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Tutorial I

Basics of pointfree topology



A bit of history

To think about topological spaces as sets equipped with
neighborhood systems goes back to Hausdorff.

The modern definition was developed soon after by efforts of
Kuratowski, Alexandroff, Uryshon, and Sierpinski.

Pointfree mode of thinking probably originates in the works of
Wallman, McKinsey-Tarski, and Monteiro among others.

The birth of pointfree topology is usually attributed to the work
of Ehresmann and Benabou in the late 1950s.

First important contributions are due to Dowker and
Papert-Strauss in the 1960s.

Starting from Isbell’s 1972 paper Atomless parts of spaces
pointfree topology became an independent branch of topology
with its own internal problems.
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A bit of history

Other important contributors to pointfree topology include
Banaschewski, Hofmann, Scott, Simmons, Johnstone, and
others.

The early well-known book on the subject is Johnstone’s Stone
spaces (1982).

A recent book is Frames and locales by Picado and Pultr (2012).

Some other closely related books are A compendium of
continuous lattices (1980) and its new edition Continuous
lattices and domains (2003), as well as a more recent
Non-Hausdorff topology and domain theory (2013) by
Goubault-Larrecq.
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From topological spaces to frames

We begin with a rather simple observation that if X is a
topological space, then the opens OX form a frame.

Clearly OX ordered by inclusion is a complete lattice, where
U ∧ V = U ∩ V and

∨
i Ui =

⋃
i Ui.

Arbitrary meet is calculated by
∧

i Ui = int (
⋂

i Ui).

Thus, the infinite distributive law U ∩
⋃

i Vi =
⋃

i(U ∩ Ui) holds

while the other infinite distributive law U ∪
∧

i Vi =
∧

i(U ∩ Vi)
may fail.



From topological spaces to frames

We begin with a rather simple observation that if X is a
topological space, then the opens OX form a frame.

Clearly OX ordered by inclusion is a complete lattice, where
U ∧ V = U ∩ V and

∨
i Ui =

⋃
i Ui.

Arbitrary meet is calculated by
∧

i Ui = int (
⋂

i Ui).

Thus, the infinite distributive law U ∩
⋃

i Vi =
⋃

i(U ∩ Ui) holds

while the other infinite distributive law U ∪
∧

i Vi =
∧

i(U ∩ Vi)
may fail.



From topological spaces to frames

We begin with a rather simple observation that if X is a
topological space, then the opens OX form a frame.

Clearly OX ordered by inclusion is a complete lattice, where
U ∧ V = U ∩ V and

∨
i Ui =

⋃
i Ui.

Arbitrary meet is calculated by
∧

i Ui = int (
⋂

i Ui).

Thus, the infinite distributive law U ∩
⋃

i Vi =
⋃

i(U ∩ Ui) holds

while the other infinite distributive law U ∪
∧

i Vi =
∧

i(U ∩ Vi)
may fail.



From topological spaces to frames

We begin with a rather simple observation that if X is a
topological space, then the opens OX form a frame.

Clearly OX ordered by inclusion is a complete lattice, where
U ∧ V = U ∩ V and

∨
i Ui =

⋃
i Ui.

Arbitrary meet is calculated by
∧

i Ui = int (
⋂

i Ui).

Thus, the infinite distributive law U ∩
⋃

i Vi =
⋃

i(U ∩ Ui) holds

while the other infinite distributive law U ∪
∧

i Vi =
∧

i(U ∩ Vi)
may fail.



From topological spaces to frames

We begin with a rather simple observation that if X is a
topological space, then the opens OX form a frame.

Clearly OX ordered by inclusion is a complete lattice, where
U ∧ V = U ∩ V and

∨
i Ui =

⋃
i Ui.

Arbitrary meet is calculated by
∧

i Ui = int (
⋂

i Ui).

Thus, the infinite distributive law U ∩
⋃

i Vi =
⋃

i(U ∩ Ui) holds

while the other infinite distributive law U ∪
∧

i Vi =
∧

i(U ∩ Vi)
may fail.



From topological spaces to frames

We begin with a rather simple observation that if X is a
topological space, then the opens OX form a frame.

