A non-pointfree approach to pointfree topology

Guram Bezhanishvili
New Mexico State University

BLAST 2019
University of Colorado, Boulder
May 20-24, 2019

Outline

Outline

Tutorial I: basics of pointfree topology

Outline

Tutorial I: basics of pointfree topology

Tutorial II: basics of Priestley and Esakia dualities

Outline

Tutorial I: basics of pointfree topology

Tutorial II: basics of Priestley and Esakia dualities

Tutorial III: the study of frames through their spectra of prime filters

Tutorial III

The study of frames through their spectra of prime filters

Recap

Recap

A frame is a complete lattice L satisfying

$$
a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}
$$

Recap

A frame is a complete lattice L satisfying

$$
a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}
$$

A frame homomorphism is a map $f: L \rightarrow M$ preserving finite meets and arbitrary joins.

Recap

A frame is a complete lattice L satisfying

$$
a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}
$$

A frame homomorphism is a map $f: L \rightarrow M$ preserving finite meets and arbitrary joins.

Frm $=$ the category of frames and frame homomorphisms.

Recap

A frame is a complete lattice L satisfying

$$
a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}
$$

A frame homomorphism is a map $f: L \rightarrow M$ preserving finite meets and arbitrary joins.

Frm $=$ the category of frames and frame homomorphisms.
An Esakia space is a Priestley space $(X, \mathcal{T}, \leqslant)$ satisfying

$$
U \text { clopen } \Rightarrow \downarrow U \text { clopen }
$$

Recap

A frame is a complete lattice L satisfying

$$
a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}
$$

A frame homomorphism is a map $f: L \rightarrow M$ preserving finite meets and arbitrary joins.

Frm $=$ the category of frames and frame homomorphisms.
An Esakia space is a Priestley space $(X, \mathcal{T}, \leqslant)$ satisfying

$$
U \text { clopen } \Rightarrow \downarrow U \text { clopen }
$$

An Esakia space is extremally order disconnected if

$$
U \text { open upset } \Rightarrow \bar{U} \text { open }
$$

Pultr-Sichler duality

Pultr-Sichler duality

Theorem: Let L be a bounded distributive lattice and X_{L} its Priestley space. Then L is a frame iff X_{L} is an extremally order disconnected Esakia space.

Pultr-Sichler duality

Theorem: Let L be a bounded distributive lattice and X_{L} its Priestley space. Then L is a frame iff X_{L} is an extremally order disconnected Esakia space.

EDEsa $=$ the category of extremally order disconnected Esakia spaces and continuous order preserving maps $f: X \rightarrow Y$ satisfying

$$
f^{-1}(\bar{V})=\overline{f^{-1}(V)}
$$

for each open upset V of Y.

Pultr-Sichler duality

Theorem: Let L be a bounded distributive lattice and X_{L} its Priestley space. Then L is a frame iff X_{L} is an extremally order disconnected Esakia space.

EDEsa $=$ the category of extremally order disconnected Esakia spaces and continuous order preserving maps $f: X \rightarrow Y$ satisfying

$$
f^{-1}(\bar{V})=\overline{f^{-1}(V)}
$$

for each open upset V of Y.
Theorem: Frm is dually equivalent to EDEsa.

Pultr-Sichler duality

Theorem: Let L be a bounded distributive lattice and X_{L} its Priestley space. Then L is a frame iff X_{L} is an extremally order disconnected Esakia space.

EDEsa $=$ the category of extremally order disconnected Esakia spaces and continuous order preserving maps $f: X \rightarrow Y$ satisfying

$$
f^{-1}(\bar{V})=\overline{f^{-1}(V)}
$$

for each open upset V of Y.
Theorem: Frm is dually equivalent to EDEsa.
Goal: Study frames by means of their extremally order disconnected Esakia spaces.

Characterization of points

Characterization of points

Let L be a frame and X_{L} its Esakia space.

Characterization of points

Let L be a frame and X_{L} its Esakia space.

Recall: A point of a frame L is a frame homomorphism $p: L \rightarrow 2$.

Characterization of points

Let L be a frame and X_{L} its Esakia space.

Recall: A point of a frame L is a frame homomorphism $p: L \rightarrow \mathbf{2}$. Points are in 1-1 correspondence with completely prime filters.

Characterization of points

Let L be a frame and X_{L} its Esakia space.

Recall: A point of a frame L is a frame homomorphism $p: L \rightarrow \mathbf{2}$. Points are in 1-1 correspondence with completely prime filters. Elements of X_{L} are prime filters of L.

Characterization of points

Let L be a frame and X_{L} its Esakia space.

Recall: A point of a frame L is a frame homomorphism $p: L \rightarrow \mathbf{2}$. Points are in 1-1 correspondence with completely prime filters. Elements of X_{L} are prime filters of L. Thus, to recognize points of L inside X_{L}, all we need to do is to give the dual characterization of completely prime filters!

Characterization of points

Let L be a frame and X_{L} its Esakia space.

Recall: A point of a frame L is a frame homomorphism $p: L \rightarrow \mathbf{2}$. Points are in 1-1 correspondence with completely prime filters. Elements of X_{L} are prime filters of L. Thus, to recognize points of L inside X_{L}, all we need to do is to give the dual characterization of completely prime filters!

