\omega^* \setminus \{u\}$ is non-normal for every $u \in \omega^*$.

イロト イポト イヨト イヨト

Question 2: Gillman's problem

Is $\omega^* \setminus \{u\}$ non-normal for every $u \in \omega^*$?

- Consistently, yes: it follows from CH that $\omega^* \setminus \{u\}$ is non-normal for every $u \in \omega^*$.
- It is known (without invoking any extra set-theoretic hypotheses) that ω* \ {u} is non-normal for at least some u ∈ ω*.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Question 2: Gillman's problem

Is $\omega^* \setminus \{u\}$ non-normal for every $u \in \omega^*$?

- Consistently, yes: it follows from CH that $\omega^* \setminus \{u\}$ is non-normal for every $u \in \omega^*$.
- It is known (without invoking any extra set-theoretic hypotheses) that ω^{*} \ {u} is non-normal for at least some u ∈ ω^{*}.
- For example, this is true if u is a minimal point in the dynamical system $\sigma: \omega^* \to \omega^*$, where σ denotes the self-homeomorphism of ω^* known as the *shift map*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The *shift map* σ on $\beta \omega$ is the unique continuous extension of the successor map $n \mapsto n+1$ on ω .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

The *shift map* σ on $\beta \omega$ is the unique continuous extension of the successor map $n \mapsto n+1$ on ω .

A (1) > A (2) > A

The *shift map* σ on $\beta \omega$ is the unique continuous extension of the successor map $n \mapsto n+1$ on ω .

A (2) > (

The *shift map* σ on $\beta \omega$ is the unique continuous extension of the successor map $n \mapsto n+1$ on ω .

A (1) > A (2) > A

∃ >

The *shift map* σ on $\beta \omega$ is the unique continuous extension of the successor map $n \mapsto n+1$ on ω .

Equivalently, if $A \subseteq \omega$ then for every $u \in \beta \omega$ we have

 $A \in u \quad \Leftrightarrow \quad A+1 \in \sigma(u).$

The *shift map* σ on $\beta \omega$ is the unique continuous extension of the successor map $n \mapsto n+1$ on ω .

Equivalently, if $A \subseteq \omega$ then for every $u \in \beta \omega$ we have

 $A \in u \quad \Leftrightarrow \quad A+1 \in \sigma(u).$

The shift map restricts to a self-homeomorphism of ω^* .

The *shift map* σ on $\beta \omega$ is the unique continuous extension of the successor map $n \mapsto n+1$ on ω .

Equivalently, if $A \subseteq \omega$ then for every $u \in \beta \omega$ we have

 $A \in u \qquad \Leftrightarrow \qquad A+1 \in \sigma(u).$

The shift map restricts to a self-homeomorphism of $\omega^{\ast}.$

• The shift map is the starting point for the entire theory of algebra in ω^* , which has far-reaching consequences in Ramsey theory and Diophantine approximation.

dynamical systems

By a *dynamical system* I mean a homeomorphism from a compact Hausdorff space to itself.

dynamical systems

By a *dynamical system* I mean a homeomorphism from a compact Hausdorff space to itself.

If $f:X \to X$ and $g:Y \to Y$ are dynamical systems, then

A quotient map (a.k.a. factor map) from f to g is a continuous function φ : X → Y that sends the action of f on X to the action of g on Y, in the sense that φ ∘ f = g ∘ φ. In other words, the following diagram commutes.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

dynamical systems

By a *dynamical system* I mean a homeomorphism from a compact Hausdorff space to itself.

If $f:X \to X$ and $g:Y \to Y$ are dynamical systems, then

A quotient map (a.k.a. factor map) from f to g is a continuous function φ : X → Y that sends the action of f on X to the action of g on Y, in the sense that φ ∘ f = g ∘ φ. In other words, the following diagram commutes.

• If, furthermore, ϕ is a homeomorphism, then such a map is called an *isomorphism* from f to g.

