A non-pointfree approach to pointfree topology

Guram Bezhanishvili New Mexico State University

BLAST 2019 University of Colorado, Boulder May 20–24, 2019

Outline

Tutorial I: basics of pointfree topology

Outline

Tutorial I: basics of pointfree topology

Tutorial II: basics of Priestley and Esakia dualities

Outline

Tutorial I: basics of pointfree topology

Tutorial II: basics of Priestley and Esakia dualities

Tutorial III: the study of frames through their spectra of prime filters

Tutorial III

The study of frames through their spectra of prime filters

A frame is a complete lattice *L* satisfying

$$a \land \bigvee S = \bigvee \{a \land s \mid s \in S\}$$

A frame is a complete lattice *L* satisfying

$$a \land \bigvee S = \bigvee \{a \land s \mid s \in S\}$$

A frame homomorphism is a map $f : L \to M$ preserving finite meets and arbitrary joins.

A frame is a complete lattice *L* satisfying

$$a \land \bigvee S = \bigvee \{a \land s \mid s \in S\}$$

A frame homomorphism is a map $f : L \to M$ preserving finite meets and arbitrary joins.

Frm = the category of frames and frame homomorphisms.

A frame is a complete lattice *L* satisfying

$$a \land \bigvee S = \bigvee \{a \land s \mid s \in S\}$$

A frame homomorphism is a map $f : L \to M$ preserving finite meets and arbitrary joins.

Frm = the category of frames and frame homomorphisms.

An Esakia space is a Priestley space $(X, \mathcal{T}, \leqslant)$ satisfying

U clopen $\Rightarrow \downarrow U$ clopen

A frame is a complete lattice *L* satisfying

$$a \land \bigvee S = \bigvee \{a \land s \mid s \in S\}$$

A frame homomorphism is a map $f : L \to M$ preserving finite meets and arbitrary joins.

Frm = the category of frames and frame homomorphisms. An Esakia space is a Priestley space (X, \mathcal{T}, \leq) satisfying

U clopen $\Rightarrow \downarrow U$ clopen

An Esakia space is extremally order disconnected if

U open upset $\Rightarrow \overline{U}$ open

Theorem: Let *L* be a bounded distributive lattice and X_L its Priestley space. Then *L* is a frame iff X_L is an extremally order disconnected Esakia space.

Theorem: Let *L* be a bounded distributive lattice and X_L its Priestley space. Then *L* is a frame iff X_L is an extremally order disconnected Esakia space.

EDEsa = the category of extremally order disconnected Esakia spaces and continuous order preserving maps $f : X \to Y$ satisfying

$$f^{-1}\left(\overline{V}\right) = \overline{f^{-1}(V)}$$

for each open upset V of Y.

Theorem: Let *L* be a bounded distributive lattice and X_L its Priestley space. Then *L* is a frame iff X_L is an extremally order disconnected Esakia space.

EDEsa = the category of extremally order disconnected Esakia spaces and continuous order preserving maps $f: X \to Y$ satisfying

$$f^{-1}\left(\overline{V}\right) = \overline{f^{-1}(V)}$$

for each open upset V of Y.

Theorem: Frm is dually equivalent to EDEsa.

Theorem: Let *L* be a bounded distributive lattice and X_L its Priestley space. Then *L* is a frame iff X_L is an extremally order disconnected Esakia space.

EDEsa = the category of extremally order disconnected Esakia spaces and continuous order preserving maps $f: X \to Y$ satisfying

$$f^{-1}\left(\overline{V}\right) = \overline{f^{-1}(V)}$$

for each open upset V of Y.

Theorem: Frm is dually equivalent to EDEsa.

Goal: Study frames by means of their extremally order disconnected Esakia spaces.

Let *L* be a frame and X_L its Esakia space.

Let *L* be a frame and X_L its Esakia space.

Recall: A point of a frame *L* is a frame homomorphism $p: L \rightarrow \mathbf{2}$.

Let *L* be a frame and X_L its Esakia space.

Recall: A point of a frame *L* is a frame homomorphism $p: L \rightarrow 2$. Points are in 1-1 correspondence with completely prime filters.

Let *L* be a frame and X_L its Esakia space.

Recall: A point of a frame *L* is a frame homomorphism $p: L \rightarrow 2$. Points are in 1-1 correspondence with completely prime filters. Elements of X_L are prime filters of *L*.

Let *L* be a frame and X_L its Esakia space.

Recall: A point of a frame *L* is a frame homomorphism $p: L \rightarrow 2$. Points are in 1-1 correspondence with completely prime filters. Elements of X_L are prime filters of *L*. Thus, to recognize points of *L* inside X_L , all we need to do is to give the dual characterization of completely prime filters!