Theorem: A prime filter x is completely prime iff $\downarrow x$ is clopen.

Characterization of points

Characterization of points

Sketch of Proof: (\Rightarrow)

Characterization of points

Sketch of Proof: (\Rightarrow) First suppose x is completely prime.

Characterization of points

Sketch of Proof: (\Rightarrow) First suppose x is completely prime. Assume that $\downarrow x$ is not clopen.

Characterization of points

Sketch of Proof: (\Rightarrow) First suppose x is completely prime.
Assume that $\downarrow x$ is not clopen. Let $U=X_{L} \backslash \downarrow x$.

Characterization of points

Sketch of Proof: (\Rightarrow) First suppose x is completely prime. Assume that $\downarrow x$ is not clopen. Let $U=X_{L} \backslash \downarrow x$. Then $x \in \bar{U}$.

Characterization of points

Sketch of Proof: (\Rightarrow) First suppose x is completely prime. Assume that $\downarrow x$ is not clopen. Let $U=X_{L} \backslash \downarrow x$. Then $x \in \bar{U}$. Since
U is an open upset,

$$
U=\bigcup\{\varphi(a) \mid \varphi(a) \subseteq U\}
$$

Characterization of points

Sketch of Proof: (\Rightarrow) First suppose x is completely prime. Assume that $\downarrow x$ is not clopen. Let $U=X_{L} \backslash \downarrow x$. Then $x \in \bar{U}$. Since
U is an open upset,

$$
U=\bigcup\{\varphi(a) \mid \varphi(a) \subseteq U\}
$$

Therefore,

$$
x \in \bar{U}=\overline{\bigcup\{\varphi(a) \mid \varphi(a) \subseteq U\}}
$$

Characterization of points

Sketch of Proof: (\Rightarrow) First suppose x is completely prime. Assume that $\downarrow x$ is not clopen. Let $U=X_{L} \backslash \downarrow x$. Then $x \in \bar{U}$. Since
U is an open upset,

$$
U=\bigcup\{\varphi(a) \mid \varphi(a) \subseteq U\}
$$

Therefore,

$$
x \in \bar{U}=\overline{\bigcup\{\varphi(a) \mid \varphi(a) \subseteq U\}}=\varphi(\bigvee\{a \mid \varphi(a) \subseteq U\})
$$

Characterization of points

Sketch of Proof: (\Rightarrow) First suppose x is completely prime. Assume that $\downarrow x$ is not clopen. Let $U=X_{L} \backslash \downarrow x$. Then $x \in \bar{U}$. Since U is an open upset,

$$
U=\bigcup\{\varphi(a) \mid \varphi(a) \subseteq U\}
$$

Therefore,

$$
x \in \bar{U}=\overline{\bigcup\{\varphi(a) \mid \varphi(a) \subseteq U\}}=\varphi(\bigvee\{a \mid \varphi(a) \subseteq U\})
$$

Since x is completely prime, there is a such that $a \in x$ and $\varphi(a) \subseteq U$.

Characterization of points

Sketch of Proof: (\Rightarrow) First suppose x is completely prime. Assume that $\downarrow x$ is not clopen. Let $U=X_{L} \backslash \downarrow x$. Then $x \in \bar{U}$. Since U is an open upset,

$$
U=\bigcup\{\varphi(a) \mid \varphi(a) \subseteq U\}
$$

Therefore,

$$
x \in \bar{U}=\overline{\bigcup\{\varphi(a) \mid \varphi(a) \subseteq U\}}=\varphi(\bigvee\{a \mid \varphi(a) \subseteq U\})
$$

Since x is completely prime, there is a such that $a \in x$ and $\varphi(a) \subseteq U$. Thus, $x \in \varphi(a) \subseteq U$,

Characterization of points

Sketch of Proof: (\Rightarrow) First suppose x is completely prime. Assume that $\downarrow x$ is not clopen. Let $U=X_{L} \backslash \downarrow x$. Then $x \in \bar{U}$. Since U is an open upset,

$$
U=\bigcup\{\varphi(a) \mid \varphi(a) \subseteq U\}
$$

Therefore,

$$
x \in \bar{U}=\overline{\bigcup\{\varphi(a) \mid \varphi(a) \subseteq U\}}=\varphi(\bigvee\{a \mid \varphi(a) \subseteq U\})
$$

Since x is completely prime, there is a such that $a \in x$ and $\varphi(a) \subseteq U$. Thus, $x \in \varphi(a) \subseteq U$, a contradiction.

Characterization of points

Characterization of points

Sketch of Proof: (\Leftarrow)

Characterization of points

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$.

Characterization of points

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$. Then

$$
x \in \varphi(\bigvee S)
$$

Characterization of points

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$. Then

$$
x \in \varphi(\bigvee S)=\overline{\bigcup\{\varphi(s) \mid s \in S\}}
$$

Characterization of points

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$. Then

$$
x \in \varphi(\bigvee S)=\overline{\bigcup\{\varphi(s) \mid s \in S\}}
$$

Since $\downarrow x$ is a neighborhood of x,

Characterization of points

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$. Then

$$
x \in \varphi(\bigvee S)=\overline{\bigcup\{\varphi(s) \mid s \in S\}}
$$

Since $\downarrow x$ is a neighborhood of x,

$$
\downarrow x \cap \varphi(s) \neq \varnothing
$$

for some $s \in S$.

