Around canonical heights in arithmetic dynamics

Shu Kawaguchi

Arithmetic 2015 - Silvermania August 14, 2015

Plan of the talk

(2005 Email? 2008 AIM)

- 1 Canonical heights for polarized dynamical systems
- 2 Canonical heights on affine space
- **3** Canonical heights for surface automorphisms
- **4** Arithmetic degrees

Plan of the talk

(2005 Email? 2008 AIM)

- 1 Canonical heights for polarized dynamical systems
- 2 Canonical heights on affine space
- **3** Canonical heights for surface automorphisms
- **4** Arithmetic degrees

The emphasis is on canonical heights other than Néron-Tate heights or those on \mathbb{P}^n for morphisms.

Part 1 Canonical heights for polarized dynamical systems

- X: a projective variety defined over $\overline{\mathbb{Q}}$ (for simplicity)
- $f: X \to X$: a morphism

 $\boldsymbol{D} \in \operatorname{Div}(X)_{\mathbb{R}} := \operatorname{Div}(X) \otimes \mathbb{R} :$ a Cartier \mathbb{R} -divisor on XAssume that $\boldsymbol{f^*D} \sim \boldsymbol{dD}$ for some d > 1.

If D is ample, then the triple (X, f, D) is called a **polarized** dynamical system.

Example (polarized dynamical systems)

- X: Abelian variety, D ample with $[-1]^*D \sim D$, f = [2]: twice multiplication map (\Longrightarrow Néron-Tate height)
- $X = \mathbb{P}^N$, f: a morphism of degree > 1, D: a hyperplane (\Longrightarrow canonical height $\hat{h}_f : \mathbb{P}^N(\bar{\mathbb{Q}}) \to \mathbb{R}$)

Theorem (Call–Silverman 1993)

(D: not necessarily ample.) There exists a unique height function \hat{h}_D associated to D,

$$\hat{h}_D: X(\bar{\mathbb{Q}}) \to \mathbb{R},$$

satisfying $\hat{h}_D \circ f = d \hat{h}_D$.

Properties of Call–Silverman canonical heights

() Assume that D is ample. Then \hat{h}_D is non-negative and

 $\hat{h}_D(x) = 0$ if and only if $x \in X(\overline{\mathbb{Q}})$ is preperiodic.

In particular, the set of preperiodic points $\operatorname{PrePer}(f, \overline{\mathbb{Q}})$ is a set of bounded height.

2 Assume that *D* is ample. Take $x \in X(\overline{\mathbb{Q}})$ that is not preperiodic. Then

$$\#\{y \in O_f^+(x) \mid h_H(y) \le T\} \sim \frac{\log T}{\log d} \quad \text{as } T \to \infty \qquad ,$$

where $O_f^+(x)$ is the forward orbit of x under f, and H is any ample divisor.

3 Decomposition into the sum of local canonical heights Take a number field K over which f is defined. For a finite extension L/K and $x \in X(L) \setminus |D|$, one has

$$\hat{h}_D(x) = \sum_{v \in M_L} \frac{[L_v : K_v]}{[L : K]} \,\hat{\lambda}_{D,v}(x).$$

4 Variation of the canonical height

 $\pi: \mathcal{V} \to C$ a family over a smooth projective curve C C° a Zariski open subset of C, and set $\mathcal{V}^{\circ} := \pi^{-1}(C^{\circ})$ $f: \mathcal{V}^{\circ} \to \mathcal{V}^{\circ}$ over C° and $\mathcal{D} \in \operatorname{Div}(\mathcal{V}^{\circ})_{\mathbb{R}}$ as before h_C : a Weil height on C corresponding to a divisor of degree 1 $P: C \to \mathcal{V}$ a section

$$\lim_{h_T(t)\to\infty}\frac{\hat{h}_{\mathcal{D}_t}(P_t)}{h_T(t)} = \hat{h}_{\mathcal{D}}(P).$$

Followed by stronger results by Ingram

More properties of the canonical heights ... From talks of this conference: Equidistribution (Baker–Rumely, Chambert-Loir, Favre–Rivera-Letlier, Yuan ...), Masser–Zannier unlikely intersection (Baker–DeMarco, Ghioca–Tucker–Hsia, DeMarco–Wang–Ye, Ghioca–Krieger–Nguyen–Ye ...) ...