Let *L* be a frame and X_L its Esakia space.

Recall: A point of a frame *L* is a frame homomorphism $p: L \rightarrow 2$. Points are in 1-1 correspondence with completely prime filters. Elements of X_L are prime filters of *L*. Thus, to recognize points of *L* inside X_L , all we need to do is to give the dual characterization of completely prime filters!

Theorem: A prime filter *x* is completely prime iff $\downarrow x$ is clopen.

Sketch of Proof: (\Rightarrow)

Sketch of Proof: (\Rightarrow) First suppose *x* is completely prime.

Sketch of Proof: (\Rightarrow) First suppose *x* is completely prime. Assume that $\downarrow x$ is not clopen.

Sketch of Proof: (\Rightarrow) First suppose *x* is completely prime. Assume that $\downarrow x$ is not clopen. Let $U = X_L \setminus \downarrow x$.

Sketch of Proof: (\Rightarrow) First suppose *x* is completely prime. Assume that $\downarrow x$ is not clopen. Let $U = X_L \setminus \downarrow x$. Then $x \in \overline{U}$.

Sketch of Proof: (\Rightarrow) First suppose *x* is completely prime. Assume that $\downarrow x$ is not clopen. Let $U = X_L \setminus \downarrow x$. Then $x \in \overline{U}$. Since *U* is an open upset,

$$U = \bigcup \{ \varphi(a) \mid \varphi(a) \subseteq U \}$$

Sketch of Proof: (\Rightarrow) First suppose *x* is completely prime. Assume that $\downarrow x$ is not clopen. Let $U = X_L \setminus \downarrow x$. Then $x \in \overline{U}$. Since *U* is an open upset,

$$U = \bigcup \{ \varphi(a) \mid \varphi(a) \subseteq U \}$$

Therefore,

$$x \in \overline{U} = \bigcup \{ \varphi(a) \mid \varphi(a) \subseteq U \}$$

Sketch of Proof: (\Rightarrow) First suppose *x* is completely prime. Assume that $\downarrow x$ is not clopen. Let $U = X_L \setminus \downarrow x$. Then $x \in \overline{U}$. Since *U* is an open upset,

$$U = \bigcup \{ \varphi(a) \mid \varphi(a) \subseteq U \}$$

Therefore,

$$x\in \overline{U}=\overline{igcup\{arphi(a)\mid arphi(a)\subseteq U\}}=arphi\left(igcup\{a\mid arphi(a)\subseteq U\}
ight)$$

Sketch of Proof: (\Rightarrow) First suppose *x* is completely prime. Assume that $\downarrow x$ is not clopen. Let $U = X_L \setminus \downarrow x$. Then $x \in \overline{U}$. Since *U* is an open upset,

$$U = \bigcup \{ \varphi(a) \mid \varphi(a) \subseteq U \}$$

Therefore,

$$x\in \overline{U}=\overline{igcup\{arphi(a)\mid arphi(a)\subseteq U\}}=arphi\left(igcup\{a\mid arphi(a)\subseteq U\}
ight)$$

Since *x* is completely prime, there is *a* such that $a \in x$ and $\varphi(a) \subseteq U$.

Sketch of Proof: (\Rightarrow) First suppose *x* is completely prime. Assume that $\downarrow x$ is not clopen. Let $U = X_L \setminus \downarrow x$. Then $x \in \overline{U}$. Since *U* is an open upset,

$$U = \bigcup \{ \varphi(a) \mid \varphi(a) \subseteq U \}$$

Therefore,

$$x\in \overline{U}=\overline{igcup\{arphi(a)\mid arphi(a)\subseteq U\}}=arphi\left(igcup\{a\mid arphi(a)\subseteq U\}
ight)$$

Since *x* is completely prime, there is *a* such that $a \in x$ and $\varphi(a) \subseteq U$. Thus, $x \in \varphi(a) \subseteq U$,

Sketch of Proof: (\Rightarrow) First suppose *x* is completely prime. Assume that $\downarrow x$ is not clopen. Let $U = X_L \setminus \downarrow x$. Then $x \in \overline{U}$. Since *U* is an open upset,

$$U = \bigcup \{ \varphi(a) \mid \varphi(a) \subseteq U \}$$

Therefore,

$$x \in \overline{U} = \overline{\bigcup \{ arphi(a) \mid arphi(a) \subseteq U \}} = arphi \left(igvee \{ a \mid arphi(a) \subseteq U \}
ight)$$

Since *x* is completely prime, there is *a* such that $a \in x$ and $\varphi(a) \subseteq U$. Thus, $x \in \varphi(a) \subseteq U$, a contradiction.
Sketch of Proof: (\Leftarrow)

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$.