Characterization of points

Sketch of Proof: (\Leftarrow) Next suppose $\downarrow x$ is clopen and $\bigvee S \in x$. Then

$$
x \in \varphi(\bigvee S)=\overline{\bigcup\{\varphi(s) \mid s \in S\}}
$$

Since $\downarrow x$ is a neighborhood of x,

$$
\downarrow x \cap \varphi(s) \neq \varnothing
$$

for some $s \in S$. Therefore, $s \in x$ and so x is completely prime.

Spatial frames

Spatial frames

Notation: $Y_{L}=$ completely prime filters of L.

Spatial frames

Notation: $Y_{L}=$ completely prime filters of L.
Theorem: L is spatial iff Y_{L} is dense in X_{L}.

Spatial frames

Notation: $Y_{L}=$ completely prime filters of L.
Theorem: L is spatial iff Y_{L} is dense in X_{L}. Sketch of Proof: (\Rightarrow)

Spatial frames

Notation: $Y_{L}=$ completely prime filters of L.
Theorem: L is spatial iff Y_{L} is dense in X_{L}.
Sketch of Proof: (\Rightarrow) First suppose L is spatial.

Spatial frames

Notation: $Y_{L}=$ completely prime filters of L.
Theorem: L is spatial iff Y_{L} is dense in X_{L}.
Sketch of Proof: (\Rightarrow) First suppose L is spatial. Let U be nonempty open in X_{L}.

Spatial frames

Notation: $Y_{L}=$ completely prime filters of L.
Theorem: L is spatial iff Y_{L} is dense in X_{L}.
Sketch of Proof: (\Rightarrow) First suppose L is spatial. Let U be nonempty open in X_{L}. Then there are $a, b \in L$ with

$$
\varnothing \neq \varphi(a) \backslash \varphi(b) \subseteq U
$$

Spatial frames

Notation: $Y_{L}=$ completely prime filters of L.
Theorem: L is spatial iff Y_{L} is dense in X_{L}.
Sketch of Proof: (\Rightarrow) First suppose L is spatial. Let U be nonempty open in X_{L}. Then there are $a, b \in L$ with

$$
\varnothing \neq \varphi(a) \backslash \varphi(b) \subseteq U
$$

Therefore, $\varphi(a) \nsubseteq \varphi(b)$, so $a \nless b$.

Spatial frames

Notation: $Y_{L}=$ completely prime filters of L.
Theorem: L is spatial iff Y_{L} is dense in X_{L}.
Sketch of Proof: (\Rightarrow) First suppose L is spatial. Let U be nonempty open in X_{L}. Then there are $a, b \in L$ with

$$
\varnothing \neq \varphi(a) \backslash \varphi(b) \subseteq U
$$

Therefore, $\varphi(a) \nsubseteq \varphi(b)$, so $a \nless b$. Thus, there is $x \in Y_{L}$ with $a \in x$ and $b \notin x$.

Spatial frames

Notation: $Y_{L}=$ completely prime filters of L.
Theorem: L is spatial iff Y_{L} is dense in X_{L}.
Sketch of Proof: (\Rightarrow) First suppose L is spatial. Let U be nonempty open in X_{L}. Then there are $a, b \in L$ with

$$
\varnothing \neq \varphi(a) \backslash \varphi(b) \subseteq U
$$

Therefore, $\varphi(a) \nsubseteq \varphi(b)$, so $a \nless b$. Thus, there is $x \in Y_{L}$ with $a \in x$ and $b \notin x$. Consequently,

$$
Y_{L} \cap(\varphi(a) \backslash \varphi(b)) \neq \varnothing
$$

Spatial frames

Notation: $Y_{L}=$ completely prime filters of L.
Theorem: L is spatial iff Y_{L} is dense in X_{L}.
Sketch of Proof: (\Rightarrow) First suppose L is spatial. Let U be nonempty open in X_{L}. Then there are $a, b \in L$ with

$$
\varnothing \neq \varphi(a) \backslash \varphi(b) \subseteq U
$$

Therefore, $\varphi(a) \nsubseteq \varphi(b)$, so $a \nless b$. Thus, there is $x \in Y_{L}$ with $a \in x$ and $b \notin x$. Consequently,

$$
Y_{L} \cap(\varphi(a) \backslash \varphi(b)) \neq \varnothing
$$

So $Y_{L} \cap U \neq \varnothing$

Spatial frames

Notation: $Y_{L}=$ completely prime filters of L.
Theorem: L is spatial iff Y_{L} is dense in X_{L}.
Sketch of Proof: (\Rightarrow) First suppose L is spatial. Let U be nonempty open in X_{L}. Then there are $a, b \in L$ with

$$
\varnothing \neq \varphi(a) \backslash \varphi(b) \subseteq U
$$

Therefore, $\varphi(a) \nsubseteq \varphi(b)$, so $a \nless b$. Thus, there is $x \in Y_{L}$ with $a \in x$ and $b \notin x$. Consequently,

$$
Y_{L} \cap(\varphi(a) \backslash \varphi(b)) \neq \varnothing
$$

So $Y_{L} \cap U \neq \varnothing$ and so Y_{L} is dense in X_{L}.