Part 2 Canonical heights on affine space

Hénon map

 \mathbb{A}^2 : affine plane (over $\overline{\mathbb{Q}}$)

 $f: \mathbb{A}^2 \to \mathbb{A}^2$: a **Hénon map**, i.e., an automorphism of the form

$$f(x,y) = (y + P(x), x)$$

for some polynomial $P(x) \in \overline{\mathbb{Q}}[x]$ with $d := \deg(P) \ge 2$.

Then f extends to a birational map $f : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$,

$$(x:y:z)\mapsto (yz^{d-1}+z^dP(x/z):xz^{d-1}:z^d).$$

Since f has the indeterminacy set $I_f = \{(1:0:0)\},\$ f is not a morphism.

The Hénon map $f : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ is not a polarized dynamical system, but Silverman proved the following theorem.

Theorem (Silverman 1994)

Let $f: \mathbb{A}^2 \to \mathbb{A}^2$ be a Hénon map of degree 2 over $\overline{\mathbb{Q}}$. Then

the set of periodic points Per(f, Q
) is a set of bounded height.
 2 Take x ∈ A²(Q
) that is not periodic. Then

$$\#\{y \in O_f(x) \mid h_{\text{Weil}}(y) \le T\} \sim 2 \frac{\log T}{\log 2} \quad \text{ as } T \to \infty,$$

where $O_f(x) = \{f^n(x) \mid n \in \mathbb{Z}\}$ is the *f*-orbit, and h_{Weil} is the standard Weil function.

Remark The proof uses blow-ups along the indeterminacy sets I_f and $I_{f^{-1}}$.

Regular polynomial automorphism

Following Sibony, f is called a regular polynomial automorphism

$$I_f \cap I_{f^{-1}} = \emptyset,$$

where I_f and $I_{f^{-1}}$ is the indeterminacy sets of f and f^{-1} .

Example

{Hénon maps} \subset {regular polynomial automorphisms} Indeed, for a Hénon map, $I_f = \{(1:0:0)\}$ and $I_{f^{-1}} = \{(0:1:0)\}.$ Silverman's results are generalized by Denis and Marcello.

Theorem (Denis, Marcello)

Let $f : \mathbb{A}^N \to \mathbb{A}^N$ be a regular polynomial automorphism of degree $d \geq 2$. Then

the set of periodic points Per(f, Q
) is a set of bounded height.
 Take x ∈ A^N(Q) that is not periodic. Then

$$#\{y \in O_f(x) \mid h_{\text{Weil}}(y) \le T\} \sim 2 \frac{\log T}{\log d} \quad \text{as } T \to \infty,$$

where $O_f(x) = \{f^n(x) \mid n \in \mathbb{Z}\}$ is the *f*-orbit, and h_{Weil} is the standard Weil function.

Canonical heights have not appeared so far, but they exist. For a polynomial automorphism $f : \mathbb{A}^2 \to \mathbb{A}^2$ on the affine plane, the (first) dynamical degree (explained more later) is defined by

$$\boldsymbol{\delta} := \boldsymbol{\delta}_f := \lim_{n \to \infty} (\deg f^n)^{1/n},$$

which in this case is an integer. (For a Hénon map, $\delta = \deg f$.)

Canonical heights have not appeared so far, but they exist. For a polynomial automorphism $f : \mathbb{A}^2 \to \mathbb{A}^2$ on the affine plane, the (first) dynamical degree (explained more later) is defined by

$$\boldsymbol{\delta} := \boldsymbol{\delta}_f := \lim_{n \to \infty} (\deg f^n)^{1/n},$$

which in this case is an integer. (For a Hénon map, $\delta = \deg f$.)