・ロト ・回ト ・ヨト・・

 ω^{*} and the shift map The space of self-homeomorphisms of ω^{*}

Omega-limit sets

Given a dynamical system $f : X \to X$ and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n < \omega} \overline{\{f^m(x) : m \ge n\}}$$

 ω^{*} and the shift map The space of self-homeomorphisms of ω^{*}

Omega-limit sets

Given a dynamical system $f : X \to X$ and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

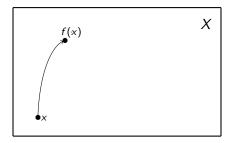
$$\omega_f(x) = \bigcap_{n < \omega} \overline{\{f^m(x) : m \ge n\}}$$

 ω^{*} and the shift map The space of self-homeomorphisms of ω^{*}

Omega-limit sets

Given a dynamical system $f : X \to X$ and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n < \omega} \overline{\{f^m(x) : m \ge n\}}$$

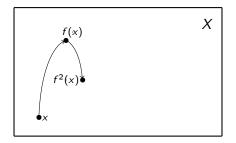


< 回 ト < 三 ト <

Omega-limit sets

Given a dynamical system $f : X \to X$ and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n < \omega} \overline{\{f^m(x) : m \ge n\}}$$

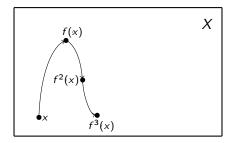


< 回 ト < 三 ト <

Omega-limit sets

Given a dynamical system $f : X \to X$ and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n < \omega} \overline{\{f^m(x) : m \ge n\}}$$

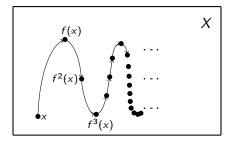


< 🗇 > < 🖻 >

Omega-limit sets

Given a dynamical system $f : X \to X$ and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

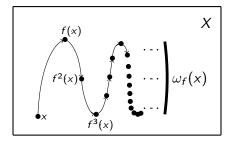
$$\omega_f(x) = \bigcap_{n < \omega} \overline{\{f^m(x) : m \ge n\}}$$



Omega-limit sets

Given a dynamical system $f : X \to X$ and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n < \omega} \overline{\{f^m(x) : m \ge n\}}$$



Abstract omega-limit sets

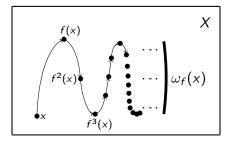
An *abstract omega-limit set* is a dynamical system that is isomorphic to an omega-limit set.

A (2) > (

Abstract omega-limit sets

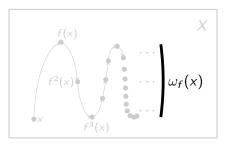
An *abstract omega-limit set* is a dynamical system that is isomorphic to an omega-limit set.

An omega-limit set



Abstract omega-limit sets

An *abstract omega-limit set* is a dynamical system that is isomorphic to an omega-limit set.



An abstract omega-limit set

The shift map $\sigma:\omega^*\to\omega^*$ is a $\mathit{universal}$ abstract $\omega\text{-limit}$ set.

Theorem

A dynamical system is an abstract omega-limit set if and only if it is a quotient of the shift map.

< 🗇 🕨 🖌 🚍 🕨

The shift map $\sigma:\omega^*\to\omega^*$ is a $\mathit{universal}$ abstract $\omega\text{-limit}$ set.

Theorem

A dynamical system is an abstract omega-limit set if and only if it is a quotient of the shift map.

Proof sketch for the "only if" direction.

Suppose $f : X \to X$ is a dynamical system, and let $x \in X$.

The shift map $\sigma:\omega^*\to\omega^*$ is a $\mathit{universal}$ abstract $\omega\text{-limit}$ set.

Theorem

A dynamical system is an abstract omega-limit set if and only if it is a quotient of the shift map.

Proof sketch for the "only if" direction.

Suppose $f : X \to X$ is a dynamical system, and let $x \in X$. The function $n \mapsto f^n(x)$ maps ω onto the orbit of X.

The shift map $\sigma:\omega^*\to\omega^*$ is a $\mathit{universal}$ abstract $\omega\text{-limit}$ set.

Theorem

A dynamical system is an abstract omega-limit set if and only if it is a quotient of the shift map.

Proof sketch for the "only if" direction.

Suppose $f : X \to X$ is a dynamical system, and let $x \in X$. The function $n \mapsto f^n(x)$ maps ω onto the orbit of X.

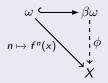
The shift map $\sigma:\omega^*\to\omega^*$ is a $\mathit{universal}$ abstract $\omega\text{-limit}$ set.

Theorem

A dynamical system is an abstract omega-limit set if and only if it is a quotient of the shift map.

Proof sketch for the "only if" direction.

Suppose $f : X \to X$ is a dynamical system, and let $x \in X$. The function $n \mapsto f^n(x)$ maps ω onto the orbit of X.



This function extends (uniquely) to a continuous function $\phi: \beta \omega \to X$. The restriction of ϕ to ω^* is a quotient mapping.

Theorem (Bowen, 1975)

A metrizable dynamical system is an abstract omega-limit set if and only if it is weakly incompressible.

Theorem (Bowen, 1975)

A metrizable dynamical system is an abstract omega-limit set if and only if it is weakly incompressible.

