Simple truncated archimedean vector lattices

R. N. Ball

University of Denver

22 May 2019

Truncs

Definition

A truncated archimedean vector lattice, or trunc for short, is an archimedean vector lattice with a truncation, i.e., a unary operation $G^{+} \rightarrow G^{+}=(g \mapsto \bar{g})$ satisfying the following for all $g, h \in G^{+}$.

- $g \wedge \bar{h} \leq \bar{g} \leq g$,
- $\bar{g}=0$ implies $g=0$,
- $n g=\overline{n g}$ for all n implies $g=0$.

A truncation homomorphism is a vector lattice homomorphism $\theta: G \rightarrow H$ such that $\theta(\bar{g})=\overline{\theta(g)}$. We denote the category of truncs and their homomorphisms by \mathbf{T}.

Notation

$-n \overline{g / n}$ abbreviated to $g \wedge n$. The trunc has no element n.

- $g-\bar{g}$ abbreviated to $g \ominus 1$. The trunc has no element 1.
- $r(g / r \ominus 1)$ abbreviated to $g \ominus r, r \geq 0$. The trunc has no element r.

Prototypical truncs, the pointy ones

- $\mathcal{C}_{0} X \equiv\{\tilde{g} \in \mathcal{C} X: \tilde{g}(*)=0\}$, where $(X, *)$ is a Tychonoff pointed space and $\mathcal{C} X$ is the family of continuous real valued functions on X. Here $\overline{\tilde{g}}(x)=\tilde{g}(x) \wedge 1$ for all $x \in X$. $\mathcal{C}_{0} X$ is a trunc which does not contain the constant function 1 .
- $\mathcal{D}_{0} X \equiv\{\tilde{g} \in \mathcal{D} X: \tilde{g}(*)=0\}$, where $(X, *)$ is a compact pointed space and $\mathcal{D X}$ is the family of continuous extended-real valued functions \tilde{g} on X which vanish at the designated point and which are almost finite, i.e., $\tilde{g}^{-1}(\mathbb{R})$ is dense in X. Note that $\mathcal{D}_{0} X$ is not generally a trunc; we speak of a trunc in $\mathcal{D}_{0} X$.

Prototypical truncs, the pointfree ones

- $\mathcal{R}_{0} L \equiv\{g \in \mathcal{R} L: g$ vanishes at * $\}$, where $(L, *)$ is a completely regular pointed frame and $\mathcal{R L}$ is the family of pointed frame maps $\mathcal{O}_{*} \mathbb{R} \rightarrow L$. Here

$$
\bar{g}(-\infty, r)= \begin{cases}\top & \text { if } r>1 \\ g(-\infty, r) & \text { if } r \leq 1\end{cases}
$$

$\mathcal{R}_{0} L$ is a trunc.

- $\mathcal{E}_{0} q \equiv\left\{g \in \mathcal{R}_{0} L: g \wedge n\right.$ factors through q for all $\left.n\right\}$. Here $q: M \rightarrow L$ is a compactification. $\mathcal{E}_{0} q$ is not generally a trunc; we speak of a trunc in $\mathcal{E}_{0} q$.

The Yosida Representation for truncs

Theorem

- For any trunc G there is a unique compact Hausdorff pointed space $(X, *)$, a trunc \widetilde{G} in $\mathcal{D}_{0} X$, and a trunc isomorphism $V_{G}: G \rightarrow \widetilde{G}=(g \mapsto \tilde{g})$ such that \widetilde{G} separates the points of X. The space X is called the Yosida space of G, designated $\mathcal{Y}_{*} G$.
- The representation is functorial. For every trunc homomorphism $\theta: G \rightarrow H$, where H is a trunk with Yosida space Y, there is a unique continuous pointed function k such that $\nu_{H} \circ \theta(g)=v_{G}(g) \circ k$, i.e., $\overline{\theta(g)}=\tilde{g} \circ k$.

The Madden representation for truncs

Theorem

- Every trunc G is isomorphic to a subtrunc of $\mathcal{R}_{0} L$ for some pointed frame $L . L$ is called the Madden frame of G.
- This representation is functorial. For every trunc homomorphism $\theta: G \rightarrow H$, where H is a trunk with Madden frame M, there is a unique pointed frame map h such that $\mathcal{R}_{0} h \circ \mu_{G}=\mu_{H} \circ \theta$, i.e., $\theta(g)=h \circ g$.

A hybrid representation theorem

A compactification is a dense pointed frame surjection $q: M \rightarrow L$ out of a compact regular pointed frame M.

Definition

For a compactification $q: M \rightarrow L$, let

$$
\mathcal{E}_{0} q \equiv\left\{g \in \mathcal{R}_{0} L \mid \forall n(g \wedge n \text { factors through } q)\right\}
$$

$\mathcal{E}_{0} q$ is closed under the scalar multiplication, the lattice operations, and truncation. It is not generally closed under addition or subtraction. However, a subset of $\mathcal{E}_{0} q$ may be closed under all of the trunc operations. We speak of a trunc in $\mathcal{E}_{0} q$.