Theorem (K. $(\dim N = 2))$

Let $f : \mathbb{A}^2 \to \mathbb{A}^2$ be a polynomial automorphism with $\delta > 1$. Then the limits

$$\hat{h}^+(x) := \lim_{n \to \infty} \frac{1}{\delta^n} h_{\text{Weil}}(f^n(x)), \quad \hat{h}^-(x) := \lim_{n \to \infty} \frac{1}{\delta^n} h_{\text{Weil}}(f^{-n}(x))$$

exist for all $x \in \mathbb{A}^2(\bar{\mathbb{Q}})$. We set $\hat{h} := \hat{h}^+ + \hat{h}^- : \mathbb{A}^2(\bar{\mathbb{Q}}) \to \mathbb{R}_{\geq 0}$. Then \hat{h} satisfy $\hat{h} \gg \ll h_{\text{Weil}}$ and $\hat{h} \circ f + \hat{h} \circ f^{-1} = \left(\delta + \frac{1}{\delta}\right) \hat{h}$. Further (... continued)

Properties of canonical heights

$\hat{h}(x) = 0$ if and only if $x \in \mathbb{A}^2(\overline{\mathbb{Q}})$ is **periodic**.

In particular, the set of periodic points $\operatorname{Per}(f, \overline{\mathbb{Q}})$ is a set of bounded height (Silverman).

2 Take $x \in X(\overline{\mathbb{Q}})$ that is not preperiodic. Then, as $T \to \infty$,

$$\#\{y \in O_f(x) \mid h_{\text{Weil}}(y) \le T\} = 2\frac{\log T}{\log \delta} - \hat{h}(O_f(x)) + O(1) \quad ,$$

where $\hat{h}(O_f(x))$ is a quantity defined by the orbit $O_f(x)$ and the O(1) bound does not depend on x.

Remark

1

The construction of \hat{h} uses blow-ups along I_f and $I_{f^{-1}}$. The above estimate (2) is similar to Silverman's canonical heights on Wehler K3 surfaces (explained later).

These results are generalized to higher dimensional case by Lee and K.

Theorem (Lee, K)

Let $f : \mathbb{A}^N \to \mathbb{A}^N$ be a **regular** polynomial automorphism of degree $d \geq 2$. Then there exists a canonical height function

$$\hat{h}:\mathbb{A}^N(ar{\mathbb{Q}}) o\mathbb{R}$$

defined in a similar way which satisfies $\hat{h} \gg \ll h_{\text{Weil}}$ and $\hat{h} \circ f + \hat{h} \circ f^{-1} = \left(d + \frac{1}{d}\right)\hat{h}.$

Further, \hat{h} enjoys the same properties (1)(2) as before.

Remark

To construct \hat{h} , Lee uses blow-ups along the indeterminacy sets I_f and $I_{f^{-1}}$. My construction is to introduce local canonical heights and to sum up (as explained in the next page).

Becomposition into the sum of local canonical heights f: A^N → A^N a regular polynomial automorphism of degree d := deg(f) ≥ 2 defined over a number field K. Set d₋ := deg(f⁻¹).

 $x \in \mathbb{A}^{N}(L)$ for a finite extension L/K, $v \in M_{L}$: a place

$$G_v^+(x) := \lim_{n \to \infty} \frac{1}{d^n} \log^+ ||f^n(x)||_v,$$

$$G_v^-(x) := \lim_{n \to \infty} \frac{1}{d_-^n} \log^+ ||f^{-n}(x)||_v.$$

Then

$$\hat{h}(x) := \sum_{v \in M_L} \frac{[L_v : M_v]}{[L : K]} \left(G_v^+(x) + G_v^-(x) \right).$$

Remark

The most difficult part is to show $h_{\text{Weil}} \gg \ll \hat{h}$.

• Variation of the canonical height for Hénon maps Theorem (Ingram)

 $\begin{array}{ll} C & a \mbox{ smooth projective curve over a number field } K \\ f: \mathbb{A}^2 \to \mathbb{A}^2 & a \mbox{ Hénon map of degree } d \geq 2 \mbox{ defined over } K(C) \\ h_C: \ a \ Weil \ height \ on \ C \ corresponding \ to \ a \ divisor \ of \ degree \ 1 \\ P \in \mathbb{A}^2(K(C)) \end{array}$

Then

$$\hat{h}_t(P_t) = \hat{h}(P)h_C(t) + \varepsilon(t),$$

where $\varepsilon(t) = O(1)$ if $C = \mathbb{P}^1$ and $\varepsilon(t) = O\left(\sqrt{h_C(t)}\right)$ in general.

Thus canonical heights for Hénon maps (and **regular** polynomial automorphisms) enjoy various nice properties.

