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@ Canonical heights for polarized dynamical systems
® Canonical heights on affine space
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Plan of the talk

(2005 Email? 2008 AIM)

@ Canonical heights for polarized dynamical systems
® Canonical heights on affine space
® Canonical heights for surface automorphisms

O Arithmetic degrees

The emphasis is on canonical heights other than Néron-Tate heights or

those on P" for morphisms.
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Part 1  Canonical heights for polarized

dynamical systems
X: a projective variety defined over Q (for simplicity)
f:X — X: amorphism
D € Div(X)r :=Div(X)®R: a Cartier R-divisor on X
Assume that f*D ~ d D for some d > 1.
If D is ample, then the triple (X, f, D) is called a polarized
dynamical system.

Example (polarized dynamical systems)
e X: Abelian variety, D ample with [—1]*D ~ D,
f =[2]: twice multiplication map (= Néron-Tate height )

e X =PV f: amorphism of degree > 1, D: a hyperplane
(= canonical height ﬁf :PN(@Q) - R)
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Theorem (Call-Silverman 1993)

(D: not necessarily ample.) There exists a unique height function izp

associated to D,
hp:X(@Q) - R,
satisfying IALD of = dizp.
Properties of Call-Silverman canonical heights
® Assume that D is ample. Then h p is non-negative and

hp(z) =0 if and only if z € X(Q) is preperiodic.

In particular, the set of preperiodic points PrePer(f,Q) is a set of
bounded height.
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® Assume that D is ample. Take z € X(Q) that is not preperiodic.
Then

logT

logd

#{yGO}F(x) | hg(y) < T} ~ as T — oo ,

where O}_(:E) is the forward orbit of x under f, and H is any
ample divisor.
® Decomposition into the sum of local canonical heights

Take a number field K over which f is defined.

For a finite extension L/K and z € X(L) \ |D|, one has
- B [Ly : Ky ¢
hp(z)= > T &] 0e@:

veEMT,
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® Variation of the canonical height
m: )V — C a family over a smooth projective curve C
C° a Zariski open subset of C, and set V° := 77 1(C°)
f:V° = V°over C° and D € Div(V°)gr as before
hc: a Weil height on C' corresponding to a divisor of degree 1
P :C —V a section

lim ho, (22)
hr(t)—oo  hp(t)

= hp(P).
Followed by stronger results by Ingram

More properties of the canonical heights ...

From talks of this conference: Equidistribution (Baker—Rumely,
Chambert-Loir, Favre-Rivera-Letlier, Yuan ...), Masser—Zannier
unlikely intersection (Baker-DeMarco, Ghioca—Tucker-Hsia,

DeMarco-Wang—Ye, Ghioca—Krieger-Nguyen—Ye ...) ...
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Part 2 Canonical heights on affine
space
Hénon map
A% affine plane (over Q)

f:A%2 - A% a Hénon mabp, i.e., an automorphism of the form

f(a,y) = (y + P(x),x)
for some polynomial P(x) € Q[z] with d := deg(P) > 2.

Then f extends to a birational map f : P? --» P2,
(:y:2) e (2@ + 29P(x/2) s w2871 2 29).

Since f has the indeterminacy set Iy = {(1:0:0)},

f is not a morphism.
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The Hénon map f : P? --» P? is not a polarized dynamical system, but
Silverman proved the following theorem.
Theorem (Silverman 1994)
Let f : A> — A? be a Hénon map of degree 2 over Q. Then
@ the set of periodic points Per(f,Q) is a set of bounded height.
® Take x € A%(Q) that is not periodic. Then

logT
log 2

where Of(x) = {f"(x) | n € Z} is the f-orbit, and hwei is the
standard Weil function.

#{y € O¢(2) | hwea(y) < T} ~ 2 as T — oo,

Remark The proof uses blow-ups along the indeterminacy sets Iy and
P
f
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Regular polynomial automorphism

AN:  affine N-space (over Q)
f:AYN — AN: a polynomial automorphism
Then f extends to a birational map f : PN --» PV,

Following Sibony, f is called a regular polynomial automorphism
if I N I -1 = 0,

where Iy and I¢-1 is the indeterminacy sets of f and f -1

Example

{Hénon maps} C {regular polynomial automorphisms}
Indeed, for a Hénon map, Iy = {(1:0:0)} and I;-1 = {(0:1:0)}.
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Silverman’s results are generalized by Denis and Marcello.