A hybrid representation theorem

Theorem

Every trunc G is isomorphic to a trunc snugly embedded in $\mathcal{E}_{0} q$ for a suitable compactification $q: M \rightarrow L$. This representation is functorial.

Unital components

Lemma

The following are equivalent for an element u of a trunc G.

- u is a unital component of G, i.e., $u \in \bar{G}=\left\{\bar{g} \mid g \in G^{+}\right\}$, and $u \wedge v$ is a component of v for each $v \in \bar{G}$. That is, $(u \wedge v) \wedge(v-u \wedge v)=0$ for all $v \in \bar{G}$.
- $u=\overline{2 u}$.
- \tilde{u} is the characteristic function χu of some clopen subset $U \subseteq X$ which omits the designated point $*$ of X.
We denote the set of unital components of G by $\mathcal{U C}(G)$.
For any trunc $G, \mathcal{U C}(G)$ forms a genralized Boolean algebra, i.e., a distributive lattice with least element \perp which admits relative complementation: for all a and b there exists c such that $c \vee b=a \vee b$ and $c \wedge b=\perp$.
$\mathcal{U C}(G)$ is Boolean, i.e., has a greatest element, iff G is unital, i.e., G contains an element $u \in G^{+}$such that $\bar{g}=u \wedge g$ for all $g \in \bar{G}$. (This happens iff the designated point $* \in X$ is isolated.

Simple elements

Definition

An element g of a trunc G is simple if it is a linear combination of simple elements. A trunc G is called simple if all its elements are simple.

Theorem

The following categories are equivalent.

- The category sT of simple truncs with truncation homomorphisms.
- The category gBa of generalized Boolean algebras with morphisms which preserve the lattice operations and \perp.
- The category iBa of idealized Boolean algebras. The objects are of the form (B, I), where B is a Boolean algebra and I is a maximal ideal of B. The morphisms $f:(B, I) \rightarrow(C, J)$ are the Boolean homomorphisms $f: B \rightarrow C$ such that $f^{-1}(J)=I$.
- The category $\mathbf{z d K}$ * of pointed Boolean spaces, i.e., zero dimensional compact Hausdorff pointed spaces.

Truncs bounded away from 0

Lemma

The following are equivalent for an element $g \geq 0$ in a trunc G.

- $\overline{n g} \in \mathcal{U C}(G)$ for some n.
- $u / n \leq \bar{g} \leq u$ for some $u \in \mathcal{U C}(G)$ and some n.
- There is a real number $\varepsilon>0$ such that $\tilde{g}(x)>\varepsilon$ whenever $\tilde{g}(x)>0$.
- There is a real number $\varepsilon>0$ such that $\operatorname{coz} g=g(0, \infty)=g(\varepsilon, \infty)$.
- There is a real number $\varepsilon>0$ such that $\operatorname{coz}(0, \varepsilon)=\perp$. We say that g is bounded away from 0 if $|g|$ satisfies these conditions. We say that G is bounded away from 0 if every element of G is bounded away from 0 .

The first characterization of simple truncs

Definition

An element $g \geq 0$ of a trunc G is said to be bounded if $g \leq n \bar{g}$ for some n. The bounded part of G is

$$
G^{*} \equiv\{g| | g \mid \text { is bounded }\},
$$

a convex subtrunc of G. G is said to be bounded if $G=G^{*}$.
Theorem
The following are equivalent for a trunc G.

- G is simple.
- G is bounded and bounded away from 0.
- G is isomorphic to $\mathcal{L C X}$, the trunc of locally constant functions on a pointed Boolean space X which vanish at the designated point.

Hyperarchimedean truncs

Proposition

The following are equivalent for a trunc G.

- Every quotient of G by a convex ℓ-subgroup is archimedean.
- The spectrum of G is trivially ordered, i.e., every prime convex ℓ-subgroup is both maximal and minimal.
- Each principal convex ℓ-subgroup $G(g)$ is a cardinal summand, i.e., $G=G(g) \oplus g^{\perp}$ for all $g \in G^{+}$.
A trunc with these properties is called hyperarchimedean.

Example

Let X be the pointed Boolean space $(\omega+1, \omega)$, and let $G \equiv\left\{\tilde{a}+r \tilde{g}_{0} \mid \tilde{a} \in \widetilde{A}, r \in \mathbb{R}\right\}$, where

$$
\widetilde{A} \equiv\left\{\tilde{a} \in \mathcal{D}_{0} X \mid \operatorname{coz} \tilde{a} \text { finite }\right\} \text { and } \forall n \tilde{g}_{0}(n)=1 / n
$$

Then G is a hyperarchimedean trunc but it is not simple because it is not bounded away from 0 .

A second characterization of simple truncs

Theorem

The following are equivalent for a trunc G.

- G is simple.
- G is hyperarchimedean and has enough unital components, i.e., for all $g \in G^{+}$there exists $u \in \mathcal{U C}(G)$ such that $\bar{g} \leq u$.
- G is hyperarchimedean and bounded away from ∞, i.e., each $\tilde{g} \in \widetilde{G}$ vanishes on a neighborhood of the designated point *.

Thank you.

