The Complexity of Homomorphism Factorization

Kevin M. Berg

University of Colorado Boulder

May 23, 2019

The Homomorphism Factorization Problem

We assume throughout that all algebras are finite. Fix an algebraic language $\mathcal{L}.$

Problem (The Homomorphism Factorization Problem)

Given a homomorphism $f\colon X\to Z$ between $\mathcal L$ -algebras X and Z and an intermediate $\mathcal L$ -algebra Y, decide whether there are homomorphisms $g\colon X\to Y$ and $h\colon Y\to Z$ such that f=hg.

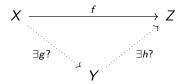


Figure: The general form of the commutative diagram for Homomorphism Factorization Problems.

Problem (I. The Homomorphism Problem)

When |Z|=1, the homomorphisms f and h from the HFP must be constant, reduces to the problem of deciding whether, given \mathcal{L} -algebras X and Y, there is a homomorphism $g:X\to Y$.

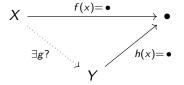


Figure: The commutative diagram for the Homomorphism Problem.

Problem (I. The Homomorphism Problem)

When |Z|=1, the homomorphisms f and h from the HFP must be constant, reduces to the problem of deciding whether, given \mathcal{L} -algebras X and Y, there is a homomorphism $g:X\to Y$.

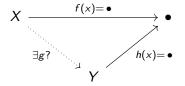


Figure: The commutative diagram for the Homomorphism Problem.

The Homomorphism Factorization Problem also generalizes the Retraction Problem and the Isomorphism Problem.

Problem (II. The Exists Right-Factor Problem)

Given \mathcal{L} -algebras X, Y, and Z, and homomorphisms $f: X \to Z$ and $h: Y \to Z$, decide whether there is a homomorphism $g: X \to Y$ such that f = hg.

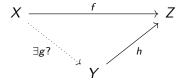


Figure: The commutative diagram for the Exists Right-Factor Problem.

Remark

The ERFP was proposed in the context of semigroups by J. Van Name in 2017.

Problem (II. The Exists Right-Factor Problem)

Given \mathcal{L} -algebras X, Y, and Z, and homomorphisms $f: X \to Z$ and $h: Y \to Z$, decide whether there is a homomorphism $g: X \to Y$ such that f = hg.

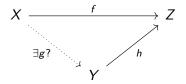


Figure: The commutative diagram for the Exists Right-Factor Problem.

Remark

The ERFP was proposed in the context of semigroups by J. Van Name in 2017. There is a corresponding Exists Left-Factor Problem.

To investigate the computational complexity of Homomorphism Factorization Problems, we will make use of complexity results from graph theory.

To investigate the computational complexity of Homomorphism Factorization Problems, we will make use of complexity results from graph theory.

Definition (Directed Graph, G)

 $G = (V_G, E_G)$ is a relational structure consisting of a universe, V_G , of vertices, together with an edge relation, E_G .

To investigate the computational complexity of Homomorphism Factorization Problems, we will make use of complexity results from graph theory.

Definition (Directed Graph, G)

 $G = (V_G, E_G)$ is a relational structure consisting of a universe, V_G , of vertices, together with an edge relation, E_G .

Definition (Undirected Graph, G)

 $G = (V_G, E_G)$ is a relational structure consisting of a universe, V_G , of vertices, together with a symmetric edge relation, E_G .

To investigate the computational complexity of Homomorphism Factorization Problems, we will make use of complexity results from graph theory.

Definition (Directed Graph, G)

 $G = (V_G, E_G)$ is a relational structure consisting of a universe, V_G , of vertices, together with an edge relation, E_G .

Definition (Undirected Graph, G)

 $G = (V_G, E_G)$ is a relational structure consisting of a universe, V_G , of vertices, together with a symmetric edge relation, E_G .

Unless stated otherwise, we assume all graphs are loop-free and connected.

Graph Homomorphism Problems

The following results hold for both directed and undirected graphs.

Graph Homomorphism Problems

The following results hold for both directed and undirected graphs.