Theorem (Denis, Marcello)
Let f: AN — AN be a regqular polynomial automorphism of degree

d> 2. Then
@ the set of periodic points Per(f,Q) is a set of bounded height.
® Take x € AN(Q) that is not periodic. Then

log T’

T —
e as 00,

#{y € Of(z) | hwenr(y) < T} ~ 2

where Of(x) = {f"(x) | n € Z} is the f-orbit, and hwei s the

standard Weil function.
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Canonical heights have not appeared so far, but they exist.
For a polynomial automorphism f : A2 — A2 on the affine plane,
the (first) dynamical degree (explained more later) is defined by

§:=8;:= lim (deg f")'/",

which in this case is an integer. (For a Hénon map, 6 = deg f.)

lim
n—oo
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Canonical heights have not appeared so far, but they exist.
For a polynomial automorphism f : A2 — A2 on the affine plane,
the (first) dynamical degree (explained more later) is defined by

0:=06;:= (deg fn)l/n>

which in this case is an integer. (For a Hénon map, 6 = deg f.)

lim
n—oo

Theorem (K. (dim N = 2))
Let f: A2 — A? be a polynomial automorphism with 6 > 1.
Then the limits

1
i (2) = i e (@), () = lim ()
exist for all z € A%(Q). We set h:=ht +h™ : A2(Q) — Rx.
Then h satisfy h>< hweil

andhof+hofl= (6+ %) h. Further (... continued)
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Properties of canonical heights
o h(z) = 0 if and only if z € A2(Q) is periodic.

In particular, the set of periodic points Per(f,Q) is a set of
bounded height (Silverman).

® Take z € X(Q) that is not preperiodic. Then, as T' — oo,

logT

ogg ~ MOs@) +0()

#{y € Of(2) | hweir(y) < T} =2

where /E(Of (x)) is a quantity defined by the orbit Of(x) and the
O(1) bound does not depend on x.

Remark
The construction of h uses blow-ups along Iy and I;-1. The above
estimate ) is similar to Silverman’s canonical heights on Wehler K3

surfaces (explained later).
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These results are generalized to higher dimensional case by Lee and K.

Theorem (Lee, K)

Let f: AN — AN be a regular polynomial automorphism of degree

d > 2. Then there exists a canonical height function
h:AYN@Q) >R

defined in a similar way which satisfies h>< hweil and
A A 1\ -

hof+hof = (d+2) h.

Further, h enjoys the same properties (D) as before.

Remark
To construct ﬁ, Lee uses blow-ups along the indeterminacy sets Iy and
I;—1. My construction is to introduce local canonical heights and to

sum up (as explained in the next page).
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® Decomposition into the sum of local canonical heights
f: AN — AN a regular polynomial automorphism of degree
d := deg(f) > 2 defined over a number field K. Set

d_ :=deg(f™1).
x € AN(L) for a finite extension L/K, v € Mp: a place
1
+ e T8 i + n
(o) = Jmy g7 o)
_ - A +1| p—n
Gy (2) = T - Tog" £~ (@)lh
Then

)= ¥ e (6@ + 65 @)

Remark
The most difficult part is to show hyey >< h.
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@ Variation of the canonical height for Hénon maps

Theorem (Ingram)

C'  a smooth projective curve over a number field K

f: A2 — A% q Hénon map of degree d > 2 defined over K(C)
ho: a Weil height on C corresponding to a divisor of degree 1
Pc A2(K(C))

Then
hi(P) = h(P)ho(t) + (1),
where e(t) = O(1) if C =P and e(t) = O ( hc(t)) in general.

Thus canonical heights for Hénon maps (and regular polynomial

automorphisms) enjoy various nice properties.
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Canonical heights for other polynomial maps

f:A? - A? a polynomial map defined over Q

Let & := &5 := lim,,,(deg f™)'/" be the (first) dynamical degree

(explained more later). The topological degree e := e; is the number

of preimages under f of a general closed point in A%, By Bézout’s
theorem, e < §2.

Theorem (Jonsson-Wulcan)

Let f : A> — A? be a polynomial map with e < §. Then the limit

h(z) := lim theil(fn(x))7

n—oo M

exist for all z € A%2(Q). One has h %0 and ho f =& h.

Remark  For another case, Jonsson—Reschke construct canonical

heights for birational maps of surfaces (explained later).
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Part 3  Canonical heights for surface

automorphisms

Wehler K3 surface
X: a complete intersection of general (1,1) and (2,2) hypersurfaces
defined over Q in P? x P?