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$. Then

$$x \in \varphi\left(\bigvee S\right)$$

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$. Then

$$x \in \varphi\left(\bigvee S\right) = \overline{\bigcup\{\varphi(s) \mid s \in S\}}$$

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$. Then

$$x \in \varphi\left(\bigvee S\right) = \overline{\bigcup\{\varphi(s) \mid s \in S\}}$$

Since $\downarrow x$ is a neighborhood of *x*,

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$. Then

$$x \in \varphi\left(\bigvee S\right) = \overline{\bigcup\{\varphi(s) \mid s \in S\}}$$

Since $\downarrow x$ is a neighborhood of *x*,

 $\downarrow \! x \cap \varphi(s) \neq \varnothing$

for some $s \in S$.

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$. Then

$$x \in \varphi\left(\bigvee S\right) = \overline{\bigcup\{\varphi(s) \mid s \in S\}}$$

Since $\downarrow x$ is a neighborhood of *x*,

for some $s \in S$. Therefore, $s \in x$ and so x is completely prime.

Notation: Y_L = completely prime filters of *L*.

Notation: Y_L = completely prime filters of *L*.

Theorem: *L* is spatial iff Y_L is dense in X_L .

Notation: Y_L = completely prime filters of *L*.

Theorem: *L* is spatial iff Y_L is dense in X_L .

Sketch of Proof: (\Rightarrow)

Notation: Y_L = completely prime filters of *L*.

Theorem: *L* is spatial iff Y_L is dense in X_L .

Sketch of Proof: (\Rightarrow) First suppose *L* is spatial.

Notation: Y_L = completely prime filters of *L*.

Theorem: *L* is spatial iff Y_L is dense in X_L .

Sketch of Proof: (\Rightarrow) First suppose *L* is spatial. Let *U* be nonempty open in *X*_{*L*}.

Notation: Y_L = completely prime filters of *L*.

Theorem: *L* is spatial iff Y_L is dense in X_L .

Sketch of Proof: (\Rightarrow) First suppose *L* is spatial. Let *U* be nonempty open in *X*_{*L*}. Then there are *a*, *b* \in *L* with

 $\varnothing \neq \varphi(a) \setminus \varphi(b) \subseteq U$

Notation: Y_L = completely prime filters of *L*.

Theorem: *L* is spatial iff Y_L is dense in X_L .

Sketch of Proof: (\Rightarrow) First suppose *L* is spatial. Let *U* be nonempty open in *X*_{*L*}. Then there are *a*, *b* \in *L* with

 $\varnothing \neq \varphi(a) \setminus \varphi(b) \subseteq U$

Therefore, $\varphi(a) \not\subseteq \varphi(b)$, so $a \notin b$.

Notation: Y_L = completely prime filters of *L*.

Theorem: *L* is spatial iff Y_L is dense in X_L .

Sketch of Proof: (\Rightarrow) First suppose *L* is spatial. Let *U* be nonempty open in *X*_{*L*}. Then there are *a*, *b* \in *L* with

 $\varnothing \neq \varphi(a) \setminus \varphi(b) \subseteq U$

Therefore, $\varphi(a) \not\subseteq \varphi(b)$, so $a \leq b$. Thus, there is $x \in Y_L$ with $a \in x$ and $b \notin x$.

Notation: Y_L = completely prime filters of *L*.

Theorem: *L* is spatial iff Y_L is dense in X_L .

Sketch of Proof: (\Rightarrow) First suppose *L* is spatial. Let *U* be nonempty open in *X*_{*L*}. Then there are *a*, *b* \in *L* with

 $\varnothing \neq \varphi(a) \setminus \varphi(b) \subseteq U$

Therefore, $\varphi(a) \not\subseteq \varphi(b)$, so $a \not\leq b$. Thus, there is $x \in Y_L$ with $a \in x$ and $b \notin x$. Consequently,

 $Y_L \cap (\varphi(a) \setminus \varphi(b)) \neq \emptyset$

Notation: Y_L = completely prime filters of *L*.

Theorem: *L* is spatial iff Y_L is dense in X_L .