Theorem (Graph Homomorphism Problem)

Given two finite graphs, G and H, the question of whether there exists a relational homomorphism $\phi \colon G \to H$ is NP-complete.

Graph Homomorphism Problems

The following results hold for both directed and undirected graphs.

Theorem (Graph Homomorphism Problem)

Given two finite graphs, G and H, the question of whether there exists a relational homomorphism $\phi \colon G \to H$ is NP-complete.

Theorem (Strong Graph Homomorphism Problem)

Given two finite graphs, G and H, the question of whether there exists a strong relational homomorphism $\phi\colon G\to H$ is NP-complete.

Rich Languages

An algebraic language \mathcal{L} is *rich* if it has at least one operation of arity at least two, or at least two operations of arity one.

Rich Languages

An algebraic language \mathcal{L} is *rich* if it has at least one operation of arity at least two, or at least two operations of arity one.

Theorem (B.)

The Homomorphism Factorization Problem for rich languages is NP-complete.

Two Unary Operations

Let $G = (V_G, E_G)$ be a directed graph with at least two vertices.

Two Unary Operations

Let $G = (V_G, E_G)$ be a directed graph with at least two vertices.

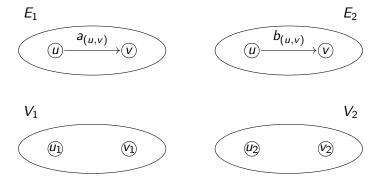
Definition (G^{\dagger})

For every v in V_G , there are two corresponding elements v_1 and v_2 in G^{\dagger} , and for each edge (u,v) in E_G , there are two elements, $a_{(u,v)}$ and $b_{(u,v)}$, in G^{\dagger} . We assign to G^{\dagger} two unary operations: $f(\cdot)$ and $g(\cdot)$.

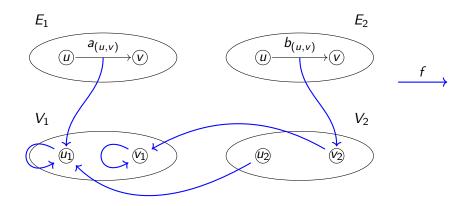
Table: The operations of G^{\dagger} .

	$f(\cdot)$	$g(\cdot)$
u_1	u_1	u_2
u_2	u_1	u_2
$a_{(u,v)}$	u_1	$b_{(u,v)}$
$b_{(u,v)}$	<i>v</i> ₂	$a_{(u,v)}$

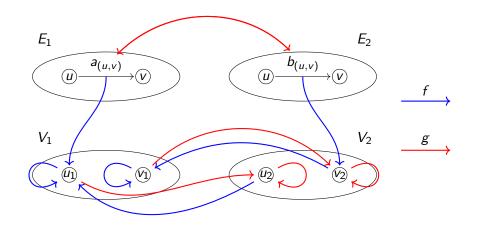
Encoding the Edge (u, v)



Encoding the Edge (u, v)



Encoding the Edge (u, v)



HFPs for Algebras with Two Unary Operations

Identities are arrived at by the composition of arrows in the preceding diagram – for example, if x = gf(x), then x must be u_2 for some u, fixing V_2 . In this way, all the information of a graph is preserved under homomorphisms.

HFPs for Algebras with Two Unary Operations

Identities are arrived at by the composition of arrows in the preceding diagram – for example, if x = gf(x), then x must be u_2 for some u, fixing V_2 . In this way, all the information of a graph is preserved under homomorphisms.

Theorem (B.)

Let G and H be directed graphs with at least two vertices. There exists a homomorphism $\phi\colon G\to H$ if and only if there exists a homomorphism $\psi\colon G^\dagger\to H^\dagger$.

HFPs for Algebras with Two Unary Operations

Identities are arrived at by the composition of arrows in the preceding diagram – for example, if x = gf(x), then x must be u_2 for some u, fixing V_2 . In this way, all the information of a graph is preserved under homomorphisms.

Theorem (B.)

Let G and H be directed graphs with at least two vertices. There exists a homomorphism $\phi\colon G\to H$ if and only if there exists a homomorphism $\psi\colon G^\dagger\to H^\dagger$.