Clearly OX ordered by inclusion is a complete lattice, where
U ∧ V = U ∩ V and

∨
i Ui =

⋃
i Ui.

Arbitrary meet is calculated by
∧

i Ui = int (
⋂

i Ui).

Thus, the infinite distributive law U ∩
⋃

i Vi =
⋃

i(U ∩ Ui) holds

while the other infinite distributive law U ∪
∧

i Vi =
∧

i(U ∩ Vi)
may fail.



Frames

A frame is a complete lattice L satisfying the join infinite
distributive law (JID) a ∧

∨
S =

∨
{a ∧ s | s ∈ S}.

A frame homomorphism between two frames is a map
h : L→ M preserving finite meets and arbitrary joins.

Let Frm be the category of frames and frame homomorphisms.

As we saw, with each topological space X is associated the frame
OX of open subsets of X.

If f : X → Y is a continuous map, then it is straightforward to
see that f−1 : OY → OX is a frame homomorphism.

This defines a contravariant functor O from the category Top of
topological spaces and continuous maps to Frm.
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Points

Question: Can we associate a topological space with each
frame?

Let x ∈ X.

{x}

��

� � f // X

��
O({x}) OX

f−1
oo

But O({x}) ∼= 2, where 2 = {0,1} is the two-element frame.
Thus, a point of X can be identified with a frame
homomorphism OX → 2.

Definition: A point of a frame L is a frame homomorphism
p : L→ 2.
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Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point.

Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1

⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1

⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1

⇒
∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S

⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter.

Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point.

It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.



Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.
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For a point p : L→ 2, let m =
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Topology on pt(L)

Let pt(L) be the set of all points of L. For a ∈ L, set
O(a) = {p | p(a) = 1}. Let T = {O(a) | a ∈ L}.

Theorem. T is a topology on pt(L), and O : L→ O(pt(L)) is a
frame homomorphism.

Proof.

p ∈ O(a ∧ b) ⇔ p(a ∧ b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a) = 1 and p(b) = 1

⇔ p ∈ O(a) and p ∈ O(b)

⇔ p ∈ O(a) ∩ O(b)

Thus, O(a ∧ b) = O(a) ∩ O(b).
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Topology on pt(L)

Proof (continued).

p ∈ O(
∨

S) ⇔ p(
∨

S) = 1 ⇔
∨
{p(s) | s ∈ S} = 1

⇔ p(s) = 1 some s ∈ S ⇔ p ∈ O(s) some s ∈ S

⇔ p ∈
⋃
{O(s) | s ∈ S}

Thus, O(
∨

S) =
⋃
{O(s) | s ∈ S}.

It follows that O : L→ O(pt(L)) is a frame homomorphism, and
hence T is a topology on pt(L).
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Frame homomorphisms and continuous maps

Let h : L→ M be a frame homomorphism. Define
pt(h) : pt(M)→ pt(L) by pt(h)(q) = q ◦ h for each q ∈ pt(M).

L

��

h // M

��
pt(L) pt(M)

pt(h)oo

Claim. pt(h)−1O(a) = O(ha).

Proof.

q ∈ pt(h)−1O(a) ⇔ pt(h)(q) ∈ O(a) ⇔ q ◦ h ∈ O(a)

⇔ q(ha) = 1 ⇔ q ∈ O(ha)
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The functor pt : Frm→ Top

As a result, we obtain a contravariant functor pt : Frm→ Top,
sending each frame L to the space pt(L), and each frame
homomorphism h : L→ M to the continuous map
pt(h) : pt(M)→ pt(L).

O pt L

L

O

OO

pt
// pt L

O
gg X

ε
��

O // O X

ptvv
pt O X

O(a) = {p | p(a) = 1} and ε(x)(U) =

{
1 x ∈ U,
0 otherwise.

Note. ε is continuous because ε−1O(U) = U for all U ∈ ΩX.
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Contravariant adjunction

Theorem. The functors O : Top→ Frm and pt : Frm→ Top
form a contravariant adjunction.