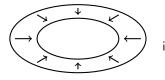
A dynamical system $f : X \to X$ is *weakly incompressible* if $f(\overline{U}) \not\subseteq U$ whenever $U \subseteq X$ is open and $U \neq \emptyset, X$.

< 🗇 > < 🖻 >

Theorem (Bowen, 1975)

A metrizable dynamical system is an abstract omega-limit set if and only if it is weakly incompressible.

A dynamical system $f : X \to X$ is *weakly incompressible* if $f(\overline{U}) \not\subseteq U$ whenever $U \subseteq X$ is open and $U \neq \emptyset, X$.

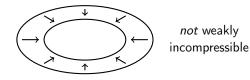


not weakly incompressible

Theorem (Bowen, 1975)

A metrizable dynamical system is an abstract omega-limit set if and only if it is weakly incompressible.

A dynamical system $f : X \to X$ is *weakly incompressible* if $f(\overline{U}) \not\subseteq U$ whenever $U \subseteq X$ is open and $U \neq \emptyset, X$.



If X is zero-dimensional (e.g., if it is the Stone space of some Boolean algebra), then this is equivalent to the condition $f(A) \not\subseteq A$ for every clopen $A \neq \emptyset, X$.

Theorem (Brian, 2018)

A dynamical system of weight $\leq \aleph_1$ is a quotient of the shift map if and only if it is weakly incompressible.

▲ □ ▶ ▲ □ ▶ ▲

Theorem (Brian, 2018)

A dynamical system of weight $\leq \aleph_1$ is a quotient of the shift map if and only if it is weakly incompressible.

Corollary

Assuming CH, σ is universal for weakly incompressible dynamical systems of weight $\leq c$; i.e., it is such a dynamical system, and it has every other such dynamical system as a quotient.

- 4 同 6 4 日 6 4 日 6

Theorem (Brian, 2018)

A dynamical system of weight $\leq \aleph_1$ is a quotient of the shift map if and only if it is weakly incompressible.

Corollary

Assuming CH, σ is universal for weakly incompressible dynamical systems of weight $\leq c$; i.e., it is such a dynamical system, and it has every other such dynamical system as a quotient.

The same theorem applies to σ^{-1} ; thus CH implies that σ and σ^{-1} have the same quotients, and that they are quotients of each other.

イロト イヨト イヨト イヨト

Theorem (Brian, 2018)

A dynamical system of weight $\leq \aleph_1$ is a quotient of the shift map if and only if it is weakly incompressible.

Corollary

Assuming CH, σ is universal for weakly incompressible dynamical systems of weight $\leq c$; i.e., it is such a dynamical system, and it has every other such dynamical system as a quotient.

The same theorem applies to σ^{-1} ; thus CH implies that σ and σ^{-1} have the same quotients, and that they are quotients of each other.

Theorem (Brian, 2019)

Assuming CH, there is a universal dynamical system of weight $\leq \mathfrak{c}$.

ヘロト ヘヨト ヘヨト ヘヨト

van Douwen's problem

Question 3: van Douwen's problem

Can the shift map σ be isomorphic to its inverse?

Question 3: van Douwen's problem

Can the shift map σ be isomorphic to its inverse?

Does ω^* know its right hand from its left?

A (1) > (1) > (1)

Question 3: van Douwen's problem

Can the shift map σ be isomorphic to its inverse?

Does ω^* know its right hand from its left?

• It is consistent that the shift map is not isomorphic to its inverse.

Question 3: van Douwen's problem

Can the shift map σ be isomorphic to its inverse?

Does ω^* know its right hand from its left?

It is consistent that the shift map is not isomorphic to its inverse. This follows, for example, from PFA or OCA + MA. (The reason: these axioms imply every self-homeomorphism h: ω* → ω* is induced by a function ω → ω, and no such h can be an isomorphism of σ and σ⁻¹.)

Question 3: van Douwen's problem

Can the shift map σ be isomorphic to its inverse?

Does ω^* know its right hand from its left?

- It is consistent that the shift map is not isomorphic to its inverse. This follows, for example, from PFA or OCA + MA. (The reason: these axioms imply every self-homeomorphism h: ω* → ω* is induced by a function ω → ω, and no such h can be an isomorphism of σ and σ⁻¹.)
- As mentioned on the previous slide, it follows from CH that σ and σ^{-1} are quotients of each other. (But this does not necessarily mean that they are isomorphic.)

イロト イポト イヨト イヨト

Question 3: van Douwen's problem

Can the shift map σ be isomorphic to its inverse?