Canonical heights for other polynomial maps

 $f: \mathbb{A}^2 \to \mathbb{A}^2$ a polynomial **map** defined over $\overline{\mathbb{Q}}$ Let $\boldsymbol{\delta} := \boldsymbol{\delta}_{\boldsymbol{f}} := \lim_{n \to \infty} (\deg f^n)^{1/n}$ be the (first) dynamical degree (explained more later). The **topological degree** $\boldsymbol{e} := \boldsymbol{e}_f$ is the number of preimages under f of a general closed point in \mathbb{A}^2 . By Bézout's theorem, $\boldsymbol{e} \leq \delta^2$.

Theorem (Jonsson–Wulcan)

Let $f : \mathbb{A}^2 \to \mathbb{A}^2$ be a polynomial map with $e < \delta$. Then the limit

$$\hat{h}(x) := \lim_{n \to \infty} \frac{1}{\delta^n} h_{\text{Weil}}(f^n(x)),$$

exist for all $x \in \mathbb{A}^2(\overline{\mathbb{Q}})$. One has $\hat{h} \neq 0$ and $\hat{h} \circ f = \delta \hat{h}$.

Remark For another case, Jonsson–Reschke construct canonical heights for birational maps of surfaces (explained later).

Part 3 Canonical heights for surface automorphisms

Wehler K3 surface

X: a complete intersection of general (1, 1) and (2, 2) hypersurfaces defined over $\overline{\mathbb{Q}}$ in $\mathbb{P}^2 \times \mathbb{P}^2$

 $\implies X$ is a K3 surface The projections $p_i: X \to \mathbb{P}^2$ (i = 1, 2) are double covers, inducing involutions $\sigma_i: X \to X$.

$$\begin{split} & \pmb{D_i} := p_i^*(\text{line}) \in \text{Div}(X) \ (i=1,2) \\ & \text{Set } E^+ := (1+\sqrt{3})D_1 - D_2 \text{ and } E^- := -D_1 + (1+\sqrt{3})D_2 \text{ in } \text{Div}(X)_{\mathbb{R}} \end{split}$$

Let X be a Wehler K3 surface with involutions σ_1, σ_2 . Theorem (Silverman 1991)

There exist a unique pair of functions,

$$\hat{h}^+, \hat{h}^- : X(\bar{\mathbb{Q}}) \to \mathbb{R}$$

such that h^+ (resp. h^-) is a height function associated to E^+ (resp. E^-) and such that

$$\hat{h}^{\pm} \circ \sigma_1 = (2 + \sqrt{3})^{\mp} \hat{h}^{\mp}$$
,
 $\hat{h}^{\pm} \circ \sigma_2 = (2 + \sqrt{3})^{\pm} \hat{h}^{\mp}$.

Further (... continued)

Silverman showed the following properties of canonical heights.

0

$$\hat{h}^+(x) = 0$$
 if and only if $\hat{h}^-(x) = 0$ if and only if $O_{\sigma_1,\sigma_2}(x) := \{\sigma(x) \mid \sigma \in \langle \sigma_1, \sigma_2 \rangle\}$ is a finite set.

2 Take $x \in X(\overline{\mathbb{Q}})$ such that $O_{\sigma_1,\sigma_2}(x)$ is infinite. Then

$$\#\{y \in O_{\sigma_1, \sigma_2}(x) \mid h_H(y) \le T\} \\ = \epsilon \frac{\log T}{\log(2 + \sqrt{3})} - \hat{h}(O_{\sigma_1, \sigma_2}(x)) + O(1),$$

where *H* is any ample divisor on *X*, $\epsilon = 1$ or 2 (depending on *x*), $\hat{h}(O_{\sigma_1,\sigma_2}(x))$ is a quantity defined by the orbit $O_{\sigma_1,\sigma_2}(x)$ and the O(1) bound does not depend on *x*. Let X be a Wehler K3 surface with involutions σ_1, σ_2 . Put $\boldsymbol{f} := \sigma_1 \circ \sigma_2$.

Then for $E^+ := (1 + \sqrt{3})D_1 - D_2$ and $E^- := -D_1 + (1 + \sqrt{3})D_2$, one has $f^*(E^+) \sim (7 + 4\sqrt{3})E^+$ and $f^{-1*}(E^-) \sim (7 + 4\sqrt{3})E^-$.