Spatial frames

Spatial frames

Sketch of Proof: (\Leftarrow)

Spatial frames

Sketch of Proof: (\Leftarrow) Next suppose Y_{L} is dense in X_{L}.

Spatial frames

Sketch of Proof: (\Leftarrow) Next suppose Y_{L} is dense in X_{L}. Let $a \nless b$.

Spatial frames

Sketch of Proof: (\Leftarrow) Next suppose Y_{L} is dense in X_{L}. Let $a \nless b$. Then

$$
\varphi(a) \backslash \varphi(b) \neq \varnothing
$$

Spatial frames

Sketch of Proof: (\Leftarrow) Next suppose Y_{L} is dense in X_{L}. Let $a \nless b$. Then

$$
\varphi(a) \backslash \varphi(b) \neq \varnothing
$$

Therefore, there is

$$
x \in Y_{L} \cap(\varphi(a) \backslash \varphi(b))
$$

Spatial frames

Sketch of Proof: (\Leftarrow) Next suppose Y_{L} is dense in X_{L}. Let $a \nless b$. Then

$$
\varphi(a) \backslash \varphi(b) \neq \varnothing
$$

Therefore, there is

$$
x \in Y_{L} \cap(\varphi(a) \backslash \varphi(b))
$$

Thus, $a \in x$ and $b \notin x$,

Spatial frames

Sketch of Proof: (\Leftarrow) Next suppose Y_{L} is dense in X_{L}. Let $a \nless b$. Then

$$
\varphi(a) \backslash \varphi(b) \neq \varnothing
$$

Therefore, there is

$$
x \in Y_{L} \cap(\varphi(a) \backslash \varphi(b))
$$

Thus, $a \in x$ and $b \notin x$, yielding a completely prime filter separating a and b.

Spatial frames

Sketch of Proof: (\Leftarrow) Next suppose Y_{L} is dense in X_{L}. Let $a \nless b$. Then

$$
\varphi(a) \backslash \varphi(b) \neq \varnothing
$$

Therefore, there is

$$
x \in Y_{L} \cap(\varphi(a) \backslash \varphi(b))
$$

Thus, $a \in x$ and $b \notin x$, yielding a completely prime filter separating a and b.

Consequently, L is spatial.

A different look at the soberification

A different look at the soberification

For a topological space S let $X_{\mathcal{O S}}$ be the Esakia space of the frame $\mathcal{O S}$.

A different look at the soberification

For a topological space S let $X_{\mathcal{O S}}$ be the Esakia space of the frame $\mathcal{O S}$.

Recall: $\varepsilon: S \rightarrow X_{\mathcal{O} S}$ is given by

$$
\varepsilon(s)=\{U \in \mathcal{O} S \mid x \in U\}
$$

A different look at the soberification

For a topological space S let $X_{\mathcal{O S}}$ be the Esakia space of the frame $\mathcal{O} S$.

Recall: $\varepsilon: S \rightarrow X_{\mathcal{O S}}$ is given by

$$
\varepsilon(s)=\{U \in \mathcal{O} S \mid x \in U\}
$$

Theorem: The image of ε lands in $Y_{\mathcal{O S}}$ and $\varepsilon: S \rightarrow Y_{\mathcal{O S}}$ is the soberification of S.

Min and Max

Min and Max

For a subset S of a poset P, let $\min S$ and $\max S$ denote the minimal and maximal points of S.

Min and Max

For a subset S of a poset P, let $\min S$ and $\max S$ denote the minimal and maximal points of S.

Esakia: Let X be a Priestley space and let F be a closed subset of X.

Min and Max

For a subset S of a poset P, let $\min S$ and $\max S$ denote the minimal and maximal points of S.

Esakia: Let X be a Priestley space and let F be a closed subset of X. Then for each $x \in F$ there are $m \in \min F$ and $M \in \max F$ such that $m \leqslant x \leqslant M$.

Min and Max

For a subset S of a poset P, let $\min S$ and $\max S$ denote the minimal and maximal points of S.

Esakia: Let X be a Priestley space and let F be a closed subset of X. Then for each $x \in F$ there are $m \in \min F$ and $M \in \max F$ such that $m \leqslant x \leqslant M$.

In particular, for any bounded distributive lattice L, we have

$$
X_{L}=\uparrow \min X_{L}
$$

Min and Max

For a subset S of a poset P, let $\min S$ and $\max S$ denote the minimal and maximal points of S.

Esakia: Let X be a Priestley space and let F be a closed subset of X. Then for each $x \in F$ there are $m \in \min F$ and $M \in \max F$ such that $m \leqslant x \leqslant M$.

In particular, for any bounded distributive lattice L, we have

$$
X_{L}=\uparrow \min X_{L} \text { and } X_{L}=\downarrow \max X_{L}
$$

Compact and regular frames

Compact and regular frames

Recall: A frame L is compact if $\bigvee S=1$ implies $\bigvee T=1$ for some finite subset T of S.