Proof sketch. Sufficient to observe

homTop(X, pt L) ∼= homFrm(L,O X)

X
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O // O X

pt L L
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OO

f 7→ f∗ where f∗(a) = f−1O(a)

h 7→ h∗ where h∗(x)(a) =

{
1 x ∈ h(a),
0 otherwise.
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Sober spaces and soberification

In general, ε : X → pt O X is neither 1-1 nor onto.

In fact, ε is 1-1 iff X is a T0-space.

If X is not T0, we can look at the T0-reflection X0 of X (where X0
is the quotient of X identifying those x, y that cannot be
separated by opens). Then O X ∼= O X0, so it is common to
restrict attention to T0-spaces.

Definition. Call X sober if ε is a bijection.
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Sober spaces and soberification

A closed set F is (join) irreducible if F = G1 ∪ G2, with G1,G2
closed, implies F = G1 or F = G2.

Theorem. A space X is sober iff each closed irreducible set F is
the closure of a unique point (called the generic point of F).

Proof sketch. Points of OX correspond to meet prime elements
of OX. Meet primes of OX correspond to irreducible closed sets.
Thus, ε is a bijection iff each irreducible closed set has the
generic point.

ε : X → pt O X is usually referred to as the soberification of X.
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Spatial frames

O : L→ O pt L is always onto, but not a bijection in general.

Definition. Call L spatial if O is a bijection.

Theorem. L is spatial iff
(∀a, b ∈ L)(a 66 b⇒ ∃p ∈ pt L : p(a) = 1 and p(b) = 0).

Proof sketch. O is always onto. The above condition is
equivalent to O being 1-1.
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Dual equivalence

Sob = The full subcategory of Top consisting of sober spaces.

SFrm = The full subcategory of Frm consisting of spatial
frames.

Theorem. The contravariant adjunction O : Top→ Frm,
pt : Frm→ Top restricts to a dual equivalence of Sob and SFrm.

Proof sketch. For each X ∈ Top, the frame O X is spatial. For
each L ∈ Frm, the space pt L is sober. If X ∈ Sob, then
ε : X → pt O X is a bijection, hence a homeomorphism. If
L ∈ SFrm, then O : L→ O pt L is a bijection, hence an
isomorphism.
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The category Loc
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O
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OO

The dual category to Frm is called the category of locales and is
denoted Loc.

Then O : Top→ Loc and pt : Loc→ Top are covariant functors,
O is left adjoint to pt, and Sob can be identified with a
coreflective subcategory of Loc (of spatial locales).

It is customary in pointfree topology to replace Top with Loc
and study Loc as the category of generalized spaces.
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Compactness and local compactness pointfree

A space X is compact if for any family U of opens, X =
⋃
U

implies there is a finite V ⊆ U such that X =
⋃
V.

Call an element a of a frame L compact if a 6
∨

S implies there
is a finite T ⊆ S with a 6

∨
T. Then L is compact if 1 is compact.

A space X is locally compact if for each x ∈ X and open U, from
x ∈ U it follows that there are open V and compact K such that
x ∈ V ⊆ K ⊆ U.

Define V � U if there is a compact K with V ⊆ K ⊆ U. Then X is
locally compact iff for each open U we have U =

⋃
{V | V � U}.

V � U iff V is way below U in OX; meaning that for each family
U of opens, from U ⊆

⋃
U it follows that there is a finite

subfamily V with V ⊆
⋃

V.

Let� be the way below relation on a frame L. Then L is locally
compact if a =

∨
{b | b� a} for each a ∈ L.
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Hofmann-Lawson duality

Continuing down this path eventually leads to Hofmann-Lawson
duality (1978):

Let LKFrm be the subcategory of Frm consisting of locally
compact frames.

A key lemma is that each locally compact frame is spatial, and
hence LKFrm is a subcategory of SFrm.

Let LKSob be the subcategory of Sob consisting of locally
compact spaces.

Theorem. The dual equivalence of Sob and SFrm restricts to
the dual equivalence of LKSob and LKFrm.

This further restricts to the dual equivalence between stably
locally compact spaces and stably locally compact frames
(Johnstone 1981). We skip the details since this is not quite
within the scope of this tutorial.
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Separation axioms

A T1-space X is normal if for each pair F,G of closed sets, from
F ∩ G = ∅ it follows that there is a pair of disjoint open sets U,V
such that F ⊆ U and G ⊆ V.