Sketch of Proof: (\Rightarrow) First suppose *L* is spatial. Let *U* be nonempty open in *X*_{*L*}. Then there are *a*, *b* \in *L* with

 $\varnothing \neq \varphi(a) \setminus \varphi(b) \subseteq U$

Therefore, $\varphi(a) \not\subseteq \varphi(b)$, so $a \not\leq b$. Thus, there is $x \in Y_L$ with $a \in x$ and $b \notin x$. Consequently,

 $Y_L \cap (\varphi(a) \setminus \varphi(b)) \neq \emptyset$

So $Y_L \cap U \neq \emptyset$

Notation: Y_L = completely prime filters of *L*.

Theorem: *L* is spatial iff Y_L is dense in X_L .

Sketch of Proof: (\Rightarrow) First suppose *L* is spatial. Let *U* be nonempty open in *X*_{*L*}. Then there are *a*, *b* \in *L* with

 $\varnothing \neq \varphi(a) \setminus \varphi(b) \subseteq U$

Therefore, $\varphi(a) \not\subseteq \varphi(b)$, so $a \not\leq b$. Thus, there is $x \in Y_L$ with $a \in x$ and $b \notin x$. Consequently,

 $Y_L \cap (\varphi(a) \setminus \varphi(b)) \neq \emptyset$

So $Y_L \cap U \neq \emptyset$ and so Y_L is dense in X_L .

Sketch of Proof: (\Leftarrow)

Sketch of Proof: (\Leftarrow) Next suppose Y_L is dense in X_L .

Sketch of Proof: (\Leftarrow) Next suppose Y_L is dense in X_L . Let $a \leq b$.

Sketch of Proof: (\Leftarrow) Next suppose Y_L is dense in X_L . Let $a \leq b$. Then

 $\varphi(a)\setminus\varphi(b)\neq\varnothing$

Sketch of Proof: (\Leftarrow) Next suppose Y_L is dense in X_L . Let $a \leq b$. Then

 $\varphi(a)\setminus\varphi(b)\neq\varnothing$

Therefore, there is

 $x \in Y_L \cap (\varphi(a) \setminus \varphi(b))$

Sketch of Proof: (\Leftarrow) Next suppose Y_L is dense in X_L . Let $a \leq b$. Then

 $\varphi(a)\setminus\varphi(b)\neq\varnothing$

Therefore, there is

 $x \in Y_L \cap (\varphi(a) \setminus \varphi(b))$

Thus, $a \in x$ and $b \notin x$,

Sketch of Proof: (\Leftarrow) Next suppose Y_L is dense in X_L . Let $a \leq b$. Then

 $\varphi(a)\setminus\varphi(b)\neq\varnothing$

Therefore, there is

 $x \in Y_L \cap (\varphi(a) \setminus \varphi(b))$

Thus, $a \in x$ and $b \notin x$, yielding a completely prime filter separating *a* and *b*.

Sketch of Proof: (\Leftarrow) Next suppose Y_L is dense in X_L . Let $a \leq b$. Then

 $\varphi(a)\setminus\varphi(b)\neq\varnothing$

Therefore, there is

 $x \in Y_L \cap (\varphi(a) \setminus \varphi(b))$

Thus, $a \in x$ and $b \notin x$, yielding a completely prime filter separating *a* and *b*.

Consequently, *L* is spatial.

For a topological space *S* let X_{OS} be the Esakia space of the frame OS.

For a topological space *S* let X_{OS} be the Esakia space of the frame OS.

Recall: $\varepsilon : S \to X_{OS}$ is given by

 $\varepsilon(s) = \{U \in \mathcal{OS} \mid x \in U\}$

For a topological space *S* let X_{OS} be the Esakia space of the frame OS.

Recall: $\varepsilon : S \to X_{OS}$ is given by

$$\varepsilon(s) = \{U \in \mathcal{O}S \mid x \in U\}$$

Theorem: The image of ε lands in Y_{OS} and $\varepsilon : S \to Y_{OS}$ is the soberification of *S*.

Min and Max

Min and Max

For a subset *S* of a poset *P*, let $\min S$ and $\max S$ denote the minimal and maximal points of *S*.

Min and Max

For a subset *S* of a poset *P*, let $\min S$ and $\max S$ denote the minimal and maximal points of *S*.

Esakia: Let *X* be a Priestley space and let *F* be a closed subset of *X*.
Min and Max

For a subset *S* of a poset *P*, let $\min S$ and $\max S$ denote the minimal and maximal points of *S*.

Esakia: Let *X* be a Priestley space and let *F* be a closed subset of *X*. Then for each $x \in F$ there are $m \in \min F$ and $M \in \max F$ such that $m \leq x \leq M$.

Min and Max

For a subset *S* of a poset *P*, let $\min S$ and $\max S$ denote the minimal and maximal points of *S*.

