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Tutorial III

The study of frames through their spectra of
prime filters



Recap

A frame is a complete lattice L satisfying

a ∧
∨

S =
∨
{a ∧ s | s ∈ S}

A frame homomorphism is a map f : L→ M preserving finite
meets and arbitrary joins.

Frm = the category of frames and frame homomorphisms.

An Esakia space is a Priestley space (X, T ,6) satisfying

U clopen ⇒ ↓U clopen

An Esakia space is extremally order disconnected if

U open upset ⇒ U open
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Pultr-Sichler duality

Theorem: Let L be a bounded distributive lattice and XL its
Priestley space. Then L is a frame iff XL is an extremally order
disconnected Esakia space.

EDEsa = the category of extremally order disconnected Esakia
spaces and continuous order preserving maps f : X → Y
satisfying

f−1 (V) = f−1(V)

for each open upset V of Y.

Theorem: Frm is dually equivalent to EDEsa.

Goal: Study frames by means of their extremally order
disconnected Esakia spaces.
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Characterization of points

Let L be a frame and XL its Esakia space.

Recall: A point of a frame L is a frame homomorphism
p : L→ 2. Points are in 1-1 correspondence with completely
prime filters. Elements of XL are prime filters of L. Thus, to
recognize points of L inside XL, all we need to do is to give the
dual characterization of completely prime filters!

Theorem: A prime filter x is completely prime iff ↓x is clopen.
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Characterization of points

Sketch of Proof: (⇒) First suppose x is completely prime.
Assume that ↓x is not clopen. Let U = XL \ ↓x. Then x ∈ U. Since
U is an open upset,

U =
⋃
{ϕ(a) | ϕ(a) ⊆ U}

Therefore,

x ∈ U =
⋃
{ϕ(a) | ϕ(a) ⊆ U} = ϕ

(∨
{a | ϕ(a) ⊆ U}

)

Since x is completely prime, there is a such that a ∈ x and
ϕ(a) ⊆ U. Thus, x ∈ ϕ(a) ⊆ U, a contradiction.
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∨
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Spatial frames

Notation: YL = completely prime filters of L.

Theorem: L is spatial iff YL is dense in XL.

Sketch of Proof: (⇒) First suppose L is spatial. Let U be
nonempty open in XL. Then there are a, b ∈ L with

∅ 6= ϕ(a) \ ϕ(b) ⊆ U

Therefore, ϕ(a) 6⊆ ϕ(b), so a 66 b. Thus, there is x ∈ YL with
a ∈ x and b /∈ x. Consequently,

YL ∩ (ϕ(a) \ ϕ(b)) 6= ∅

So YL ∩ U 6= ∅ and so YL is dense in XL.
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A different look at the soberification

For a topological space S let XOS be the Esakia space of the
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Recall: ε : S→ XOS is given by

ε(s) = {U ∈ OS | x ∈ U}

Theorem: The image of ε lands in YOS and ε : S→ YOS is the
soberification of S.
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X. Then for each x ∈ F there are m ∈ min F and M ∈ max F such
that m 6 x 6 M.

In particular, for any bounded distributive lattice L, we have

XL = ↑minXL and XL = ↓maxXL
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Compact and regular frames

Recall: A frame L is compact if
∨

S = 1 implies
∨

T = 1 for
some finite subset T of S.

Theorem: A frame L is compact iff minXL ⊆ YL.

Recall: We say that b is well inside a and write b ≺ a provided
b∗ ∨ a = 1.

Lemma: b ≺ a iff ↓ϕ(b) ⊆ ϕ(a).

Recall: A frame L is regular if a =
∨
{b | b ≺ a} for each a ∈ L.



Compact and regular frames

Recall: A frame L is compact if
∨

S = 1 implies
∨

T = 1 for
some finite subset T of S.

Theorem: A frame L is compact iff minXL ⊆ YL.

Recall: We say that b is well inside a and write b ≺ a provided
b∗ ∨ a = 1.

Lemma: b ≺ a iff ↓ϕ(b) ⊆ ϕ(a).

Recall: A frame L is regular if a =
∨
{b | b ≺ a} for each a ∈ L.



Compact and regular frames

Recall: A frame L is compact if
∨

S = 1 implies
∨

T = 1 for
some finite subset T of S.

Theorem: A frame L is compact iff minXL ⊆ YL.

Recall: We say that b is well inside a and write b ≺ a provided
b∗ ∨ a = 1.

Lemma: b ≺ a iff ↓ϕ(b) ⊆ ϕ(a).

Recall: A frame L is regular if a =
∨
{b | b ≺ a} for each a ∈ L.



Compact and regular frames

Recall: A frame L is compact if
∨

S = 1 implies
∨

T = 1 for
some finite subset T of S.

Theorem: A frame L is compact iff minXL ⊆ YL.

Recall: We say that b is well inside a and write b ≺ a provided
b∗ ∨ a = 1.

Lemma: b ≺ a iff ↓ϕ(b) ⊆ ϕ(a).

Recall: A frame L is regular if a =
∨
{b | b ≺ a} for each a ∈ L.



Compact and regular frames

Recall: A frame L is compact if
∨

S = 1 implies
∨

T = 1 for
some finite subset T of S.

Theorem: A frame L is compact iff minXL ⊆ YL.

Recall: We say that b is well inside a and write b ≺ a provided
b∗ ∨ a = 1.

Lemma: b ≺ a iff ↓ϕ(b) ⊆ ϕ(a).

Recall: A frame L is regular if a =
∨
{b | b ≺ a} for each a ∈ L.



Compact and regular frames

Recall: A frame L is compact if
∨

S = 1 implies
∨

T = 1 for
some finite subset T of S.

Theorem: A frame L is compact iff minXL ⊆ YL.

