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ω∗ and the shift map
The space of self-homeomorphisms of ω∗

The space βω

Recall that a compactification of ω is a compact Hausdorff space
containing ω as a dense subspace.

The Stone-Čech compactification of ω, denoted βω, is the space of
all ultrafilters on ω. Equivalently, it is the Stone space of the
Boolean algebra P(ω).
βω is the “largest” compactification of ω:
i.e., if γω is any other compactification of ω, then there is a
continuous surjection π : βω → γω that fixes ω.
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The space βω

βω is the unique compactification of ω with the following extension
property :

every function mapping ω into a compact Hausdorff space
extends continuously to βω.

ω βω

X

f

ω βω

γω

idω

The image of some u ∈ βω in this extension is often denoted by
u- lim

n∈ω
f (n).

The fact that βω is the largest compactification of ω follows from
the extension property.
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The space ω∗

The space of all non-principal ultrafilters on ω, known as the
Stone-Čech remainder of ω, is denoted

ω∗ = βω \ ω.

It is the Stone space of the Boolean algebra P(ω)/fin.

Theorem (Parovičenko, 1963)

Every compact Hausdorff space of weight ≤ℵ1 is a continuous
image of ω∗.

Corollary

Assuming the Continuum Hypothesis (CH), ω∗ is a universal
compact Hausdorff space of weight ≤ℵ1; i.e., it is such a space,
and it has every other such space as a continuous image.
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Two classic questions about the topology of ω∗

Question 1: Efimov’s problem
Does every infinite compact Hausdorff space contain either a
nontrivial convergent sequence, or else a copy of ω∗?

An Efimov space is defined to be an infinite compact Hausdorff
space containing neither a non-trivial convergent sequence nor a
copy of ω∗, should such a space exist.

It is consistent that Efimov spaces do exist.
Assuming CH there is, for each n ∈ N, a compact Hausdorff
space having only n-dimensional infinite closed subspaces.
Such spaces are Efimov, because converging sequences and ω∗

are both 0-dimensional.
How small can an Efimov space be? Recently a consistent
example was found with weight < the dominating number d.
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Two classic questions about the topology of ω∗

Question 2: Gillman’s problem

Is ω∗ \ {u} non-normal for every u ∈ ω∗?

Consistently, yes: it follows from CH that ω∗ \ {u} is
non-normal for every u ∈ ω∗.
It is known (without invoking any extra set-theoretic
hypotheses) that ω∗ \ {u} is non-normal for at least some
u ∈ ω∗.
For example, this is true if u is a minimal point in the
dynamical system σ : ω∗ → ω∗, where σ denotes the
self-homeomorphism of ω∗ known as the shift map.
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What is the shift map?

The shift map σ on βω is the unique continuous extension of the
successor map n 7→ n + 1 on ω.

ω

+1

ωβω

σ

βω

Equivalently, if A ⊆ ω then for every u ∈ βω we have

A ∈ u ⇔ A+ 1 ∈ σ(u).

The shift map restricts to a self-homeomorphism of ω∗.

The shift map is the starting point for the entire theory of
algebra in ω∗, which has far-reaching consequences in Ramsey
theory and Diophantine approximation.
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dynamical systems

By a dynamical system I mean a homeomorphism from a compact
Hausdorff space to itself.

If f : X → X and g : Y → Y are dynamical systems, then
◦ A quotient map (a.k.a. factor map) from f to g is a

continuous function φ : X → Y that sends the action of f on
X to the action of g on Y , in the sense that φ ◦ f = g ◦ φ. In
other words, the following diagram commutes.

Y Y

XX f

g

φφ

◦ If, furthermore, φ is a homeomorphism, then such a map is
called an isomorphism from f to g .
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Omega-limit sets

Given a dynamical system f : X → X and a point x ∈ X , the
omega-limit set of x is the set of all limit points of the orbit of x :

ωf (x) =
⋂
n<ω

{f m(x) : m ≥ n}

X

x
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Abstract omega-limit sets

An abstract omega-limit set is a dynamical system that is
isomorphic to an omega-limit set.

An omega-limit set

X

x

f (x)

f 2(x)

f 3(x)

. . .

. . .

. . .

ωf (x)
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A universal property of the shift map

The shift map σ : ω∗ → ω∗ is a universal abstract ω-limit set.

Theorem
A dynamical system is an abstract omega-limit set if and only if it
is a quotient of the shift map.