Compact and regular frames

Recall: A frame L is compact if $\bigvee S=1$ implies $\bigvee T=1$ for some finite subset T of S.

Theorem: A frame L is compact iff $\min X_{L} \subseteq Y_{L}$.

Compact and regular frames

Recall: A frame L is compact if $\bigvee S=1$ implies $\bigvee T=1$ for some finite subset T of S.

Theorem: A frame L is compact iff $\min X_{L} \subseteq Y_{L}$.

Recall: We say that b is well inside a and write $b \prec a$ provided $b^{*} \vee a=1$.

Compact and regular frames

Recall: A frame L is compact if $\bigvee S=1$ implies $\bigvee T=1$ for some finite subset T of S.

Theorem: A frame L is compact iff $\min X_{L} \subseteq Y_{L}$.

Recall: We say that b is well inside a and write $b \prec a$ provided $b^{*} \vee a=1$.

Lemma: $b \prec a$ iff $\downarrow \varphi(b) \subseteq \varphi(a)$.

Compact and regular frames

Recall: A frame L is compact if $\bigvee S=1$ implies $\bigvee T=1$ for some finite subset T of S.

Theorem: A frame L is compact iff $\min X_{L} \subseteq Y_{L}$.

Recall: We say that b is well inside a and write $b \prec a$ provided $b^{*} \vee a=1$.

Lemma: $b \prec a$ iff $\downarrow \varphi(b) \subseteq \varphi(a)$.

Recall: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

Compact and regular frames

Compact and regular frames

Definition: For $a \in L$, the regular part of $\varphi(a)$ is

$$
R_{a}=\bigcup\{\varphi(b) \mid b \prec a\}
$$

Compact and regular frames

Definition: For $a \in L$, the regular part of $\varphi(a)$ is

$$
R_{a}=\bigcup\{\varphi(b) \mid b \prec a\}
$$

Lemma: $R_{a}=-\downarrow \uparrow-\varphi(a)$

Compact and regular frames

Definition: For $a \in L$, the regular part of $\varphi(a)$ is

$$
R_{a}=\bigcup\{\varphi(b) \mid b \prec a\}
$$

Lemma: $R_{a}=-\downarrow \uparrow-\varphi(a)$
Theorem: L is regular iff R_{a} is dense in $\varphi(a)$ for each $a \in L$.

Compact and regular frames

Definition: For $a \in L$, the regular part of $\varphi(a)$ is

$$
R_{a}=\bigcup\{\varphi(b) \mid b \prec a\}
$$

Lemma: $R_{a}=-\downarrow \uparrow-\varphi(a)$
Theorem: L is regular iff R_{a} is dense in $\varphi(a)$ for each $a \in L$.
Corollary: The category KRFrm of compact regular frames is dually equivalent to the category of extremally order disconnected Esakia spaces satisfying
(1) $\min X \subseteq Y$
(2) The regular part of each clopen upset U is dense in U

Compact Hausdorff spaces

Compact Hausdorff spaces

By Isbell duality, KRFrm is dually equivalent to the category KHaus of compact Hausdorff spaces.

Compact Hausdorff spaces

By Isbell duality, KRFrm is dually equivalent to the category KHaus of compact Hausdorff spaces.

Thus, KHaus is equivalent to the above category of extremally order disconnected Esakia spaces.

Compact Hausdorff spaces

By Isbell duality, KRFrm is dually equivalent to the category KHaus of compact Hausdorff spaces.

Thus, KHaus is equivalent to the above category of extremally order disconnected Esakia spaces.

How can we realize such an equivalence?

Compact Hausdorff spaces

By Isbell duality, KRFrm is dually equivalent to the category KHaus of compact Hausdorff spaces.

Thus, KHaus is equivalent to the above category of extremally order disconnected Esakia spaces.

How can we realize such an equivalence?

Lemma: If L is a regular frame, then $Y_{L} \subseteq \min X_{L}$.

Sketch of Proof

Sketch of Proof

Suppose $x \in Y_{L}$.

Sketch of Proof

Suppose $x \in Y_{L}$. Then $\downarrow x$ is clopen.

Sketch of Proof

Suppose $x \in Y_{L}$. Then $\downarrow x$ is clopen. If $x \notin \min X_{L}$, then there is $y<x$.

Sketch of Proof

Suppose $x \in Y_{L}$. Then $\downarrow x$ is clopen. If $x \notin \min X_{L}$, then there is $y<x$. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$.

Sketch of Proof

Suppose $x \in Y_{L}$. Then $\downarrow x$ is clopen. If $x \notin \min X_{L}$, then there is $y<x$. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_{a} be the regular part of $\varphi(a)$.