—> X is a K3 surface
The projections p; : X — P? (i = 1,2) are double covers, inducing
involutions g; : X — X.
D; := p;(line) € Div(X) (i =1,2)
Set E* := (1++/3)Dy — Dy and E~ := —D; + (1 ++/3) Dy in Div(X)g
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Let X be a Wehler K3 surface with involutions o1, o9.

Theorem (Silverman 1991)

There exist a unique pair of functions,
Rt A~ : X(Q) >R

such that h™ (resp. h™) is a height function associated to Et (resp.
E~ ) and such that

001 (2+ V3)ThT
* 009 = (2+ V3)EhT.

Further (... continued)
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Silverman showed the following properties of canonical heights.

o ht(z) = 0 if and only if A~ (z) = 0 if and only if
Oo,,0:(x) :=={o(2) | 0 € (01,02)} is a finite set.

® Take x € X(Q) such that Oy, 4, () is infinite. Then

#{y € 001,02 (x) | hH(y) < T}

T s
B log(2—|—\/§) h(Om,az( ))+O(1),

where H is any ample divisor on X, ¢ =1 or 2 (depending on x),
/}Z(Om,g2 (x)) is a quantity defined by the orbit Oy, 4, () and the
O(1) bound does not depend on z.

19 / 39



Let X be a Wehler K3 surface with involutions o1, 09.

Put f := 01 009.

Then for Et := (1 ++/3)D; — Dy and E~ := —D; + (1 4+ v/3) Do,
one has f*(E*) ~ (7T+4V3)E* and f~(E~) ~ (T+4V3)E~.

So, by Call-Silverman, there exist canonical heights ilE+ and sz—.

Giving {iﬁ, B‘} is essentially the same as giving {ﬁE+, iLE—}
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Since h B+, h - are Call-Silverman canonical heights, they have
properties 3) (decomposition into local canonical heights) and @)

(variation).
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Let X be a Wehler K3 surface with involutions o1, 09.

Put f := 01 009.

Then for Et := (1 ++/3)D; — Dy and E~ := —D; + (1 4+ v/3) Do,
one has f*(E*) ~ (7T+4V3)E* and f~(E~) ~ (T+4V3)E~.

So, by Call-Silverman, there exist canonical heights ilE+ and sz—.
Giving {h*,h™} is essentially the same as giving {hg+, hp-}.

Remark
Since h B+, h - are Call-Silverman canonical heights, they have
properties 3) (decomposition into local canonical heights) and @)

(variation).

Remark
f: X — X is an automorphism of positive topological entropy
(explained in the next page).
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Topological entropy for surface automorphisms
X: a smooth projective surface defined over Q

f:X — X: an automorphism

The (first) dynamical degree of f is defined by

A is an eigenvalue of }

d :=max < ||
ff®C: H*(X,C) — H*(X,C)

The topological entropy of f equals logd (Gromov, Yomdin).
Remark

@ [ has positive topological entropy <= § > 1

® If X has an automorphism of positive topological entropy, then a
minimal model of X is either an Abelian surface, K3 surface,
Enriques surface, or a rational surface (Cantat).
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Surface automorphism of positive topological entropy

X: a smooth projective surface defined over Q

f: X — X: an automorphism of positive topological entropy logd.
An irreducible curve C' is periodic if f*(C) = C (as a set) for some
n > 1.

Theorem (K.)

o There are at most finitely many irreducible periodic curves.

o There exist nef divisors ET and E~ € Div(X)gr such that
fY(EY) ~S6EY and f~%(E~) ~ SE~. (They are unique up to
scales.) Further, ET + E~ is nef and big.

e By the above, we have Call-Silverman canonical heights iLE+ and
iAzEf. We set h := fAbE+ + ﬁE-, which is a height function
associated to E* + E~.

Further (... continued)
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PS iz(:z:) =0 if and only if “x lies on a periodic curve or z is

periodic.”

In particular, the set Per(f,Q) \ periodic curves is a set of
bounded height.

® Take z € X(Q) such that = does not lies on a periodic curve and
that = is not periodic. Then

#y € 05(@) | huly) < T) = 29 ~ H(Oy(w)) + O(1)

where Of(x) = {f"(x) | n € Z}, H is any ample divisor on X,
/}Z(Of(x)) is a quantity defined by the orbit O(x) and the O(1)

bound does not depend on z.
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Birational surface maps

Recently Jonsson—Reschke show the existence of canonical heights for

birational surface maps.