Corollary

The Homomorphism Problem for finite algebras in a language with two unary operations is NP-complete. Consequently, the Homomorphism Factorization Problem for finite algebras in a language with two unary operations is also NP-complete.

This approach using the Homomorphism Problem does not work for semigroups.

This approach using the Homomorphism Problem does not work for semigroups.

Proposition

Every finite semigroup has an idempotent.

This approach using the Homomorphism Problem does not work for semigroups.

Proposition

Every finite semigroup has an idempotent.

Corollary

The Homomorphism Problem for finite semigroups is in P.

This approach using the Homomorphism Problem does not work for semigroups.

Proposition

Every finite semigroup has an idempotent.

Corollary

The Homomorphism Problem for finite semigroups is in P.

We instead focus on the Exists Right-Factor Problem for semigroups.

Graph Encoding into Semigroups

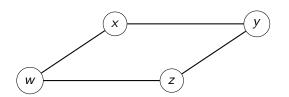
Let $G = (V_G, E_G)$ be an undirected graph with at least one vertex.

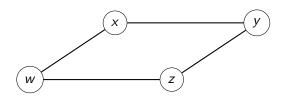
Graph Encoding into Semigroups

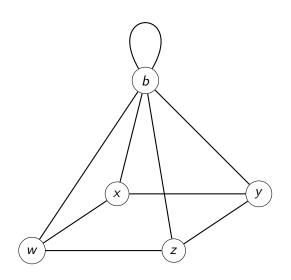
Let $G = (V_G, E_G)$ be an undirected graph with at least one vertex.

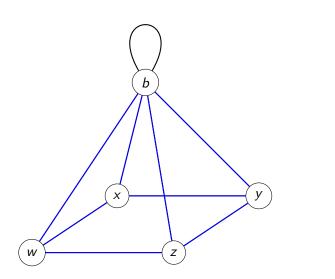
Definition (Semigroup X_G)

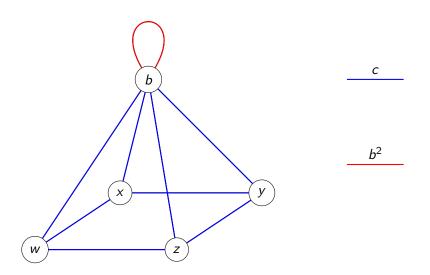
The universe of X_G consists of an element, v, for each v in V_G ; an element, $\chi_{u,v}$, for each u, v in V_G such that (u,v) is not an element of E_G (let $\chi_{u,v}=\chi_{v,u}$); and auxiliary elements b, b^2 , c, and 0. We assign to X_G a binary operation, \cdot .

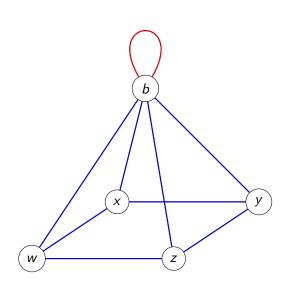












С

 b^2

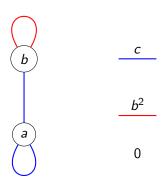
 $\chi_{w,w}, \chi_{w,y}, \dots, 0$

The Special Semigroup Z

We define a target semigroup Z by encoding the graph consisting of a single loop on a vertex a.

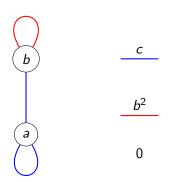
The Special Semigroup Z

We define a target semigroup Z by encoding the graph consisting of a single loop on a vertex a.



The Special Semigroup Z

We define a target semigroup Z by encoding the graph consisting of a single loop on a vertex a.



For two undirected graphs G and H, we let $f: X_G \to Z$ and $h: X_H \to Z$ be defined so as to preserve b, b^2 , c, and 0, while sending all other vertices to a and all χ to c.

Homomorphism Factorization for Semigroups

Theorem (B.)

There exists a semigroup homomorphism $g: X \to Y$ with f = hg if and only if there exists a graph homomorphism $\phi: G \to H$.