Sketch of Proof

Suppose $x \in Y_{L}$. Then $\downarrow x$ is clopen. If $x \notin \min X_{L}$, then there is $y<x$. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_{a} be the regular part of $\varphi(a)$. Then:

Sketch of Proof

Suppose $x \in Y_{L}$. Then $\downarrow x$ is clopen. If $x \notin \min X_{L}$, then there is $y<x$. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_{a} be the regular part of $\varphi(a)$. Then:

$$
x \notin R_{a}
$$

Sketch of Proof

Suppose $x \in Y_{L}$. Then $\downarrow x$ is clopen. If $x \notin \min X_{L}$, then there is $y<x$. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_{a} be the regular part of $\varphi(a)$. Then:

$$
x \notin R_{a} \text { so } \downarrow x \cap R_{a}=\varnothing
$$

Sketch of Proof

Suppose $x \in Y_{L}$. Then $\downarrow x$ is clopen. If $x \notin \min X_{L}$, then there is $y<x$. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_{a} be the regular part of $\varphi(a)$. Then:

$$
x \notin R_{a} \text { so } \downarrow x \cap R_{a}=\varnothing \text { and hence } \downarrow x \cap \overline{R_{a}}=\varnothing
$$

Sketch of Proof

Suppose $x \in Y_{L}$. Then $\downarrow x$ is clopen. If $x \notin \min X_{L}$, then there is $y<x$. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_{a} be the regular part of $\varphi(a)$. Then:

$$
x \notin R_{a} \text { so } \downarrow x \cap R_{a}=\varnothing \text { and hence } \downarrow x \cap \overline{R_{a}}=\varnothing
$$

Since L is regular, $\downarrow x \cap \varphi(a)=\varnothing$,

Sketch of Proof

Suppose $x \in Y_{L}$. Then $\downarrow x$ is clopen. If $x \notin \min X_{L}$, then there is $y<x$. Therefore, there is $a \in L$ with $x \in \varphi(a)$ and $y \notin \varphi(a)$. Let R_{a} be the regular part of $\varphi(a)$. Then:

$$
x \notin R_{a} \text { so } \downarrow x \cap R_{a}=\varnothing \text { and hence } \downarrow x \cap \overline{R_{a}}=\varnothing
$$

Since L is regular, $\downarrow x \cap \varphi(a)=\varnothing$, a contradiction.

Minimal and maximal spectra

Minimal and maximal spectra

Theorem: If L is compact regular, then $Y_{L}=\min X_{L}$.

Minimal and maximal spectra

Theorem: If L is compact regular, then $Y_{L}=\min X_{L}$.

Corollary: Compact Hausdorff spaces are realized as minimal spectra of their frames of opens.

Minimal and maximal spectra

Theorem: If L is compact regular, then $Y_{L}=\min X_{L}$.

Corollary: Compact Hausdorff spaces are realized as minimal spectra of their frames of opens.

Theorem: If L is compact regular, then $\max X_{L}$ is homeomorphic to the Gleason cover of Y_{L}.

Minimal and maximal spectra

Theorem: If L is compact regular, then $Y_{L}=\min X_{L}$.

Corollary: Compact Hausdorff spaces are realized as minimal spectra of their frames of opens.

Theorem: If L is compact regular, then $\max X_{L}$ is homeomorphic to the Gleason cover of Y_{L}.

Corollary: Gleason covers of compact Hausdorff spaces are realized as maximal spectra of their frames of opens.

Realization of $\alpha \omega$

Realization of $\alpha \omega$

$\alpha \omega=$ one-point compactification of ω

Realization of $\alpha \omega$

$\alpha \omega=$ one-point compactification of ω

$L=\mathcal{O}(\alpha \omega)$

Realization of $\alpha \omega$

$\alpha \omega=$ one-point compactification of ω

$L=\mathcal{O}(\alpha \omega)$

Realization of $\beta \omega$

Realization of $\beta \omega$

$\beta \omega=$ Stone-Čech of ω

Realization of $\beta \omega$

$\beta \omega=$ Stone-Čech of ω
$L=\mathcal{O}(\beta \omega)$

Realization of $\beta \omega$

$$
\begin{aligned}
& \beta \omega=\text { Stone-Čech of } \omega \\
& L=\mathcal{O}(\beta \omega) \\
& \begin{array}{llllll}
0 & \text { i } & \text { i } & \times \cdots \cdots \\
\beta \omega
\end{array}
\end{aligned}
$$

Nuclei

Nuclei

Let $h: L \rightarrow M$ be a homomorphism of frames.

Nuclei

Let $h: L \rightarrow M$ be a homomorphism of frames. What is the kernel of h ?

Nuclei

Let $h: L \rightarrow M$ be a homomorphism of frames. What is the kernel of h ?

Observe that h has the right adjoint $r: M \rightarrow L$ given by

$$
r(b)=\bigvee\{x \in L \mid h x \leqslant b\}
$$

Nuclei

Let $h: L \rightarrow M$ be a homomorphism of frames. What is the kernel of h ?

Observe that h has the right adjoint $r: M \rightarrow L$ given by

$$
r(b)=\bigvee\{x \in L \mid h x \leqslant b\}
$$

Let $j: L \rightarrow L$ be the composition $j=r \circ h$.

Nuclei

Let $h: L \rightarrow M$ be a homomorphism of frames. What is the kernel of h ?

Observe that h has the right adjoint $r: M \rightarrow L$ given by

$$
r(b)=\bigvee\{x \in L \mid h x \leqslant b\}
$$

Let $j: L \rightarrow L$ be the composition $j=r \circ h$. Then j satisfies:

Nuclei

Let $h: L \rightarrow M$ be a homomorphism of frames. What is the kernel of h ?

