Simple truncated archimedean vector lattices

R. N. Ball

University of Denver

22 May 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Truncs

Definition

A truncated archimedean vector lattice, or trunc for short, is an archimedean vector lattice with a truncation, i.e., a unary operation $G^+ \rightarrow G^+ = (g \mapsto \overline{g})$ satisfying the following for all $g, h \in G^+$.

- ► $g \wedge \overline{h} \leq \overline{g} \leq g$,
- $\overline{g} = 0$ implies g = 0,
- $ng = \overline{ng}$ for all *n* implies g = 0.

A truncation homomorphism is a vector lattice homomorphism $\theta: G \to H$ such that $\theta(\overline{g}) = \overline{\theta(g)}$. We denote the category of truncs and their homomorphisms by **T**.

Notation

- ▶ $n\overline{g/n}$ abbreviated to $g \land n$. The trunc has no element n.
- ▶ $g \overline{g}$ abbreviated to $g \ominus 1$. The trunc has no element 1.
- ▶ $r(g/r \ominus 1)$ abbreviated to $g \ominus r$, $r \ge 0$. The trunc has no element r.

Prototypical truncs, the pointy ones

- ▶ $C_0 X \equiv \{ \tilde{g} \in CX : \tilde{g}(*) = 0 \}$, where (X, *) is a Tychonoff pointed space and CX is the family of continuous real valued functions on X. Here $\overline{\tilde{g}}(x) = \tilde{g}(x) \land 1$ for all $x \in X$. $C_0 X$ is a trunc which does not contain the constant function 1.
- ▶ $\mathcal{D}_0 X \equiv \{ \tilde{g} \in \mathcal{D}X : \tilde{g}(*) = 0 \}$, where (X, *) is a compact pointed space and $\mathcal{D}X$ is the family of continuous extended-real valued functions \tilde{g} on X which vanish at the designated point and which are *almost finite*, i.e., $\tilde{g}^{-1}(\mathbb{R})$ is dense in X. Note that $\mathcal{D}_0 X$ is not generally a trunc; we speak of a trunc in $\mathcal{D}_0 X$.

Prototypical truncs, the pointfree ones

▶ $\mathcal{R}_0 L \equiv \{ g \in \mathcal{R}L : g \text{ vanishes at } * \}, \text{ where } (L, *) \text{ is a completely regular pointed frame and } \mathcal{R}L \text{ is the family of pointed frame maps } \mathcal{O}_* \mathbb{R} \to L. \text{ Here}$

$$\overline{g}(-\infty, r) = \begin{cases} \top & \text{if } r > 1\\ g(-\infty, r) & \text{if } r \leq 1 \end{cases}$$

 \mathcal{R}_0L is a trunc.

► $\mathcal{E}_0 q \equiv \{ g \in \mathcal{R}_0 L : g \land n \text{ factors through } q \text{ for all } n \}$. Here $q: M \rightarrow L$ is a compactification. $\mathcal{E}_0 q$ is not generally a trunc; we speak of a trunc in $\mathcal{E}_0 q$.

The Yosida Representation for truncs

Theorem

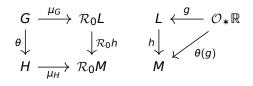
- ▶ For any trunc *G* there is a unique compact Hausdorff pointed space (*X*, *), a trunc \tilde{G} in $\mathcal{D}_0 X$, and a trunc isomorphism $\nu_G : G \to \tilde{G} = (g \mapsto \tilde{g})$ such that \tilde{G} separates the points of *X*. The space *X* is called the *Yosida space of G*, designated \mathcal{Y}_*G .
- ► The representation is functorial. For every trunc homomorphism $\theta: G \to H$, where H is a trunk with Yosida space Y, there is a unique continuous pointed function ksuch that $\nu_H \circ \theta(g) = \nu_G(g) \circ k$, i.e., $\overline{\theta(g)} = \tilde{g} \circ k$.

$$\begin{array}{cccc} G & \xrightarrow{\nu_{G}} & \mathcal{D}_{0}X & & X & \xrightarrow{\tilde{g}} & \overline{\mathbb{R}} \\ \theta & & & \downarrow_{\mathcal{D}_{0}k} & & k \uparrow & \swarrow \\ H & \xrightarrow{\nu_{H}} & \mathcal{D}_{0}Y & & Y \end{array}$$

The Madden representation for truncs

Theorem

- Every trunc G is isomorphic to a subtrunc of R₀L for some pointed frame L. L is called the Madden frame of G.
- ► This representation is functorial. For every trunc homomorphism $\theta: G \to H$, where *H* is a trunk with Madden frame *M*, there is a unique pointed frame map *h* such that $\mathcal{R}_0 h \circ \mu_G = \mu_H \circ \theta$, i.e., $\theta(g) = h \circ g$.



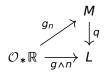
A hybrid representation theorem

A compactification is a dense pointed frame surjection $q: M \rightarrow L$ out of a compact regular pointed frame M.

Definition

For a compactification $q: M \rightarrow L$, let

 $\mathcal{E}_0 q \equiv \left\{ g \in \mathcal{R}_0 L \mid \forall n \ (g \land n \text{ factors through } q) \right\}$



 $\mathcal{E}_0 q$ is closed under the scalar multiplication, the lattice operations, and truncation. It is not generally closed under addition or subtraction. However, a subset of $\mathcal{E}_0 q$ may be closed under all of the trunc operations. We speak of a *trunc in* $\mathcal{E}_0 q$.