Homomorphism Factorization for Semigroups

Theorem (B.)

There exists a semigroup homomorphism $g: X \to Y$ with f = hg if and only if there exists a graph homomorphism $\phi: G \to H$.

Corollary

The Exists Right-Factor Problem for finite semigroups is NP-complete.

Homomorphism Factorization for Semigroups

Theorem (B.)

There exists a semigroup homomorphism $g: X \to Y$ with f = hg if and only if there exists a graph homomorphism $\phi: G \to H$.

Corollary

The Exists Right-Factor Problem for finite semigroups is NP-complete.

Corollary

The Homomorphism Factorization Problem for finite semigroups is NP-complete.

Rich Languages

Theorem (B.)

The Homomorphism Factorization Problem for rich languages is NP-complete.

Rich Languages

Theorem (B.)

The Homomorphism Factorization Problem for rich languages is NP-complete.

Proof Idea.

Show that the Exists Right-Factor Problem is NP-complete using either the two unary operations construction or the semigroup construction, depending on the number and arity of the operations.

Rich Languages

Theorem (B.)

The Homomorphism Factorization Problem for rich languages is NP-complete.

Proof Idea.

Show that the Exists Right-Factor Problem is NP-complete using either the two unary operations construction or the semigroup construction, depending on the number and arity of the operations.

In addition, using these and other encodings it was possible to classify the computational complexity of other variants of the Homomorphism Factorization Problem for rich languages – for example, the Homomorphism Problem for algebras with a single, non-associative binary operation is NP-complete, and the Retraction Problem for semigroups is also NP-complete.

Our results suggested two approaches for determining when Homomorphism Factorization Problems are in P:

Our results suggested two approaches for determining when Homomorphism Factorization Problems are in P:

 Classify the complexity of Homomorphism Factorization Problems for algebraic languages that are not rich.

Our results suggested two approaches for determining when Homomorphism Factorization Problems are in P:

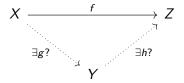
- Classify the complexity of Homomorphism Factorization Problems for algebraic languages that are not rich.
- Oetermine which specific varieties in rich languages have Homomorphism Factorization Problems in P.

Our results suggested two approaches for determining when Homomorphism Factorization Problems are in P:

- Classify the complexity of Homomorphism Factorization Problems for algebraic languages that are not rich.
- Oetermine which specific varieties in rich languages have Homomorphism Factorization Problems in P.

Results in Case 1 have been found in, or can be derived from, prior research into monounary algebras. For this talk, we will focus on Case 2.

Recall the general commutative diagram for Homomorphism Factorization Problems:



Suppose that there exists a retraction $r: X \to X$ with the following property:

Suppose that there exists a retraction $r: X \to X$ with the following property:

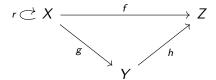
Definition (Respects f)

A retraction $r: X \to X$ **respects** a homomorphism $f: X \to Z$ if fr = f.

Suppose that there exists a retraction $r: X \to X$ with the following property:

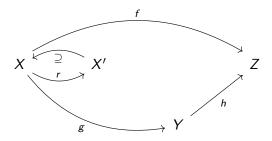
Definition (Respects f)

A retraction $r: X \to X$ **respects** a homomorphism $f: X \to Z$ if fr = f.

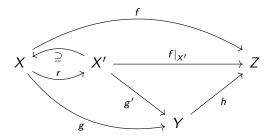


Let X' = r(X). We have:

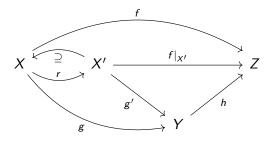
Let X' = r(X). We have:



Let X' = r(X). We have:

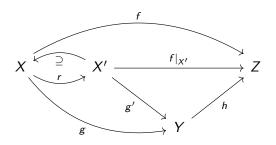


Let X' = r(X). We have:



If r respects f, then fr = f. Consequently,

Let X' = r(X). We have:



If r respects f, then fr = f. Consequently,

Proposition

f factors through Y if and only if $f|_{X'}$ factors through Y.