Does ω^* know its right hand from its left?

- It is consistent that the shift map is not isomorphic to its inverse. This follows, for example, from PFA or OCA + MA. (The reason: these axioms imply every self-homeomorphism h: ω* → ω* is induced by a function ω → ω, and no such h can be an isomorphism of σ and σ⁻¹.)
- As mentioned on the previous slide, it follows from CH that σ and σ^{-1} are quotients of each other. (But this does not necessarily mean that they are isomorphic.) Assuming OCA + MA, σ and σ^{-1} are not even quotients of each other.

Question 3: van Douwen's problem

Can the shift map σ be isomorphic to its inverse?

Does ω^* know its right hand from its left?

- It is consistent that the shift map is not isomorphic to its inverse. This follows, for example, from PFA or OCA + MA. (The reason: these axioms imply every self-homeomorphism h: ω* → ω* is induced by a function ω → ω, and no such h can be an isomorphism of σ and σ⁻¹.)
- As mentioned on the previous slide, it follows from CH that σ and σ^{-1} are quotients of each other. (But this does not necessarily mean that they are isomorphic.) Assuming OCA + MA, σ and σ^{-1} are not even quotients of each other.
- A natural variation of van Douwen's question is whether CH implies already that σ and σ^{-1} are isomorphic.

The space of self-homeomorphisms of ω^*

Let $\mathcal{H}(\omega^*)$ denote the set of all self-homeomorphisms of ω^* .

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\mathcal{H}(\omega^*)$ denote the set of all self-homeomorphisms of ω^* . $\mathcal{H}(\omega^*)$ can be viewed as a topological space, endowed with the compact-open topology. Sub-basic open sets have the form

$$\llbracket A,B \rrbracket = \{h \in \mathcal{H}(\omega^*) : h[A] = B\}$$

where A and B are basic (cl)open subsets of ω^* .

Let $\mathcal{H}(\omega^*)$ denote the set of all self-homeomorphisms of ω^* . $\mathcal{H}(\omega^*)$ can be viewed as a topological space, endowed with the compact-open topology. Sub-basic open sets have the form

$$\llbracket A,B \rrbracket = \{h \in \mathcal{H}(\omega^*) : h[A] = B\}$$

where A and B are basic (cl)open subsets of ω^* .

• This makes $\mathcal{H}(\omega^*)$ into a topological group (with composition as the group operation).

A (1) > A (2) > A

Let $\mathcal{H}(\omega^*)$ denote the set of all self-homeomorphisms of ω^* . $\mathcal{H}(\omega^*)$ can be viewed as a topological space, endowed with the compact-open topology. Sub-basic open sets have the form

$$\llbracket A,B \rrbracket = \{h \in \mathcal{H}(\omega^*) : h[A] = B\}$$

where A and B are basic (cl)open subsets of ω^* .

- This makes $\mathcal{H}(\omega^*)$ into a topological group (with composition as the group operation).
- This topology dualizes nicely to the space $Aut(\mathcal{P}(\omega)/fin)$ of all automorphisms of $\mathcal{P}(\omega)/fin$.

Let $\mathcal{H}(\omega^*)$ denote the set of all self-homeomorphisms of ω^* . $\mathcal{H}(\omega^*)$ can be viewed as a topological space, endowed with the compact-open topology. Sub-basic open sets have the form

$$\llbracket A,B \rrbracket = \{h \in \mathcal{H}(\omega^*) : h[A] = B\}$$

where A and B are basic (cl)open subsets of ω^* .

- This makes $\mathcal{H}(\omega^*)$ into a topological group (with composition as the group operation).
- This topology dualizes nicely to the space $Aut(\mathcal{P}(\omega)/fin)$ of all automorphisms of $\mathcal{P}(\omega)/fin$.
- Topologizing $\mathcal{H}(\omega^*)$ allows us to discuss formally what it means to have a "simple" or "complicated" collection of self-homeomorphisms of ω^* .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The quotients of the shift map, revisited

Observation

Assuming CH, the set

$$\mathcal{Q}_{\sigma} = \{h \in \mathcal{H}(\omega^*) : h \text{ is a quotient of } \sigma\}$$

is closed in $\mathcal{H}(\omega^*)$.

ヘロン 人間 とうほどう

The quotients of the shift map, revisited

Observation

Assuming CH, the set

$$\mathcal{Q}_{\sigma} = \{h \in \mathcal{H}(\omega^*) : h \text{ is a quotient of } \sigma\}$$

is closed in $\mathcal{H}(\omega^*)$.

Proof.