Recall: We say that b is well inside a and write b ≺ a provided
b∗ ∨ a = 1.

Lemma: b ≺ a iff ↓ϕ(b) ⊆ ϕ(a).

Recall: A frame L is regular if a =
∨
{b | b ≺ a} for each a ∈ L.



Compact and regular frames

Definition: For a ∈ L, the regular part of ϕ(a) is

Ra =
⋃
{ϕ(b) | b ≺ a}

Lemma: Ra = −↓↑ − ϕ(a)

Theorem: L is regular iff Ra is dense in ϕ(a) for each a ∈ L.

Corollary: The category KRFrm of compact regular frames is
dually equivalent to the category of extremally order
disconnected Esakia spaces satisfying

1 minX ⊆ Y
2 The regular part of each clopen upset U is dense in U
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Compact Hausdorff spaces

By Isbell duality, KRFrm is dually equivalent to the category
KHaus of compact Hausdorff spaces.

Thus, KHaus is equivalent to the above category of extremally
order disconnected Esakia spaces.

How can we realize such an equivalence?

Lemma: If L is a regular frame, then YL ⊆ minXL.
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Sketch of Proof

Suppose x ∈ YL. Then ↓x is clopen. If x /∈ minXL, then there is
y < x. Therefore, there is a ∈ L with x ∈ ϕ(a) and y /∈ ϕ(a). Let
Ra be the regular part of ϕ(a). Then:

x /∈ Ra so ↓x ∩ Ra = ∅ and hence ↓x ∩ Ra = ∅

Since L is regular, ↓x ∩ ϕ(a) = ∅, a contradiction.
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Minimal and maximal spectra

Theorem: If L is compact regular, then YL = minXL.

Corollary: Compact Hausdorff spaces are realized as minimal
spectra of their frames of opens.

Theorem: If L is compact regular, then maxXL is homeomorphic
to the Gleason cover of YL.

Corollary: Gleason covers of compact Hausdorff spaces are
realized as maximal spectra of their frames of opens.
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Nuclei

Let h : L→ M be a homomorphism of frames. What is the kernel
of h?

Observe that h has the right adjoint r : M → L given by

r(b) =
∨
{x ∈ L | hx 6 b}

Let j : L→ L be the composition j = r ◦ h. Then j satisfies:

1 a 6 ja
2 jja = ja
3 j(a ∧ b) = ja ∧ jb

Such functions on L are called nuclei.
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Nuclei

Given a nucleus j on a frame L, let Lj be the fixpoints of j:

Lj = {a ∈ L | a = ja}

Then Lj is a frame where meet is calculated as in L and the join
is given by ⊔

S = j
(∨

S
)

Theorem. Frame homomorphisms are characterized by nuclei.

Thus, sublocales are characterized by nuclei.



Nuclei

Given a nucleus j on a frame L, let Lj be the fixpoints of j:

Lj = {a ∈ L | a = ja}

Then Lj is a frame where meet is calculated as in L and the join
is given by ⊔

S = j
(∨

S
)

Theorem. Frame homomorphisms are characterized by nuclei.

Thus, sublocales are characterized by nuclei.



Nuclei

Given a nucleus j on a frame L, let Lj be the fixpoints of j:

Lj = {a ∈ L | a = ja}

Then Lj is a frame where meet is calculated as in L and the join
is given by ⊔

S = j
(∨

S
)

Theorem. Frame homomorphisms are characterized by nuclei.

Thus, sublocales are characterized by nuclei.



Nuclei

Given a nucleus j on a frame L, let Lj be the fixpoints of j:

Lj = {a ∈ L | a = ja}

Then Lj is a frame where meet is calculated as in L and the join
is given by ⊔

S = j
(∨

S
)

Theorem. Frame homomorphisms are characterized by nuclei.

Thus, sublocales are characterized by nuclei.



Nuclei

Given a nucleus j on a frame L, let Lj be the fixpoints of j:

Lj = {a ∈ L | a = ja}

Then Lj is a frame where meet is calculated as in L and the join
is given by ⊔

S = j
(∨

S
)

Theorem. Frame homomorphisms are characterized by nuclei.

Thus, sublocales are characterized by nuclei.



The frame N(L)

N(L) = all nuclei on L

j 6 k iff ja 6 ka for each a ∈ L

Simmons: N(L) is a frame.

N(L) plays a key role in many considerations.

L embeds in N(L). In fact, L embeds in the booleanization of
N(L) (Funayama).

The study of the tower

L→ N(L)→ N2(L)→ N3(L)→ · · ·

is closely related to the Cantor-Bendixson analysis of derivative.
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N(L) dually

Let L be a frame and XL its Esakia dual.

Definition:
1 Call a closed subset F of XL nuclear provided

U clopen ⇒ ↓(U ∩ F) clopen

2 Let N(XL) be the poset of all nuclear subsets of XL ordered
by inclusion.

Theorem: N(L) is dually isomorphic to N(XL).
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Spatiality of N(L)

A space is scattered if each nonempty closed subspace has an
isolated point.

A space is weakly scattered if each nonempty closed subspace
has a weakly isolated point.

A point x is weakly isolated if there is an open set U such that
x ∈ U ⊆ {x}.

If N(L) is spatial, then so is L. Thus, when studying spatiality of
N(L), wlog we may assume that L is spatial.

Theorem:
1 N(L) is spatial iff YL is weakly scattered.
2 In addition, N(L) is boolean iff YL is scattered.

From this we can derive the well-known results of Simmons and
Isbell.
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Surprising result

Let P be a poset and OP the topology of upsets (Alexandroff
topology).

Theorem: N(OP) is spatial iff the infinite binary tree is not
isomorphic to a subposet of P.
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