Proof sketch for the “only if” direction.
Suppose f : X → X is a dynamical system, and let x ∈ X .
The function n 7→ f n(x) maps ω onto the orbit of X .

ω

X

n 7→ f n(x)

βω

φ

This function extends (uniquely) to a continuous function
φ : βω → X . The restriction of φ to ω∗ is a quotient mapping.
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An internal characterization of abstract omega-limit sets

Theorem (Bowen, 1975)

A metrizable dynamical system is an abstract omega-limit set if and
only if it is weakly incompressible.

A dynamical system f : X → X is weakly incompressible if
f (U) 6⊆ U whenever U ⊆ X is open and U 6= ∅,X .

not weakly
incompressible

If X is zero-dimensional (e.g., if it is the Stone space of some
Boolean algebra), then this is equivalent to the condition
f (A) 6⊆ A for every clopen A 6= ∅,X .
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another universal property of the shift map

Theorem (Brian, 2018)

A dynamical system of weight ≤ℵ1 is a quotient of the shift map if
and only if it is weakly incompressible.

Corollary
Assuming CH, σ is universal for weakly incompressible dynamical
systems of weight ≤c; i.e., it is such a dynamical system, and it has
every other such dynamical system as a quotient.

The same theorem applies to σ−1; thus CH implies that σ and σ−1

have the same quotients, and that they are quotients of each other.

Theorem (Brian, 2019)

Assuming CH, there is a universal dynamical system of weight ≤c.
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van Douwen’s problem

Question 3: van Douwen’s problem
Can the shift map σ be isomorphic to its inverse?

Does ω∗ know its right hand from its left?

It is consistent that the shift map is not isomorphic to its
inverse. This follows, for example, from PFA or OCA+MA.
(The reason: these axioms imply every self-homeomorphism
h : ω∗ → ω∗ is induced by a function ω → ω, and no such h
can be an isomorphism of σ and σ−1.)
As mentioned on the previous slide, it follows from CH that σ
and σ−1 are quotients of each other. (But this does not
necessarily mean that they are isomorphic.) Assuming
OCA+MA, σ and σ−1 are not even quotients of each other.
A natural variation of van Douwen’s question is whether CH
implies already that σ and σ−1 are isomorphic.
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The space of self-homeomorphisms of ω∗

Let H(ω∗) denote the set of all self-homeomorphisms of ω∗.

H(ω∗) can be viewed as a topological space, endowed with the
compact-open topology. Sub-basic open sets have the form

[[A,B]] = {h ∈ H(ω∗) : h[A] = B}

where A and B are basic (cl)open subsets of ω∗.

This makes H(ω∗) into a topological group (with composition
as the group operation).
This topology dualizes nicely to the space Aut(P(ω)/fin) of all
automorphisms of P(ω)/fin.
Topologizing H(ω∗) allows us to discuss formally what it
means to have a "simple" or "complicated" collection of
self-homeomorphisms of ω∗.
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The quotients of the shift map, revisited

Observation
Assuming CH, the set

Qσ = {h ∈ H(ω∗) : h is a quotient of σ}

is closed in H(ω∗).

Proof.
Recall that CH implies h ∈ Qσ if and only if h is weakly
incompressible, i.e., iff h[A] 6⊆ A for every clopen A 6= ∅, ω∗. Thus
h ∈ Qσ if and only if h /∈

⋃
{[[A,B]] : ∅ 6= B ⊆ A 6= ω∗}, which

shows that the complement of Qσ is open.

One may show (without too much effort) that Qσ is not open.
Thus CH makes Qσ as simple as possible.
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On the other hand . . .

Theorem (Brian, 2019)

Assuming OCA+MA, the set

Qσ = {h ∈ H(ω∗) : h is a quotient of σ}

is not Borel in H(ω∗).

Thus while CH makes Qσ as simple as possible, it seems that
OCA+MA makes Qσ very complicated.
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A ZFC version

Theorem (Brian, 2019)

The isomorphism classes of σ and σ−1 cannot be separated by a
Borel set in H(ω∗). In particular, if σ and σ−1 are not isomorphic,
then neither of their isomorphism classes is Borel.

OCA+MA implies that h ∈ H(ω∗) is a quotient of σ if and only if
it is isomorphic to σ. Thus the result on the previous slide follows
from this theorem.