Recall that CH implies $h \in Q_{\sigma}$ if and only if h is weakly incompressible, i.e., iff $h[A] \not\subseteq A$ for every clopen $A \neq \emptyset, \omega^*$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The quotients of the shift map, revisited

Observation

Assuming CH, the set

$$\mathcal{Q}_{\sigma} = \{h \in \mathcal{H}(\omega^*) : h \text{ is a quotient of } \sigma\}$$

is closed in $\mathcal{H}(\omega^*)$.

Proof.

Recall that CH implies $h \in Q_{\sigma}$ if and only if h is weakly incompressible, i.e., iff $h[A] \not\subseteq A$ for every clopen $A \neq \emptyset, \omega^*$. Thus $h \in Q_{\sigma}$ if and only if $h \notin \bigcup \{ [\![A, B]\!] : \emptyset \neq B \subseteq A \neq \omega^* \}$, which shows that the complement of Q_{σ} is open.

ヘロン 人間 とうほどう

The quotients of the shift map, revisited

Observation

```
Assuming CH, the set
```

$$\mathcal{Q}_{\sigma} = \{h \in \mathcal{H}(\omega^*) : h \text{ is a quotient of } \sigma\}$$

is closed in $\mathcal{H}(\omega^*)$.

Proof.

Recall that CH implies $h \in Q_{\sigma}$ if and only if h is weakly incompressible, i.e., iff $h[A] \not\subseteq A$ for every clopen $A \neq \emptyset, \omega^*$. Thus $h \in Q_{\sigma}$ if and only if $h \notin \bigcup \{ \llbracket A, B \rrbracket : \emptyset \neq B \subseteq A \neq \omega^* \}$, which shows that the complement of Q_{σ} is open.

One may show (without too much effort) that Q_{σ} is not open. Thus CH makes Q_{σ} as simple as possible.

イロト イヨト イヨト イヨト

On the other hand . . .

Theorem (Brian, 2019)

Assuming OCA + MA, the set

$$\mathcal{Q}_{\sigma} = \{h \in \mathcal{H}(\omega^*) \, : \, h \text{ is a quotient of } \sigma\}$$

is not Borel in $\mathcal{H}(\omega^*)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

On the other hand . . .

Theorem (Brian, 2019)

Assuming OCA + MA, the set

$$\mathcal{Q}_{\sigma} = \{h \in \mathcal{H}(\omega^*) : h \text{ is a quotient of } \sigma\}$$

is not Borel in $\mathcal{H}(\omega^*)$.

Thus while CH makes Q_{σ} as simple as possible, it seems that OCA + MA makes Q_{σ} very complicated.

・ロト ・日下・ ・日下

A ZFC version

Theorem (Brian, 2019)

The isomorphism classes of σ and σ^{-1} cannot be separated by a Borel set in $\mathcal{H}(\omega^*)$. In particular, if σ and σ^{-1} are not isomorphic, then neither of their isomorphism classes is Borel.

∃ >

A ZFC version

Theorem (Brian, 2019)

The isomorphism classes of σ and σ^{-1} cannot be separated by a Borel set in $\mathcal{H}(\omega^*)$. In particular, if σ and σ^{-1} are not isomorphic, then neither of their isomorphism classes is Borel.

OCA + MA implies that $h \in \mathcal{H}(\omega^*)$ is a quotient of σ if and only if it is isomorphic to σ . Thus the result on the previous slide follows from this theorem.

(ロ) (同) (三) (三)

A ZFC version

Theorem (Brian, 2019)

The isomorphism classes of σ and σ^{-1} cannot be separated by a Borel set in $\mathcal{H}(\omega^*)$. In particular, if σ and σ^{-1} are not isomorphic, then neither of their isomorphism classes is Borel.

OCA + MA implies that $h \in \mathcal{H}(\omega^*)$ is a quotient of σ if and only if it is isomorphic to σ . Thus the result on the previous slide follows from this theorem.

Corollary

If the isomorphism class of σ is Borel in $\mathcal{H}(\omega^*)$, then σ and σ^{-1} are isomorphic.

イロト イヨト イヨト イヨト

Question 4

Is it consistent that the isomorphism class of σ is Borel?

イロン イヨン イヨン イヨン

臣

Question 4

Is it consistent that the isomorphism class of σ is Borel?

• As we have seen, it is consistent that the answer is negative, because a positive answer to Question 4 implies a positive answer to van Douwen's problem (Question 3).

Question 4

Is it consistent that the isomorphism class of σ is Borel?