Esakia: Let *X* be a Priestley space and let *F* be a closed subset of *X*. Then for each $x \in F$ there are $m \in \min F$ and $M \in \max F$ such that $m \leq x \leq M$.

In particular, for any bounded distributive lattice *L*, we have

$$X_L = \uparrow \min X_L$$

Min and Max

For a subset *S* of a poset *P*, let $\min S$ and $\max S$ denote the minimal and maximal points of *S*.

Esakia: Let *X* be a Priestley space and let *F* be a closed subset of *X*. Then for each $x \in F$ there are $m \in \min F$ and $M \in \max F$ such that $m \leq x \leq M$.

In particular, for any bounded distributive lattice *L*, we have

 $X_L = \uparrow \min X_L$ and $X_L = \downarrow \max X_L$

Recall: A frame *L* is compact if $\bigvee S = 1$ implies $\bigvee T = 1$ for some finite subset *T* of *S*.

Recall: A frame *L* is compact if $\bigvee S = 1$ implies $\bigvee T = 1$ for some finite subset *T* of *S*.

Theorem: A frame *L* is compact iff $\min X_L \subseteq Y_L$.

Recall: A frame *L* is compact if $\bigvee S = 1$ implies $\bigvee T = 1$ for some finite subset *T* of *S*.

Theorem: A frame *L* is compact iff $\min X_L \subseteq Y_L$.

Recall: We say that *b* is well inside *a* and write $b \prec a$ provided $b^* \lor a = 1$.

Recall: A frame *L* is compact if $\bigvee S = 1$ implies $\bigvee T = 1$ for some finite subset *T* of *S*.

Theorem: A frame *L* is compact iff $\min X_L \subseteq Y_L$.

Recall: We say that *b* is well inside *a* and write $b \prec a$ provided $b^* \lor a = 1$.

Lemma: $b \prec a$ iff $\downarrow \varphi(b) \subseteq \varphi(a)$.

Recall: A frame *L* is compact if $\bigvee S = 1$ implies $\bigvee T = 1$ for some finite subset *T* of *S*.

Theorem: A frame *L* is compact iff $\min X_L \subseteq Y_L$.

Recall: We say that *b* is well inside *a* and write $b \prec a$ provided $b^* \lor a = 1$.

Lemma: $b \prec a$ iff $\downarrow \varphi(b) \subseteq \varphi(a)$.

Recall: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

Definition: For $a \in L$, the regular part of $\varphi(a)$ is

$$R_a = \bigcup \{ \varphi(b) \mid b \prec a \}$$

Definition: For $a \in L$, the regular part of $\varphi(a)$ is

$$R_a = \bigcup \{ \varphi(b) \mid b \prec a \}$$

Lemma: $R_a = -\downarrow \uparrow - \varphi(a)$

Definition: For $a \in L$, the regular part of $\varphi(a)$ is

$$R_a = \bigcup \{ \varphi(b) \mid b \prec a \}$$

Lemma: $R_a = -\downarrow \uparrow - \varphi(a)$

Theorem: *L* is regular iff R_a is dense in $\varphi(a)$ for each $a \in L$.

Definition: For $a \in L$, the regular part of $\varphi(a)$ is

$$R_a = \bigcup \{ \varphi(b) \mid b \prec a \}$$

Lemma: $R_a = -\downarrow \uparrow - \varphi(a)$

Theorem: *L* is regular iff R_a is dense in $\varphi(a)$ for each $a \in L$.

Corollary: The category **KRFrm** of compact regular frames is dually equivalent to the category of extremally order disconnected Esakia spaces satisfying

$$1 \quad \min X \subseteq Y$$

2 The regular part of each clopen upset U is dense in U

By Isbell duality, **KRFrm** is dually equivalent to the category **KHaus** of compact Hausdorff spaces.

By Isbell duality, **KRFrm** is dually equivalent to the category **KHaus** of compact Hausdorff spaces.

Thus, **KHaus** is equivalent to the above category of extremally order disconnected Esakia spaces.

By Isbell duality, **KRFrm** is dually equivalent to the category **KHaus** of compact Hausdorff spaces.

Thus, **KHaus** is equivalent to the above category of extremally order disconnected Esakia spaces.

How can we realize such an equivalence?

By Isbell duality, **KRFrm** is dually equivalent to the category **KHaus** of compact Hausdorff spaces.

Thus, **KHaus** is equivalent to the above category of extremally order disconnected Esakia spaces.

How can we realize such an equivalence?

Lemma: If *L* is a regular frame, then $Y_L \subseteq \min X_L$.

Suppose $x \in Y_L$.