Theorem (Jonsson-Reschke)

Let X be a smooth projective surface defined over Q, and f: X --» X
a birational selfmap. Assume that the first dynamical degree d > 1.

Then, up to birational conjugacy, the limit

ht(z) := lim L

n—oo O™

hg+(f"(2)),

exists and non-negative for all x € X (Q) with well-defined forward
orbit.
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Part 4  Arithmetic degrees

A remark
Let d > 1, and

{an}2, be a sequence of positive numbers with a, > 1.

.1 .
Assume that lim —a,, exists, and not zero.
n—oo dn

Then lim a}/ " exists, and equals to d.

n—oo

The converse does not hold in general.
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Part 4  Arithmetic degrees

A remark
Let d > 1, and

{an}2, be a sequence of positive numbers with a, > 1.

.1 .
Assume that lim —a,, exists, and not zero.
n—oo dn

Then lim a}/ " exists, and equals to d.

n—oo
The converse does not hold in general.
This suggests that “ li_)m h(f™(x))/™ might exist even if the canonical
n—oo

3 (130 1 n ” 3
heigh nll)lgo d_"h( f™(x))” does not exist.
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X: asmooth projective variety over Q
f:X --» X: a dominant rational map

We fix (any) ample divisor H on X and

a Weil height hy : X(Q) — [1, 00) associated to H
X(Q)f := {z € X(Q) | f*(z) is well-defined for all n > 0}

Definition (arithmetic degree, Silverman)

Let z € X(Q)y. If the limit li_)rn hg (f"(x))l/" exists, then we set
n o

ap(z) == lim hp (" ()"

and call the arithmetic degree of x for f.

In general, we set @f(z) := limsup hy (f™(z)™.
n—oo
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Remark
The arithmetic degree af(x) := lim, o0 by (f”(x))l/” (if exists)

measures the “size” of the forward orbit Oy (z) of :

log T’

B T = .
log a () * >

#{y € O(z) | hu(y) < T}
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Remark
The arithmetic degree af(x) := lim, o0 by (f”(x))l/” (if exists)

measures the “size” of the forward orbit Oy (z) of :

log T’

B T = .
log a () * >

#{y € O(z) | hu(y) < T}

First dynamical degree
X a smooth projective variety over Q

f:X --+ X adominant rational map

NS(X) := Div(X)/(algebraic equivalence)
Néron-Severi group of X
Then NS(X)r := NS(X) ® R (resp. NS(X)¢ := NS(X) ® C)

a finite dimensional R-vector (resp. C-vector) space.
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Definition (dynamical degree of f, one of equivalent definitions)

f": X --» X induces a linear transformation f™* on NS(X).

d(f™) := max { ||

A is an eigenvalue of
™ ®C:NS(X)c — NS(X)¢

Then the (first) dynamical degree of f is defined by

8 =87 := lim d(fm)Y/"

n—oo

Remark
Dynamical degrees have been extensively studied in complex dynamical

systems and integrable systems.
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Relation between the dynamical degree and the arithmetic

degree

X: asmooth projective variety over Q
f:X --» X: a dominant rational map
df:  dynamical degree of f

af(z) :==limsup hy (f(z)/"

arithmetic degree of any x € X (Q); for f

Theorem (Silverman (X = PV); K.-Silverman (X general))

In the above setting, one has

as(x) < df.
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Monomial maps

f:PN ——5s PV is a monomial map

if it is a rational extension of f : GY — G

f= (X XY, XV XY for some A = (ai5) € My(Z).

Theorem (Silverman 2014)
Let f: PN ——» PN be a monomial map such that A is diagonalizable.
© The limit defining ay(z) = Jim hy (f(z))V™ exists (and
independent of the choice of an ample divisor H ).
® oy(z) is an algebraic integer for any G (Q).
® {af(z) |z € GY(Q)} is a finite set.
O Let z € GY(Q). Then, if O;{(az) is Zariski dense in PV, then
af(z) = os.
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Conjecture (Silverman)
X: asmooth projective variety over Q
f:X --+ X: adominant rational map
. . . _ . n l/n .
© The limit defining af(x) = nll)ngo hg (f"(z))™™ exists.

® af(x) is an algebraic integer for any X (Q)y.

® {ar(r) |z € X(Q)f} is a finite set.
© Let x € X(Q)s. Then, if Of () is Zariski dense in X, then
Oéf (37) = (5f.