A hybrid representation theorem

Theorem

Every trunc *G* is isomorphic to a trunc snugly embedded in $\mathcal{E}_0 q$ for a suitable compactification $q: M \rightarrow L$. This representation is functorial.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Unital components

Lemma

The following are equivalent for an element *u* of a trunc *G*.

- ▶ *u* is a *unital component of G*, i.e., $u \in \overline{G} = \{\overline{g} | g \in G^+\}$, and $u \land v$ is a component of *v* for each $v \in \overline{G}$. That is, $(u \land v) \land (v - u \land v) = 0$ for all $v \in \overline{G}$.
- ► $u = \overline{2u}$.
- ► \tilde{u} is the characteristic function χ_U of some clopen subset $U \subseteq X$ which omits the designated point * of X.

We denote the set of unital components of *G* by $\mathcal{UC}(G)$.

For any trunc G, $\mathcal{UC}(G)$ forms a genralized Boolean algebra, i.e., a distributive lattice with least element \bot which admits relative complementation: for all a and b there exists c such that $c \lor b = a \lor b$ and $c \land b = \bot$.

 $\mathcal{UC}(G)$ is Boolean, i.e., has a greatest element, iff G is unital, i.e., G contains an element $u \in G^+$ such that $\overline{g} = u \land g$ for all $g \in \overline{G}$. (This happens iff the designated point $* \in X$ is isolated.

Simple elements

Definition

An element g of a trunc G is *simple* if it is a linear combination of simple elements. A trunc G is called simple if all its elements are simple.

Theorem

The following categories are equivalent.

- The category sT of simple truncs with truncation homomorphisms.
- The category gBa of generalized Boolean algebras with morphisms which preserve the lattice operations and 1.
- ▶ The category **iBa** of idealized Boolean algebras. The objects are of the form (*B*, *I*), where *B* is a Boolean algebra and *I* is a maximal ideal of *B*. The morphisms $f: (B, I) \rightarrow (C, J)$ are the Boolean homomorphisms $f: B \rightarrow C$ such that $f^{-1}(J) = I$.
- The category zdK_{*} of pointed Boolean spaces, i.e., zero dimensional compact Hausdorff pointed spaces.

Truncs bounded away from 0

Lemma

The following are equivalent for an element $g \ge 0$ in a trunc G.

- $\overline{ng} \in \mathcal{UC}(G)$ for some *n*.
- ▶ $u/n \le \overline{g} \le u$ for some $u \in UC(G)$ and some n.
- ► There is a real number $\varepsilon > 0$ such that $\tilde{g}(x) > \varepsilon$ whenever $\tilde{g}(x) > 0$.
- ► There is a real number $\varepsilon > 0$ such that $\cos g = g(0, \infty) = g(\varepsilon, \infty)$.
- There is a real number $\varepsilon > 0$ such that $coz(0, \varepsilon) = \bot$.

We say that g is bounded away from 0 if |g| satisfies these conditions. We say that G is bounded away from 0 if every element of G is bounded away from 0.

The first characterization of simple truncs

Definition

An element $g \ge 0$ of a trunc G is said to be *bounded* if $g \le n\overline{g}$ for some n. The *bounded part of* G is

 $G^* \equiv \{ g \mid |g| \text{ is bounded } \},\$

a convex subtrunc of G. G is said to be bounded if $G = G^*$.

Theorem

The following are equivalent for a trunc G.

- G is simple.
- *G* is bounded and bounded away from 0.
- ► G is isomorphic to LCX, the trunc of locally constant functions on a pointed Boolean space X which vanish at the designated point.

Hyperarchimedean truncs

Proposition

The following are equivalent for a trunc G.

- Every quotient of G by a convex *l*-subgroup is archimedean.
- ► The spectrum of *G* is trivially ordered, i.e., every prime convex *l*-subgroup is both maximal and minimal.
- ► Each principal convex l-subgroup G(g) is a cardinal summand, i.e., $G = G(g) \oplus g^{\perp}$ for all $g \in G^+$.

A trunc with these properties is called *hyperarchimedean*.

Example

Let X be the pointed Boolean space $(\omega + 1, \omega)$, and let $G \equiv \{\tilde{a} + r\tilde{g}_0 \mid \tilde{a} \in \tilde{A}, r \in \mathbb{R}\}$, where

 $\widetilde{A} \equiv \{ \widetilde{a} \in \mathcal{D}_0 X \mid \operatorname{coz} \widetilde{a} \text{ finite} \} \text{ and } \forall n \ \widetilde{g}_0(n) = 1/n.$

Then G is a hyperarchimedean trunc but it is not simple because it is not bounded away from 0.

A second characterization of simple truncs

Theorem

The following are equivalent for a trunc G.

- G is simple.
- ► *G* is hyperarchimedean and has enough unital components, i.e., for all $g \in G^+$ there exists $u \in UC(G)$ such that $\overline{g} \leq u$.
- ► G is hyperarchimedean and bounded away from ∞ , i.e., each $\tilde{g} \in \tilde{G}$ vanishes on a neighborhood of the designated point *.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Thank you.

(ロト (個) (E) (E) (E) E のQの