Corollary

If the isomorphism class of σ is Borel in H(ω∗), then σ and σ−1

are isomorphic.
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Two new questions

Question 4
Is it consistent that the isomorphism class of σ is Borel?

As we have seen, it is consistent that the answer is negative,
because a positive answer to Question 4 implies a positive
answer to van Douwen’s problem (Question 3).
The isomorphism class of σ cannot be open or closed. As far
as I know, the isomorphism class of σ might be as simple as
the intersection of a closed set with a Gδ set.

Question 5
Can H(ω∗) have fewer than |H(ω∗)| isomorphism classes?

We know that c ≤ |H(ω∗)| ≤ 2c. The number of isomorphism
classes must be at least c, but a given class may have size 2c.
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Metrizable reflections

One of the main tools used in both
characterizing the weight ≤ℵ1 quotients of σ, and
proving that the isomorphism classes of σ and σ−1 are not
separated by a Borel set

is the notion of a metrizable reflection.

This can be thought of as a
"data compression" tool whereby we may associate to a
non-metrizable space X some metrizable space XM sharing many
of its properties.

If H denotes a (large fragment of) the set-theoretic universe, then a
countable elementary submodel of H is a countable set M such
that, for any formula in the language of set theory ϕ(~x ), if ~a ∈ M,

ϕ(~a ) is true in H ⇔ ϕ(~a ) is true in M
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Metrizable reflections

Let X be a compact Hausdorff space of weight ℵ1, and let M be a
countable model of set theory with X ∈ M.

1 If B is a topology for X , then M ∩ B is a countable lattice.
Using the elementarity of M, this lattice forms the basis of a
compact Hausdorff space; using the countability of M, it is a
compact metric space. This space, denoted XM , is the
"reflection" of X in M.

Equivalently,
2 Without loss of generality, we may assume X is a subspace of

[0, 1]ω1 . Let δ = M ∩ ω1, and let XM be the projection of X
onto the first δ coordinates of [0, 1]ω1 .

Because M is elementary in H, the metrizable space XM will share
many important properties with the original X .
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compact metric space. This space, denoted XM , is the
"reflection" of X in M.

Equivalently,
2 Without loss of generality, we may assume X is a subspace of

[0, 1]ω1 . Let δ = M ∩ ω1, and let XM be the projection of X
onto the first δ coordinates of [0, 1]ω1 .

Because M is elementary in H, the metrizable space XM will share
many important properties with the original X .
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The space of self-homeomorphisms of ω∗

Metrizable reflections

Suppose h : X → X is a dynamical system, and h ∈ M.

Let
δ = M ∩ ω1, and let Pr : X → XM denote the canonical projection
from X ⊆ [0, 1]ω1 to its metrizable reflection XM ⊆ [0, 1]δ.

Theorem (Noble and Ulmer, 1972)

If x , y ∈ X and Pr(x) = Pr(y), then Pr(h(x)) = Pr(h(y)).

XM XM

XX
h

hM

PrPr

This defines a map hM : XM → XM , the reflection of h in M.
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ω∗ and the shift map
The space of self-homeomorphisms of ω∗

Indistinguishable reflections

Theorem (Brian, 2019)

If M is any countable model of set theory, then the (metrizable)
dynamical systems σM and (σ−1)M are isomorphic.

Proof sketch: Let D ⊆ ω be a fast-growing sequence such that if A ∈ M,
A ⊆ ω, then either A ∩ D or A \ D is finite.
Define h : ω∗ → ω∗ by “flipping” the intervals determined by D:

. . .
d0 d1 d2 d3 d4 d5

Then hM is the desired isomorphism, because h−1 ◦ σ ◦ h looks like this:

. . .
d0 d1 d2 d3 d4 d5

and by our choice of D, M cannot “see” where this map differs from σ−1.
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ω∗ and the shift map
The space of self-homeomorphisms of ω∗

the Katowice problem

Question 6: the Katowice problem
Can ω∗ be homeomorphic to ω∗1?

In the statement of this question, ω∗1 refers to the Stone-Čech
remainder of the countable discrete space of size ω1 or,
equivalently, the Stone space of P(ω1)/fin.

It is consistent that they are not homeomorphic. In fact,
|ω∗| = 22ℵ0 and |ω∗1| = 22ℵ1 , so it is consistent that these two
spaces have different cardinalities.
If κ and λ are any two distinct infinite cardinals other than ω
and ω1, then κ∗ and λ∗ are not homeomorphic.
If there were a homeomorphism h : ω∗ → ω∗1, then the map
h ◦ σ ◦ h−1 would be topologically identical to the shift map.