Let A = Fc and B = Gc. Equivalent formulation: A T1-space X is
normal provided for each pair A,B of open sets, from A ∪ B = X
it follows that there is a pair of disjoint open sets U,V such that
A ∪ U = X = B ∪ V.

Monteiro (1950s). A frame L is normal if for each a, b ∈ L, from
a ∨ b = 1 it follows that there are u, v ∈ L such that u ∧ v = 0
and a ∨ u = 1 = b ∨ v.
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Separation axioms

A T1-space X is regular if for each x ∈ X and closed F, from x /∈ F
it follows that there is a pair of disjoint open sets U,V such that
x ∈ U and F ⊆ V.

Let A = Fc. Equivalent formulation: A T1-space X is regular
provided for each x ∈ X and open A, from x ∈ A it follows that
there is an open set U such that x ∈ U and U ⊆ A.

We say that U is well inside A and write U ≺ A provided U ⊆ A.

U ≺ A iff U ⊆ A iff Uc ∪ A = X iff int(Uc) ∪ A = X.

But int(Uc) is the pseudocomplement of U in OX; that is, the
largest open U∗ disjoint from U. Thus, U ≺ A iff U∗ ∪ A = X.

Let L be a frame and a, b ∈ L. We say that b is well inside a and
write b ≺ a if b∗ ∨ a = 1. We call L regular if a =

∨
{b | b ≺ a}

for each a ∈ L.
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Separation axioms

Let L be a frame and a, b ∈ L. We say that b is rather inside a
and write b ≺≺ a if there is a family {cp} for p a rational in [0,1]
such that b 6 c0, c1 6 a, and p < q implies cp ≺ cq

b 6 c0 · · · ≺ cp ≺ cq ≺ · · · c1 6 a

We call L completely regular if a =
∨
{b | b ≺≺ a} for each a ∈ L.

Using the same idea as in the proof of Urysohn’s lemma, we
have:

Lemma. A T1-space X is completely regular iff the frame OX is
completely regular.
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Isbell duality

Going down this path yields Isbell duality (1972):

Let KRFrm be the subcategory of Frm consisting of compact
regular frames.

If a frame L is compact, then L is regular iff L is completely
regular. (Basic idea: compactness makes the well inside relation
interpolating!)

Each compact regular frame is spatial. (Compactness is
essential! Basic idea is that under compactness, the way below
and well inside relations coincide, so Hofmann-Lawson applies.)

Thus, KRFrm is a subcategory of SFrm. In fact, KRFrm is a
subcategory of LKFrm.
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Isbell duality

Let KHaus be the category of compact Hausdorff spaces.

Every Hausdorff space is sober. (Basic idea: if X is Hausdorff,
then the only irreducible closed sets are singletons.)

Thus, KHaus is a subcategory of Sob. In fact, KHaus is a
subcategory of LKSob.

Theorem. The dual equivalence of Sob and SFrm restricts to
the dual equivalence of KHaus and KRFrm.
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Non-spatial frames

The above diagram provides a rather pleasing picture, but
mostly for spatial frames and their topological counterparts.

But how do we handle non-spatial frames?

Example. Suppose a frame L is boolean. Then frame
homomorphisms to 2 correspond to complete boolean
homomorphisms, which in turn arise from atoms of L.
Therefore, points of L correspond to atoms of L. Thus, if L has
no atoms, then there are no points in L!

One possibility to handle non-spatial frames is to develop more
algebraic intuition instead of geometric one. For example, see
the book by Picado and Pultr.

We will discuss a different possibility.
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Homomorphisms and nuclei

Let h : L→ M be a homomorphism of frames. What is the kernel
of h?

Observe that h has the right adjoint r : M → L given by

r(b) =
∨
{x ∈ L | hx 6 b}

Let j : L→ L be the composition j = r ◦ h. Then j satisfies:

1 a 6 ja
2 jja = ja
3 j(a ∧ b) = ja ∧ jb

Such functions on L are called nuclei.



Homomorphisms and nuclei

Let h : L→ M be a homomorphism of frames.