Suppose $x \in Y_L$. Then $\downarrow x$ is clopen.

Suppose $x \in Y_L$. Then $\downarrow x$ is clopen. If $x \notin \min X_L$, then there is y < x.

Suppose $x \in Y_L$. Then $\downarrow x$ is clopen. If $x \notin \min X_L$, then there is y < x. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$.

Suppose $x \in Y_L$. Then $\downarrow x$ is clopen. If $x \notin \min X_L$, then there is y < x. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_a be the regular part of $\varphi(a)$.

Suppose $x \in Y_L$. Then $\downarrow x$ is clopen. If $x \notin \min X_L$, then there is y < x. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_a be the regular part of $\varphi(a)$. Then:

Suppose $x \in Y_L$. Then $\downarrow x$ is clopen. If $x \notin \min X_L$, then there is y < x. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_a be the regular part of $\varphi(a)$. Then:

$$x \notin R_a$$

Suppose $x \in Y_L$. Then $\downarrow x$ is clopen. If $x \notin \min X_L$, then there is y < x. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_a be the regular part of $\varphi(a)$. Then:

 $x \notin R_a$ so $\downarrow x \cap R_a = \varnothing$

Suppose $x \in Y_L$. Then $\downarrow x$ is clopen. If $x \notin \min X_L$, then there is y < x. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_a be the regular part of $\varphi(a)$. Then:

$$x \notin R_a$$
 so $\downarrow x \cap R_a = \emptyset$ and hence $\downarrow x \cap \overline{R_a} = \emptyset$

Suppose $x \in Y_L$. Then $\downarrow x$ is clopen. If $x \notin \min X_L$, then there is y < x. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_a be the regular part of $\varphi(a)$. Then:

$$x \notin R_a$$
 so $\downarrow x \cap R_a = \emptyset$ and hence $\downarrow x \cap \overline{R_a} = \emptyset$

Since *L* is regular, $\downarrow x \cap \varphi(a) = \emptyset$,

Suppose $x \in Y_L$. Then $\downarrow x$ is clopen. If $x \notin \min X_L$, then there is y < x. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_a be the regular part of $\varphi(a)$. Then:

$$x \notin R_a$$
 so $\downarrow x \cap R_a = \emptyset$ and hence $\downarrow x \cap \overline{R_a} = \emptyset$

Since *L* is regular, $\downarrow x \cap \varphi(a) = \emptyset$, a contradiction.

Theorem: If *L* is compact regular, then $Y_L = \min X_L$.

Theorem: If *L* is compact regular, then $Y_L = \min X_L$.

Corollary: Compact Hausdorff spaces are realized as minimal spectra of their frames of opens.

Theorem: If *L* is compact regular, then $Y_L = \min X_L$.

Corollary: Compact Hausdorff spaces are realized as minimal spectra of their frames of opens.

Theorem: If *L* is compact regular, then $\max X_L$ is homeomorphic to the Gleason cover of Y_L .

Theorem: If *L* is compact regular, then $Y_L = \min X_L$.

Corollary: Compact Hausdorff spaces are realized as minimal spectra of their frames of opens.

Theorem: If *L* is compact regular, then $\max X_L$ is homeomorphic to the Gleason cover of Y_L .

Corollary: Gleason covers of compact Hausdorff spaces are realized as maximal spectra of their frames of opens.
Realization of $\alpha \omega$

Realization of $\alpha\omega$

 $\alpha\omega$ = one-point compactification of ω

Realization of $\alpha\omega$

 $\alpha\omega$ = one-point compactification of ω

 $L = \mathcal{O}(\alpha \omega)$

Realization of $\alpha \omega$

 $\alpha\omega$ = one-point compactification of ω

 $L=\mathcal{O}(\alpha\omega)$

Realization of $\beta\omega$

Realization of $\beta \omega$

 $\beta \omega$ = Stone-Čech of ω

Realization of $\beta \omega$

 $\beta\omega$ = Stone-Čech of ω

 $L = \mathcal{O}(\beta \omega)$

Realization of $\beta \omega$

 $\beta \omega$ = Stone-Čech of ω

 $L = \mathcal{O}(\beta \omega)$

Let $h: L \to M$ be a homomorphism of frames.

Let $h : L \to M$ be a homomorphism of frames. What is the kernel of h?

Let $h : L \to M$ be a homomorphism of frames. What is the kernel of h?

Observe that *h* has the right adjoint $r : M \to L$ given by

$$r(b) = \bigvee \{ x \in L \mid hx \leqslant b \}$$

Let $h : L \to M$ be a homomorphism of frames. What is the kernel of h?