Remark

The conjecture 2) corresponds to Bellon—Viallet’s conjecture, which
asks whether the dynamical degree s is an algebraic integer.

The conjecture @) seems the most difficult.
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Conjectures for morphisms

X: asmooth projective variety over Q

f: X — X: amorphism

Theorem (K.-Silverman)

Congectures (D@D hold true for morphisms:
©® The limit defining ay(x) = nh_}ngo hg (f”(:v))l/" exists.
@ ay(x) is an algebraic integer for any X (Q).
® {af(z) |z € X(Q)} is a finite set.

Remark
To prove the above statements,
we study the action of f* on Div(X)c, and construct nice height

functions related to f.
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Jordan Block Canonical Heights

X:  a projective variety over Q

f: X = X: amorphism

A € C with [A] > 1,

Assume that there exist Do, Dy, Ds..., € Div(X) ® C be such that

f*DO ~ )\DO)
f*Dy ~ Do+ ADn,

f Dy ~ Dy + ADs,

Then, for k = 0, the limit hp, (z) := hm
(Call-Silverman), but, for £ > 1, the hm1t

n o h Do (f™(x)) converges

lim hp, (/" (2))

n—oo \"

does not converge in general.
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Theorem (Canonical heights for Jordan blocks)

There exist unique height function ile associated to Dy, for all
k=0,1,2,...,

hp, : X(Q) - R,

satisfying hp, (f(x)) = Ahp, (x) + hp,_, () for all k =0,1,2,.. ..
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Theorem (Canonical heights for Jordan blocks)

There exist unique height function ile associated to Dy, for all
k=0,1,2,...,

hp, : X(Q) - R,

satisfying hp, (f(x)) = Ahp, (x) + hp,_, () for all k =0,1,2,.. ..

Remark
Concretely, recursively for £k =0,1,2,..., we have
) 1 A
oy (@) = lm. (/\nth -3 (") A,AhD,c_xac)) .
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Using canonical heights for Jordan blocks, we see that conjectures
D@ hold true for morphisms.

Remark

If A > \/(T , then a similar statement is true with the linear
equivalences replaced by numerical equivalences.
However, the condition ile = hp, + O(1) is replaced by
}Ale = hp, + O(vhy). (Here H is an ample divisor on X.)

Indeed, using @¢(z) < dy, one can show that if f: X — X is a
morphism, and D € Div(X)g is a divisor such that f*[D] = A[D] in
NS(X)g for some A > /dy, then the limit

hp(z) == Jim %hp(f"(w))

exists (Here hp is a Weil height associated to D).
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Conjecture @ for isogenies of abelian varieties

A: an abelian variety over Q

f:A— A anisogeny (i.e., a surjective group endomorphism)

In this case, in addition to Conjectures (D@2)@), Conjecture @ holds
true.

Theorem (K.—Silverman)

Let x € A(Q). If the forward orbit O}F(:c) is Zariski dense in A, then
ayp(x) =o5.

Remark
For an isogeny in general, one can find D # 0 € NS(A)g such that
f*D = 6¢D. But often D is not ample, and is only nef.
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Example

E: elliptic curve over Q without CM
A:=ExE

Automorphism of A:

f:A—= A (z,y) = ([dlz+ by, [z + [dy),

b
where (a d) € GL2(Z) with a +d > 2.
c

Let s« > 1 be a root of the characteristic polynomial > — (a + d)t + 1.
Then
3D € NS(A)g such that D is nef and symmetric, and
f*D=pu?>D in NS(A)g.

In this case, D is not ample.
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Theorem (nef canonical height theorem)

Let A be an abelian variety over Q, and

D € Div(A)r a nef and symmetric R-divisor such that D £, 0

Let hp be the Néron-Tate height. Then
® hp(z) >0 for any z € A(Q).
® There exists a subabelian variety Bp C A over Q such that

{z € A(Q) | hp(2) = 0} = Bp(Q) + A(Q)tor-

Remark
If D is ample, then {z € A(Q) | hp(z) = 0} = A(Q)s0r.
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Sketch of proof

For an isogeny f : A — A one can find a nef and symmetric

D # 0 € NS(A)r such that f*D = é¢D. Suppose af(x) < 6¢. Then one
can show that ﬁD(x) = 0. Using the nef canonical height theorem, one

can show that O;f(x) is included in a proper subvariety of A.
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