- As we have seen, it is consistent that the answer is negative, because a positive answer to Question 4 implies a positive answer to van Douwen's problem (Question 3).
- The isomorphism class of σ cannot be open or closed. As far as I know, the isomorphism class of σ might be as simple as the intersection of a closed set with a G_{δ} set.

Question 4

Is it consistent that the isomorphism class of σ is Borel?

- As we have seen, it is consistent that the answer is negative, because a positive answer to Question 4 implies a positive answer to van Douwen's problem (Question 3).
- The isomorphism class of σ cannot be open or closed. As far as I know, the isomorphism class of σ might be as simple as the intersection of a closed set with a G_{δ} set.

Question 5

Can $\mathcal{H}(\omega^*)$ have fewer than $|\mathcal{H}(\omega^*)|$ isomorphism classes?

イロト イポト イヨト イヨト

Question 4

Is it consistent that the isomorphism class of σ is Borel?

- As we have seen, it is consistent that the answer is negative, because a positive answer to Question 4 implies a positive answer to van Douwen's problem (Question 3).
- The isomorphism class of σ cannot be open or closed. As far as I know, the isomorphism class of σ might be as simple as the intersection of a closed set with a G_{δ} set.

Question 5

Can $\mathcal{H}(\omega^*)$ have fewer than $|\mathcal{H}(\omega^*)|$ isomorphism classes?

• We know that $\mathfrak{c} \leq |\mathcal{H}(\omega^*)| \leq 2^{\mathfrak{c}}$. The number of isomorphism classes must be at least \mathfrak{c} , but a given class may have size $2^{\mathfrak{c}}$.

One of the main tools used in both

- characterizing the weight $\leq \aleph_1$ quotients of σ , and
- proving that the isomorphism classes of σ and σ^{-1} are not separated by a Borel set
- is the notion of a *metrizable reflection*.

One of the main tools used in both

- characterizing the weight $\leq \aleph_1$ quotients of σ , and
- proving that the isomorphism classes of σ and σ^{-1} are not separated by a Borel set

is the notion of a *metrizable reflection*. This can be thought of as a "data compression" tool whereby we may associate to a non-metrizable space X some metrizable space X^M sharing many of its properties.

One of the main tools used in both

- characterizing the weight $\leq \aleph_1$ quotients of σ , and
- proving that the isomorphism classes of σ and σ^{-1} are not separated by a Borel set

is the notion of a *metrizable reflection*. This can be thought of as a "data compression" tool whereby we may associate to a non-metrizable space X some metrizable space X^M sharing many of its properties.

If *H* denotes a (large fragment of) the set-theoretic universe, then a countable elementary submodel of *H* is a countable set *M* such that, for any formula in the language of set theory $\varphi(\vec{x})$, if $\vec{a} \in M$,

 $\varphi(\vec{a})$ is true in H \Leftrightarrow $\varphi(\vec{a})$ is true in M

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Let X be a compact Hausdorff space of weight \aleph_1 , and let M be a countable model of set theory with $X \in M$.

Let X be a compact Hausdorff space of weight \aleph_1 , and let M be a countable model of set theory with $X \in M$.

1 If \mathcal{B} is a topology for X, then $M \cap \mathcal{B}$ is a countable lattice.

< 回 ト < 三 ト <

Let X be a compact Hausdorff space of weight \aleph_1 , and let M be a countable model of set theory with $X \in M$.

 If B is a topology for X, then M ∩ B is a countable lattice. Using the elementarity of M, this lattice forms the basis of a compact Hausdorff space; using the countability of M, it is a compact metric space. This space, denoted X^M, is the "reflection" of X in M.

Let X be a compact Hausdorff space of weight \aleph_1 , and let M be a countable model of set theory with $X \in M$.

 If B is a topology for X, then M ∩ B is a countable lattice. Using the elementarity of M, this lattice forms the basis of a compact Hausdorff space; using the countability of M, it is a compact metric space. This space, denoted X^M, is the "reflection" of X in M.

Equivalently,

Let X be a compact Hausdorff space of weight \aleph_1 , and let M be a countable model of set theory with $X \in M$.

 If B is a topology for X, then M ∩ B is a countable lattice. Using the elementarity of M, this lattice forms the basis of a compact Hausdorff space; using the countability of M, it is a compact metric space. This space, denoted X^M, is the "reflection" of X in M.

Equivalently,

Without loss of generality, we may assume X is a subspace of [0, 1]^{ω1}.

・ロト ・ 同ト ・ ヨト ・ ヨト

Let X be a compact Hausdorff space of weight \aleph_1 , and let M be a countable model of set theory with $X \in M$.