Observe that *h* has the right adjoint $r : M \to L$ given by

$$r(b) = \bigvee \{ x \in L \mid hx \leqslant b \}$$

Let $j : L \to L$ be the composition $j = r \circ h$.

Let $h : L \to M$ be a homomorphism of frames. What is the kernel of h?

Observe that *h* has the right adjoint $r : M \to L$ given by

$$r(b) = \bigvee \{ x \in L \mid hx \leqslant b \}$$

Let $j : L \to L$ be the composition $j = r \circ h$. Then j satisfies:

Let $h : L \to M$ be a homomorphism of frames. What is the kernel of h?

Observe that *h* has the right adjoint $r : M \to L$ given by

$$r(b) = \bigvee \{ x \in L \mid hx \leqslant b \}$$

Let $j : L \to L$ be the composition $j = r \circ h$. Then j satisfies:

Let $h : L \to M$ be a homomorphism of frames. What is the kernel of h?

Observe that *h* has the right adjoint $r : M \to L$ given by

$$r(b) = \bigvee \{ x \in L \mid hx \leqslant b \}$$

Let $j : L \to L$ be the composition $j = r \circ h$. Then j satisfies:

Let $h : L \to M$ be a homomorphism of frames. What is the kernel of h?

Observe that *h* has the right adjoint $r : M \to L$ given by

$$r(b) = \bigvee \{ x \in L \mid hx \leqslant b \}$$

Let $j : L \to L$ be the composition $j = r \circ h$. Then j satisfies:

a ≤ ja
jja = ja
j(a ∧ b) = ja ∧ jb

Let $h : L \to M$ be a homomorphism of frames. What is the kernel of h?

Observe that *h* has the right adjoint $r : M \to L$ given by

$$r(b) = \bigvee \{ x \in L \mid hx \leqslant b \}$$

Let $j : L \to L$ be the composition $j = r \circ h$. Then j satisfies:

a ≤ ja
jja = ja
j(a ∧ b) = ja ∧ jb

Such functions on *L* are called nuclei.

Given a nucleus j on a frame L, let L_j be the fixpoints of j:

$$L_j = \{a \in L \mid a = ja\}$$

Given a nucleus *j* on a frame *L*, let L_j be the fixpoints of *j*:

$$L_j = \{a \in L \mid a = ja\}$$

Then L_j is a frame where meet is calculated as in L and the join is given by

 $\bigsqcup S = j\left(\bigvee S\right)$

Given a nucleus *j* on a frame *L*, let L_j be the fixpoints of *j*:

$$L_j = \{a \in L \mid a = ja\}$$

Then L_j is a frame where meet is calculated as in L and the join is given by

 $\bigsqcup S = j\left(\bigvee S\right)$

Theorem. Frame homomorphisms are characterized by nuclei.

Given a nucleus *j* on a frame *L*, let L_j be the fixpoints of *j*:

$$L_j = \{a \in L \mid a = ja\}$$

Then L_j is a frame where meet is calculated as in L and the join is given by

 $\bigsqcup S = j\left(\bigvee S\right)$

Theorem. Frame homomorphisms are characterized by nuclei.

Thus, sublocales are characterized by nuclei.

N(L) =all nuclei on L

N(L) =all nuclei on L

 $j \leq k$ iff $ja \leq ka$ for each $a \in L$

N(L) =all nuclei on L

 $j \leq k$ iff $ja \leq ka$ for each $a \in L$

Simmons: N(L) is a frame.

N(L) =all nuclei on L

 $j \leq k$ iff $ja \leq ka$ for each $a \in L$

Simmons: N(L) is a frame.

N(L) plays a key role in many considerations.

N(L) =all nuclei on L

 $j \leq k$ iff $ja \leq ka$ for each $a \in L$

Simmons: N(L) is a frame.

N(L) plays a key role in many considerations.

L embeds in N(L).

N(L) =all nuclei on L

 $j \leq k$ iff $ja \leq ka$ for each $a \in L$

Simmons: N(L) is a frame.

N(L) plays a key role in many considerations.

L embeds in N(L). In fact, *L* embeds in the booleanization of N(L) (Funayama).

N(L) =all nuclei on L

 $j \leq k$ iff $ja \leq ka$ for each $a \in L$

Simmons: N(L) is a frame.

N(L) plays a key role in many considerations.

L embeds in N(L). In fact, *L* embeds in the booleanization of N(L) (Funayama).

The study of the tower

$$L \to N(L) \to N^2(L) \to N^3(L) \to \cdots$$

N(L) =all nuclei on L

 $j \leq k$ iff $ja \leq ka$ for each $a \in L$

Simmons: N(L) is a frame.