Will Brian Seven questions about ω∗



ω∗ and the shift map
The space of self-homeomorphisms of ω∗

the Katowice problem

Question 6: the Katowice problem
Can ω∗ be homeomorphic to ω∗1?

In the statement of this question, ω∗1 refers to the Stone-Čech
remainder of the countable discrete space of size ω1 or,
equivalently, the Stone space of P(ω1)/fin.

It is consistent that they are not homeomorphic. In fact,
|ω∗| = 22ℵ0 and |ω∗1| = 22ℵ1 , so it is consistent that these two
spaces have different cardinalities.
If κ and λ are any two distinct infinite cardinals other than ω
and ω1, then κ∗ and λ∗ are not homeomorphic.
If there were a homeomorphism h : ω∗ → ω∗1, then the map
h ◦ σ ◦ h−1 would be topologically identical to the shift map.

Will Brian Seven questions about ω∗



ω∗ and the shift map
The space of self-homeomorphisms of ω∗

the Katowice problem

Question 6: the Katowice problem
Can ω∗ be homeomorphic to ω∗1?

In the statement of this question, ω∗1 refers to the Stone-Čech
remainder of the countable discrete space of size ω1 or,
equivalently, the Stone space of P(ω1)/fin.

It is consistent that they are not homeomorphic. In fact,
|ω∗| = 22ℵ0 and |ω∗1| = 22ℵ1 , so it is consistent that these two
spaces have different cardinalities.

If κ and λ are any two distinct infinite cardinals other than ω
and ω1, then κ∗ and λ∗ are not homeomorphic.
If there were a homeomorphism h : ω∗ → ω∗1, then the map
h ◦ σ ◦ h−1 would be topologically identical to the shift map.

Will Brian Seven questions about ω∗



ω∗ and the shift map
The space of self-homeomorphisms of ω∗

the Katowice problem

Question 6: the Katowice problem
Can ω∗ be homeomorphic to ω∗1?

In the statement of this question, ω∗1 refers to the Stone-Čech
remainder of the countable discrete space of size ω1 or,
equivalently, the Stone space of P(ω1)/fin.

It is consistent that they are not homeomorphic. In fact,
|ω∗| = 22ℵ0 and |ω∗1| = 22ℵ1 , so it is consistent that these two
spaces have different cardinalities.
If κ and λ are any two distinct infinite cardinals other than ω
and ω1, then κ∗ and λ∗ are not homeomorphic.

If there were a homeomorphism h : ω∗ → ω∗1, then the map
h ◦ σ ◦ h−1 would be topologically identical to the shift map.

Will Brian Seven questions about ω∗



ω∗ and the shift map
The space of self-homeomorphisms of ω∗

the Katowice problem

Question 6: the Katowice problem
Can ω∗ be homeomorphic to ω∗1?

In the statement of this question, ω∗1 refers to the Stone-Čech
remainder of the countable discrete space of size ω1 or,
equivalently, the Stone space of P(ω1)/fin.

It is consistent that they are not homeomorphic. In fact,
|ω∗| = 22ℵ0 and |ω∗1| = 22ℵ1 , so it is consistent that these two
spaces have different cardinalities.
If κ and λ are any two distinct infinite cardinals other than ω
and ω1, then κ∗ and λ∗ are not homeomorphic.
If there were a homeomorphism h : ω∗ → ω∗1, then the map
h ◦ σ ◦ h−1 would be topologically identical to the shift map.

Will Brian Seven questions about ω∗



ω∗ and the shift map
The space of self-homeomorphisms of ω∗

the final question

Question 7
Can there be a weakly incompressible self-homeomorphism of ω∗1?

In other words, can there be a homeomorphism h : ω∗1 → ω∗1 such
that h[A] 6⊆ A for all clopen A 6= ∅, ω∗1?

It is consistent that there is no such map. (This is because no
such map can be induced by a function ω1 → ω1, and it is
consistent that every self-homeomorphism of ω∗1 is induced in
this way).
If κ is any cardinal >ω1, then it can be proved that there is no
weakly incompressible self-homeomorphism of κ∗.
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The end

Thank you for listening

Are there any more questions?
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