 If B is a topology for X, then M ∩ B is a countable lattice. Using the elementarity of M, this lattice forms the basis of a compact Hausdorff space; using the countability of M, it is a compact metric space. This space, denoted X^M, is the "reflection" of X in M.

Equivalently,

Without loss of generality, we may assume X is a subspace of [0,1]^{ω1}. Let δ = M ∩ ω1

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let X be a compact Hausdorff space of weight \aleph_1 , and let M be a countable model of set theory with $X \in M$.

 If B is a topology for X, then M ∩ B is a countable lattice. Using the elementarity of M, this lattice forms the basis of a compact Hausdorff space; using the countability of M, it is a compact metric space. This space, denoted X^M, is the "reflection" of X in M.

Equivalently,

Without loss of generality, we may assume X is a subspace of [0,1]^{ω1}. Let δ = M ∩ ω1, and let X^M be the projection of X onto the first δ coordinates of [0,1]^{ω1}.

Let X be a compact Hausdorff space of weight \aleph_1 , and let M be a countable model of set theory with $X \in M$.

 If B is a topology for X, then M ∩ B is a countable lattice. Using the elementarity of M, this lattice forms the basis of a compact Hausdorff space; using the countability of M, it is a compact metric space. This space, denoted X^M, is the "reflection" of X in M.

Equivalently,

Without loss of generality, we may assume X is a subspace of [0,1]^{ω1}. Let δ = M ∩ ω1, and let X^M be the projection of X onto the first δ coordinates of [0,1]^{ω1}.

Because M is elementary in H, the metrizable space X^M will share many important properties with the original X.

・ロト ・ 同ト ・ ヨト ・ ヨト

Suppose $h: X \to X$ is a dynamical system, and $h \in M$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Suppose $h: X \to X$ is a dynamical system, and $h \in M$. Let $\delta = M \cap \omega_1$, and let $\Pr: X \to X^M$ denote the canonical projection from $X \subseteq [0, 1]^{\omega_1}$ to its metrizable reflection $X^M \subseteq [0, 1]^{\delta}$.

Theorem (Noble and Ulmer, 1972)

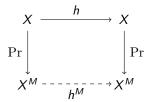
If $x, y \in X$ and Pr(x) = Pr(y), then Pr(h(x)) = Pr(h(y)).

イロト イポト イヨト イヨト

Suppose $h: X \to X$ is a dynamical system, and $h \in M$. Let $\delta = M \cap \omega_1$, and let $\Pr: X \to X^M$ denote the canonical projection from $X \subseteq [0, 1]^{\omega_1}$ to its metrizable reflection $X^M \subseteq [0, 1]^{\delta}$.

Theorem (Noble and Ulmer, 1972)

If $x, y \in X$ and Pr(x) = Pr(y), then Pr(h(x)) = Pr(h(y)).



This defines a map $h^M : X^M \to X^M$, the reflection of h in M.

Theorem (Brian, 2019)

If M is any countable model of set theory, then the (metrizable) dynamical systems σ^{M} and $(\sigma^{-1})^{M}$ are isomorphic.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Theorem (Brian, <u>2019)</u>

If M is any countable model of set theory, then the (metrizable) dynamical systems σ^M and $(\sigma^{-1})^M$ are isomorphic.

Proof sketch: Let $D \subseteq \omega$ be a fast-growing sequence such that if $A \in M$, $A \subseteq \omega$, then either $A \cap D$ or $A \setminus D$ is finite.

・ロト ・四ト ・ヨト

Theorem (Brian, 2019)

If M is any countable model of set theory, then the (metrizable) dynamical systems σ^{M} and $(\sigma^{-1})^{M}$ are isomorphic.

Proof sketch: Let $D \subseteq \omega$ be a fast-growing sequence such that if $A \in M$, $A \subseteq \omega$, then either $A \cap D$ or $A \setminus D$ is finite.

Define $h: \omega^* \to \omega^*$ by "flipping" the intervals determined by D:

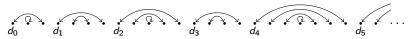
イロト イポト イヨト イヨト

Theorem (Brian, 2019)

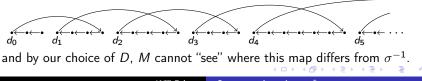
If M is any countable model of set theory, then the (metrizable) dynamical systems σ^M and $(\sigma^{-1})^M$ are isomorphic.

Proof sketch: Let $D \subseteq \omega$ be a fast-growing sequence such that if $A \in M$, $A \subseteq \omega$, then either $A \cap D$ or $A \setminus D$ is finite.