N(L) plays a key role in many considerations.

L embeds in N(L). In fact, *L* embeds in the booleanization of N(L) (Funayama).

The study of the tower

$$L \to N(L) \to N^2(L) \to N^3(L) \to \cdots$$

is closely related to the Cantor-Bendixson analysis of derivative.

N(L) dually

${\cal N}(L)$ dually

Let *L* be a frame and X_L its Esakia dual.

${\cal N}(L)$ dually

Let *L* be a frame and X_L its Esakia dual.

Definition:

N(L) dually

Let *L* be a frame and X_L its Esakia dual.

Definition:

Q Call a closed subset F of X_L nuclear provided

U clopen $\Rightarrow \downarrow (U \cap F)$ clopen
${\cal N}(L)$ dually

Let *L* be a frame and X_L its Esakia dual.

Definition:

() Call a closed subset F of X_L nuclear provided

U clopen $\Rightarrow \downarrow (U \cap F)$ clopen

2 Let $N(X_L)$ be the poset of all nuclear subsets of X_L ordered by inclusion.

N(L) dually

Let *L* be a frame and X_L its Esakia dual.

Definition:

() Call a closed subset F of X_L nuclear provided

U clopen $\Rightarrow \downarrow (U \cap F)$ clopen

2 Let $N(X_L)$ be the poset of all nuclear subsets of X_L ordered by inclusion.

Theorem: N(L) is dually isomorphic to $N(X_L)$.

A space is scattered if each nonempty closed subspace has an isolated point.

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point *x* is weakly isolated if there is an open set *U* such that $x \in U \subseteq \overline{\{x\}}$.

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point *x* is weakly isolated if there is an open set *U* such that $x \in U \subseteq \overline{\{x\}}$.

If N(L) is spatial, then so is L.

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point *x* is weakly isolated if there is an open set *U* such that $x \in U \subseteq \overline{\{x\}}$.

If N(L) is spatial, then so is L. Thus, when studying spatiality of N(L), wlog we may assume that L is spatial.

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point *x* is weakly isolated if there is an open set *U* such that $x \in U \subseteq \overline{\{x\}}$.

If N(L) is spatial, then so is L. Thus, when studying spatiality of N(L), wlog we may assume that L is spatial.

Theorem:

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point *x* is weakly isolated if there is an open set *U* such that $x \in U \subseteq \overline{\{x\}}$.

If N(L) is spatial, then so is *L*. Thus, when studying spatiality of N(L), wlog we may assume that *L* is spatial.

Theorem:

• N(L) is spatial iff Y_L is weakly scattered.

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point *x* is weakly isolated if there is an open set *U* such that $x \in U \subseteq \overline{\{x\}}$.

If N(L) is spatial, then so is *L*. Thus, when studying spatiality of N(L), wlog we may assume that *L* is spatial.

Theorem:

- N(L) is spatial iff Y_L is weakly scattered.
- **2** In addition, N(L) is boolean iff Y_L is scattered.

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point *x* is weakly isolated if there is an open set *U* such that $x \in U \subseteq \overline{\{x\}}$.

If N(L) is spatial, then so is *L*. Thus, when studying spatiality of N(L), wlog we may assume that *L* is spatial.

Theorem:

- N(L) is spatial iff Y_L is weakly scattered.
- **2** In addition, N(L) is boolean iff Y_L is scattered.

From this we can derive the well-known results of Simmons and Isbell.

Let *P* be a poset and *OP* the topology of upsets (Alexandroff topology).

Let P be a poset and OP the topology of upsets (Alexandroff topology).

Theorem: N(OP) is spatial iff the infinite binary tree is not isomorphic to a subposet of *P*.

Let *P* be a poset and *OP* the topology of upsets (Alexandroff topology).

Theorem: N(OP) is spatial iff the infinite binary tree is not isomorphic to a subposet of *P*.

Collaborators

Collaborators

Collaborators

Many thanks to my collaborators!

• Silvio Ghilardi (Milan)

- Silvio Ghilardi (Milan)
- Mamuka Jibladze and David Gabelaia (Tbilisi)

- Silvio Ghilardi (Milan)
- Mamuka Jibladze and David Gabelaia (Tbilisi)
- Pat Morandi (NMSU)

- Silvio Ghilardi (Milan)
- Mamuka Jibladze and David Gabelaia (Tbilisi)
- Pat Morandi (NMSU)
- Angel Zaldivar and Francisco Avila (Mexico)

Thank You!