Definition (*f*-Core)

A is an f-core of X if A is minimal with respect to the existence of an onto, f-respecting retraction, $r: X \to A$. If X is its own f-core, X is an f-core.

Definition (*f*-Core)

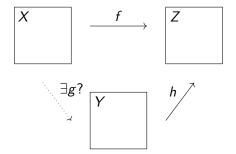
A is an f-core of X if A is minimal with respect to the existence of an onto, f-respecting retraction, $r: X \to A$. If X is its own f-core, X is an f-core.

Definition (Bounded *f*-Core)

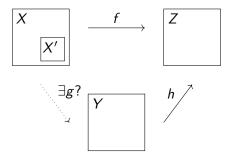
Variety $\mathcal V$ has bounded f-cores if, for any finite algebra Z, there exists a function s such that for any finite algebra X in $\mathcal V$ and any surjective homomorphism $f\colon X\to Z$ for which X is an f-core, $|X|\le s(|Z|)$.

When the target algebra Z is fixed, with bounded f-cores:

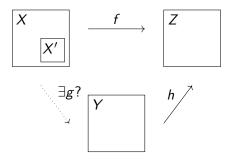
When the target algebra Z is fixed, with bounded f-cores:



When the target algebra Z is fixed, with bounded f-cores:

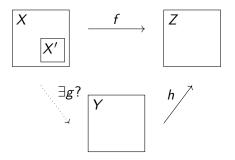


When the target algebra Z is fixed, with bounded f-cores:



There are $|Y|^{|X'|} \le |Y|^{s(|Z|)}$ many choices for g;

When the target algebra Z is fixed, with bounded f-cores:



There are $|Y|^{|X'|} \le |Y|^{s(|Z|)}$ many choices for g; the number of possible solutions to the Exists Right-Factor Problem with fixed Z is bounded above by a polynomial in |Y|.

Theorem (B.)

The Exists Right-Factor Problem with fixed Z for a variety V is in P if the following conditions hold:

Theorem (B.)

The Exists Right-Factor Problem with fixed Z for a variety $\mathcal V$ is in P if the following conditions hold:

1 \mathcal{V} has bounded f-cores.

Theorem (B.)

The Exists Right-Factor Problem with fixed Z for a variety V is in P if the following conditions hold:

- V has bounded f-cores.
- **①** The f-cores of finite algebras in V can be found in polynomial time.

Theorem (B.)

The Exists Right-Factor Problem with fixed Z for a variety V is in P if the following conditions hold:

- V has bounded f-cores.
- **①** The f-cores of finite algebras in V can be found in polynomial time.
- Given a finite algebra X in \mathcal{V} , a retraction from X to its f-core can be found in polynomial time.

Varieties with Bounded f-Cores

Let f be a homomorphism appropriately defined for a given variety.

Varieties with Bounded f-Cores

Let f be a homomorphism appropriately defined for a given variety.

Theorem (Boolean Algebras)

Boolean algebras have bounded f-cores, and the Exists Right-Factor Problem with fixed Z is in P.

Varieties with Bounded f-Cores

Let f be a homomorphism appropriately defined for a given variety.

Theorem (Boolean Algebras)

Boolean algebras have bounded f-cores, and the Exists Right-Factor Problem with fixed Z is in P.

Theorem (Vector Spaces)

Let F be a field. The variety of vector spaces over F has bounded f-cores, and the Exists Right-Factor Problem with fixed Z is in P.

Can We Do Better?

The arguments for both Boolean algebras and vector spaces can be extended to show that the Homomorphism Factorization Problem for these languages is also in P. Could the presence of bounded *f*-cores be a sufficient condition for this to hold in general?

Can We Do Better?

The arguments for both Boolean algebras and vector spaces can be extended to show that the Homomorphism Factorization Problem for these languages is also in P. Could the presence of bounded *f*-cores be a sufficient condition for this to hold in general? Maybe.

Can We Do Better?

The arguments for both Boolean algebras and vector spaces can be extended to show that the Homomorphism Factorization Problem for these languages is also in P. Could the presence of bounded f-cores be a sufficient condition for this to hold in general? Maybe.

Thank you for your time.