Define $h: \omega^* \to \omega^*$ by "flipping" the intervals determined by D:



Then h^M is the desired isomorphism, because $h^{-1} \circ \sigma \circ h$ looks like this:



Question 6: the Katowice problem

Can ω^* be homeomorphic to ω_1^* ?

イロン イヨン イヨン イ

Question 6: the Katowice problem

Can ω^* be homeomorphic to ω_1^* ?

In the statement of this question, ω_1^* refers to the Stone-Čech remainder of the countable discrete space of size ω_1 or, equivalently, the Stone space of $\mathcal{P}(\omega_1)/_{\text{fin.}}$

Question 6: the Katowice problem

Can ω^* be homeomorphic to ω_1^* ?

In the statement of this question, ω_1^* refers to the Stone-Čech remainder of the countable discrete space of size ω_1 or, equivalently, the Stone space of $\mathcal{P}(\omega_1)/_{\text{fin.}}$

• It is consistent that they are not homeomorphic. In fact, $|\omega^*| = 2^{2^{\aleph_0}}$ and $|\omega_1^*| = 2^{2^{\aleph_1}}$, so it is consistent that these two spaces have different cardinalities.

Question 6: the Katowice problem

Can ω^* be homeomorphic to ω_1^* ?

In the statement of this question, ω_1^* refers to the Stone-Čech remainder of the countable discrete space of size ω_1 or, equivalently, the Stone space of $\mathcal{P}(\omega_1)/_{\text{fin.}}$

- It is consistent that they are not homeomorphic. In fact, $|\omega^*| = 2^{2^{\aleph_0}}$ and $|\omega_1^*| = 2^{2^{\aleph_1}}$, so it is consistent that these two spaces have different cardinalities.
- If κ and λ are any two distinct infinite cardinals other than ω and ω_1 , then κ^* and λ^* are *not* homeomorphic.

イロト イヨト イヨト イ

Question 6: the Katowice problem

Can ω^* be homeomorphic to ω_1^* ?

In the statement of this question, ω_1^* refers to the Stone-Čech remainder of the countable discrete space of size ω_1 or, equivalently, the Stone space of $\mathcal{P}(\omega_1)/_{\text{fin.}}$

- It is consistent that they are not homeomorphic. In fact, $|\omega^*| = 2^{2^{\aleph_0}}$ and $|\omega_1^*| = 2^{2^{\aleph_1}}$, so it is consistent that these two spaces have different cardinalities.
- If κ and λ are any two distinct infinite cardinals other than ω and ω_1 , then κ^* and λ^* are *not* homeomorphic.
- If there were a homeomorphism $h: \omega^* \to \omega_1^*$, then the map $h \circ \sigma \circ h^{-1}$ would be topologically identical to the shift map.

(ロ) (同) (三) (三)

Question 7

Can there be a weakly incompressible self-homeomorphism of ω_1^* ?

イロト イポト イヨト イヨト

Question 7

Can there be a weakly incompressible self-homeomorphism of ω_1^* ?

In other words, can there be a homeomorphism $h: \omega_1^* \to \omega_1^*$ such that $h[A] \not\subseteq A$ for all clopen $A \neq \emptyset, \omega_1^*$?

(D) (A) (A) (A)

Question 7

Can there be a weakly incompressible self-homeomorphism of ω_1^* ?

In other words, can there be a homeomorphism $h: \omega_1^* \to \omega_1^*$ such that $h[A] \not\subseteq A$ for all clopen $A \neq \emptyset, \omega_1^*$?

• It is consistent that there is no such map. (This is because no such map can be induced by a function $\omega_1 \rightarrow \omega_1$, and it is consistent that every self-homeomorphism of ω_1^* is induced in this way).

・ 同 ト ・ ヨ ト ・ ヨ ト

Question 7

Can there be a weakly incompressible self-homeomorphism of ω_1^* ?

In other words, can there be a homeomorphism $h: \omega_1^* \to \omega_1^*$ such that $h[A] \not\subseteq A$ for all clopen $A \neq \emptyset, \omega_1^*$?

- It is consistent that there is no such map. (This is because no such map can be induced by a function $\omega_1 \rightarrow \omega_1$, and it is consistent that every self-homeomorphism of ω_1^* is induced in this way).
- If κ is any cardinal $>\omega_1$, then it can be proved that there is no weakly incompressible self-homeomorphism of κ^* .

イロト イポト イヨト イヨト

 ω^{*} and the shift map The space of self-homeomorphisms of ω^{*}

Thank you for listening

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

 ω^{*} and the shift map The space of self-homeomorphisms of ω^{*}

The end

Thank you for listening

Are there any more questions?

イロト イヨト イヨト イヨト