Observe that h has the right adjoint $r: M \rightarrow L$ given by

$$
r(b)=\bigvee\{x \in L \mid h x \leqslant b\}
$$

Let $j: L \rightarrow L$ be the composition $j=r \circ h$. Then j satisfies:
(1) $a \leqslant j a$

Nuclei

Let $h: L \rightarrow M$ be a homomorphism of frames. What is the kernel of h ?

Observe that h has the right adjoint $r: M \rightarrow L$ given by

$$
r(b)=\bigvee\{x \in L \mid h x \leqslant b\}
$$

Let $j: L \rightarrow L$ be the composition $j=r \circ h$. Then j satisfies:
(1) $a \leqslant j a$
(2) $j j a=j a$

Nuclei

Let $h: L \rightarrow M$ be a homomorphism of frames. What is the kernel of h ?

Observe that h has the right adjoint $r: M \rightarrow L$ given by

$$
r(b)=\bigvee\{x \in L \mid h x \leqslant b\}
$$

Let $j: L \rightarrow L$ be the composition $j=r \circ h$. Then j satisfies:
(1) $a \leqslant j a$
(2) $j j a=j a$
(3) $j(a \wedge b)=j a \wedge j b$

Nuclei

Let $h: L \rightarrow M$ be a homomorphism of frames. What is the kernel of h ?

Observe that h has the right adjoint $r: M \rightarrow L$ given by

$$
r(b)=\bigvee\{x \in L \mid h x \leqslant b\}
$$

Let $j: L \rightarrow L$ be the composition $j=r \circ h$. Then j satisfies:
(1) $a \leqslant j a$
(2) $j j a=j a$
(3) $j(a \wedge b)=j a \wedge j b$

Such functions on L are called nuclei.

Nuclei

Nuclei

Given a nucleus j on a frame L, let L_{j} be the fixpoints of j :

$$
L_{j}=\{a \in L \mid a=j a\}
$$

Nuclei

Given a nucleus j on a frame L, let L_{j} be the fixpoints of j :

$$
L_{j}=\{a \in L \mid a=j a\}
$$

Then L_{j} is a frame where meet is calculated as in L and the join is given by

$$
\bigsqcup S=j(\bigvee S)
$$

Nuclei

Given a nucleus j on a frame L, let L_{j} be the fixpoints of j :

$$
L_{j}=\{a \in L \mid a=j a\}
$$

Then L_{j} is a frame where meet is calculated as in L and the join is given by

$$
\bigsqcup S=j(\bigvee S)
$$

Theorem. Frame homomorphisms are characterized by nuclei.

Nuclei

Given a nucleus j on a frame L, let L_{j} be the fixpoints of j :

$$
L_{j}=\{a \in L \mid a=j a\}
$$

Then L_{j} is a frame where meet is calculated as in L and the join is given by

$$
\bigsqcup S=j(\bigvee S)
$$

Theorem. Frame homomorphisms are characterized by nuclei.

Thus, sublocales are characterized by nuclei.

The frame $N(L)$

The frame $N(L)$

$N(L)=$ all nuclei on L

The frame $N(L)$

$N(L)=$ all nuclei on L
$j \leqslant k$ iff $j a \leqslant k a$ for each $a \in L$

The frame $N(L)$

$N(L)=$ all nuclei on L
$j \leqslant k$ iff $j a \leqslant k a$ for each $a \in L$
Simmons: $N(L)$ is a frame.

The frame $N(L)$

$N(L)=$ all nuclei on L
$j \leqslant k$ iff $j a \leqslant k a$ for each $a \in L$
Simmons: $N(L)$ is a frame.
$N(L)$ plays a key role in many considerations.

The frame $N(L)$

$N(L)=$ all nuclei on L
$j \leqslant k$ iff $j a \leqslant k a$ for each $a \in L$
Simmons: $N(L)$ is a frame.
$N(L)$ plays a key role in many considerations.
L embeds in $N(L)$.

The frame $N(L)$

$N(L)=$ all nuclei on L
$j \leqslant k$ iff $j a \leqslant k a$ for each $a \in L$
Simmons: $N(L)$ is a frame.
$N(L)$ plays a key role in many considerations.
L embeds in $N(L)$. In fact, L embeds in the booleanization of $N(L)$ (Funayama).

The frame $N(L)$

$N(L)=$ all nuclei on L
$j \leqslant k$ iff $j a \leqslant k a$ for each $a \in L$
Simmons: $N(L)$ is a frame.
$N(L)$ plays a key role in many considerations.
L embeds in $N(L)$. In fact, L embeds in the booleanization of $N(L)$ (Funayama).

The study of the tower

$$
L \rightarrow N(L) \rightarrow N^{2}(L) \rightarrow N^{3}(L) \rightarrow \cdots
$$

The frame $N(L)$

$N(L)=$ all nuclei on L
$j \leqslant k$ iff $j a \leqslant k a$ for each $a \in L$
Simmons: $N(L)$ is a frame.
$N(L)$ plays a key role in many considerations.
L embeds in $N(L)$. In fact, L embeds in the booleanization of $N(L)$ (Funayama).

The study of the tower

$$
L \rightarrow N(L) \rightarrow N^{2}(L) \rightarrow N^{3}(L) \rightarrow \cdots
$$

is closely related to the Cantor-Bendixson analysis of derivative.
$N(L)$ dually

$N(L)$ dually

Let L be a frame and X_{L} its Esakia dual.