What is the kernel
of h?

Observe that h has the right adjoint r : M → L given by

r(b) =
∨
{x ∈ L | hx 6 b}

Let j : L→ L be the composition j = r ◦ h. Then j satisfies:

1 a 6 ja
2 jja = ja
3 j(a ∧ b) = ja ∧ jb

Such functions on L are called nuclei.



Homomorphisms and nuclei

Let h : L→ M be a homomorphism of frames. What is the kernel
of h?

Observe that h has the right adjoint r : M → L given by

r(b) =
∨
{x ∈ L | hx 6 b}

Let j : L→ L be the composition j = r ◦ h. Then j satisfies:

1 a 6 ja
2 jja = ja
3 j(a ∧ b) = ja ∧ jb

Such functions on L are called nuclei.



Homomorphisms and nuclei

Let h : L→ M be a homomorphism of frames. What is the kernel
of h?

Observe that h has the right adjoint r : M → L given by

r(b) =
∨
{x ∈ L | hx 6 b}

Let j : L→ L be the composition j = r ◦ h. Then j satisfies:

1 a 6 ja
2 jja = ja
3 j(a ∧ b) = ja ∧ jb

Such functions on L are called nuclei.



Homomorphisms and nuclei

Let h : L→ M be a homomorphism of frames. What is the kernel
of h?

Observe that h has the right adjoint r : M → L given by

r(b) =
∨
{x ∈ L | hx 6 b}

Let j : L→ L be the composition j = r ◦ h.

Then j satisfies:

1 a 6 ja
2 jja = ja
3 j(a ∧ b) = ja ∧ jb

Such functions on L are called nuclei.



Homomorphisms and nuclei

Let h : L→ M be a homomorphism of frames. What is the kernel
of h?

Observe that h has the right adjoint r : M → L given by

r(b) =
∨
{x ∈ L | hx 6 b}

Let j : L→ L be the composition j = r ◦ h. Then j satisfies:

1 a 6 ja
2 jja = ja
3 j(a ∧ b) = ja ∧ jb

Such functions on L are called nuclei.



Homomorphisms and nuclei

Let h : L→ M be a homomorphism of frames. What is the kernel
of h?

Observe that h has the right adjoint r : M → L given by

r(b) =
∨
{x ∈ L | hx 6 b}

Let j : L→ L be the composition j = r ◦ h. Then j satisfies:

1 a 6 ja

2 jja = ja
3 j(a ∧ b) = ja ∧ jb

Such functions on L are called nuclei.



Homomorphisms and nuclei

Let h : L→ M be a homomorphism of frames. What is the kernel
of h?

Observe that h has the right adjoint r : M → L given by

r(b) =
∨
{x ∈ L | hx 6 b}

Let j : L→ L be the composition j = r ◦ h. Then j satisfies:

1 a 6 ja
2 jja = ja

3 j(a ∧ b) = ja ∧ jb

Such functions on L are called nuclei.



Homomorphisms and nuclei

Let h : L→ M be a homomorphism of frames. What is the kernel
of h?

Observe that h has the right adjoint r : M → L given by

r(b) =
∨
{x ∈ L | hx 6 b}

Let j : L→ L be the composition j = r ◦ h. Then j satisfies:

1 a 6 ja
2 jja = ja
3 j(a ∧ b) = ja ∧ jb

Such functions on L are called nuclei.



Homomorphisms and nuclei

Let h : L→ M be a homomorphism of frames. What is the kernel
of h?

Observe that h has the right adjoint r : M → L given by

r(b) =
∨
{x ∈ L | hx 6 b}

Let j : L→ L be the composition j = r ◦ h. Then j satisfies:

1 a 6 ja
2 jja = ja
3 j(a ∧ b) = ja ∧ jb

Such functions on L are called nuclei.



Homomorphisms and nuclei

Given a nucleus j on a frame L, let Lj be the fixpoints of j:

Lj = {a ∈ L | a = ja}

Then Lj is a frame where meet is calculated as in L and the join
is given by ⊔
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(∨

S
)

Theorem. Frame homomorphisms are characterized by nuclei.

Thus, sublocales are characterized by nuclei.
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