$N(L)$ dually

Let L be a frame and X_{L} its Esakia dual.

Definition:

$N(L)$ dually

Let L be a frame and X_{L} its Esakia dual.

Definition:

(1) Call a closed subset F of X_{L} nuclear provided
U clopen $\Rightarrow \downarrow(U \cap F)$ clopen

$N(L)$ dually

Let L be a frame and X_{L} its Esakia dual.

Definition:

(1) Call a closed subset F of X_{L} nuclear provided

$$
U \text { clopen } \Rightarrow \downarrow(U \cap F) \text { clopen }
$$

(2) Let $N\left(X_{L}\right)$ be the poset of all nuclear subsets of X_{L} ordered by inclusion.

$N(L)$ dually

Let L be a frame and X_{L} its Esakia dual.

Definition:

(1) Call a closed subset F of X_{L} nuclear provided

$$
U \text { clopen } \Rightarrow \downarrow(U \cap F) \text { clopen }
$$

(2) Let $N\left(X_{L}\right)$ be the poset of all nuclear subsets of X_{L} ordered by inclusion.

Theorem: $N(L)$ is dually isomorphic to $N\left(X_{L}\right)$.

Spatiality of $N(L)$

Spatiality of $N(L)$

A space is scattered if each nonempty closed subspace has an isolated point.

Spatiality of $N(L)$

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

Spatiality of $N(L)$

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point x is weakly isolated if there is an open set U such that $x \in U \subseteq \overline{\{x\}}$.

Spatiality of $N(L)$

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point x is weakly isolated if there is an open set U such that $x \in U \subseteq \overline{\{x\}}$.
If $N(L)$ is spatial, then so is L.

Spatiality of $N(L)$

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point x is weakly isolated if there is an open set U such that $x \in U \subseteq \overline{\{x\}}$.
If $N(L)$ is spatial, then so is L. Thus, when studying spatiality of $N(L)$, wlog we may assume that L is spatial.

Spatiality of $N(L)$

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point x is weakly isolated if there is an open set U such that $x \in U \subseteq \overline{\{x\}}$.
If $N(L)$ is spatial, then so is L. Thus, when studying spatiality of $N(L)$, wlog we may assume that L is spatial.

Theorem:

Spatiality of $N(L)$

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point x is weakly isolated if there is an open set U such that $x \in U \subseteq \overline{\{x\}}$.
If $N(L)$ is spatial, then so is L. Thus, when studying spatiality of $N(L)$, wlog we may assume that L is spatial.

Theorem:

(1) $N(L)$ is spatial iff Y_{L} is weakly scattered.

Spatiality of $N(L)$

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point x is weakly isolated if there is an open set U such that $x \in U \subseteq \overline{\{x\}}$.
If $N(L)$ is spatial, then so is L. Thus, when studying spatiality of $N(L)$, wlog we may assume that L is spatial.

Theorem:

(1) $N(L)$ is spatial iff Y_{L} is weakly scattered.
(2) In addition, $N(L)$ is boolean iff Y_{L} is scattered.

Spatiality of $N(L)$

A space is scattered if each nonempty closed subspace has an isolated point.

A space is weakly scattered if each nonempty closed subspace has a weakly isolated point.

A point x is weakly isolated if there is an open set U such that $x \in U \subseteq \overline{\{x\}}$.
If $N(L)$ is spatial, then so is L. Thus, when studying spatiality of $N(L)$, wlog we may assume that L is spatial.

Theorem:

(1) $N(L)$ is spatial iff Y_{L} is weakly scattered.
(2) In addition, $N(L)$ is boolean iff Y_{L} is scattered.

From this we can derive the well-known results of Simmons and Isbell.

Surprising result

Surprising result

Let P be a poset and $\mathcal{O P}$ the topology of upsets (Alexandroff topology).

Surprising result

Let P be a poset and $\mathcal{O P}$ the topology of upsets (Alexandroff topology).

Theorem: $N(\mathcal{O P})$ is spatial iff the infinite binary tree is not isomorphic to a subposet of P.

Surprising result

Let P be a poset and $\mathcal{O P}$ the topology of upsets (Alexandroff topology).

Theorem: $N(\mathcal{O P})$ is spatial iff the infinite binary tree is not isomorphic to a subposet of P.

Collaborators

Collaborators

Many thanks to my collaborators!

Collaborators

Many thanks to my collaborators!

- Silvio Ghilardi (Milan)

Collaborators

Many thanks to my collaborators!

- Silvio Ghilardi (Milan)
- Mamuka Jibladze and David Gabelaia (Tbilisi)

Collaborators

Many thanks to my collaborators!

- Silvio Ghilardi (Milan)
- Mamuka Jibladze and David Gabelaia (Tbilisi)
- Pat Morandi (NMSU)

Collaborators

Many thanks to my collaborators!

- Silvio Ghilardi (Milan)
- Mamuka Jibladze and David Gabelaia (Tbilisi)
- Pat Morandi (NMSU)
- Angel Zaldivar and Francisco Avila (Mexico)

Thank You!