So, by Call–Silverman, there exist canonical heights \hat{h}_{E^+} and \hat{h}_{E^-} . Giving $\{\hat{h}^+, \hat{h}^-\}$ is essentially the same as giving $\{\hat{h}_{E^+}, \hat{h}_{E^-}\}$. Let X be a Wehler K3 surface with involutions σ_1, σ_2 . Put $\boldsymbol{f} := \sigma_1 \circ \sigma_2$.

Then for $E^+ := (1 + \sqrt{3})D_1 - D_2$ and $E^- := -D_1 + (1 + \sqrt{3})D_2$, one has $f^*(E^+) \sim (7 + 4\sqrt{3})E^+$ and $f^{-1*}(E^-) \sim (7 + 4\sqrt{3})E^-$.

So, by Call–Silverman, there exist canonical heights \hat{h}_{E^+} and \hat{h}_{E^-} . Giving $\{\hat{h}^+, \hat{h}^-\}$ is essentially the same as giving $\{\hat{h}_{E^+}, \hat{h}_{E^-}\}$.

Remark

Since $\hat{h}_{E^+}, \hat{h}_{E^-}$ are Call-Silverman canonical heights, they have properties (3) (decomposition into local canonical heights) and (4) (variation).

Let X be a Wehler K3 surface with involutions σ_1, σ_2 . Put $\boldsymbol{f} := \sigma_1 \circ \sigma_2$.

Then for $E^+ := (1 + \sqrt{3})D_1 - D_2$ and $E^- := -D_1 + (1 + \sqrt{3})D_2$, one has $f^*(E^+) \sim (7 + 4\sqrt{3})E^+$ and $f^{-1*}(E^-) \sim (7 + 4\sqrt{3})E^-$.

So, by Call–Silverman, there exist canonical heights \hat{h}_{E^+} and \hat{h}_{E^-} . Giving $\{\hat{h}^+, \hat{h}^-\}$ is essentially the same as giving $\{\hat{h}_{E^+}, \hat{h}_{E^-}\}$.

Remark

Since \hat{h}_{E^+} , \hat{h}_{E^-} are Call-Silverman canonical heights, they have properties (3) (decomposition into local canonical heights) and (4) (variation).

Remark

 $f: X \to X$ is an automorphism of **positive topological entropy** (explained in the next page).

Topological entropy for surface automorphisms

- X: a smooth projective surface defined over $\overline{\mathbb{Q}}$
- $f: X \to X$: an automorphism

The (first) dynamical degree of f is defined by

$$\delta := \max \left\{ \begin{aligned} |\lambda| & \left| \begin{array}{c} \lambda \text{ is an eigenvalue of} \\ f^* \otimes \mathbb{C} : H^2(X, \mathbb{C}) \to H^2(X, \mathbb{C}) \end{aligned} \right\} \end{aligned}$$

The topological entropy of f equals $\log \delta$ (Gromov, Yomdin). Remark

- 1 f has positive topological entropy $\iff \delta > 1$
- If X has an automorphism of positive topological entropy, then a minimal model of X is either an Abelian surface, K3 surface, Enriques surface, or a rational surface (Cantat).

Surface automorphism of positive topological entropy

X: a smooth projective surface defined over $\overline{\mathbb{Q}}$

 $f: X \to X$: an automorphism of positive topological entropy $\log \delta$. An irreducible curve C is **periodic** if $f^n(C) = C$ (as a set) for some $n \ge 1$.

Theorem (K.)

- There are at most finitely many irreducible periodic curves.
- There exist nef divisors E⁺ and E⁻ ∈ Div(X)_ℝ such that f*(E⁺) ~ δE⁺ and f^{-1*}(E⁻) ~ δE⁻. (They are unique up to scales.) Further, E⁺ + E⁻ is nef and big.
- By the above, we have Call-Silverman canonical heights h_{E+} and h_{E-}. We set h := h_{E+} + h_{E-}, which is a height function associated to E⁺ + E⁻.
 Further (... continued)

$\hat{h}(x) = 0$ if and only if "x lies on a **periodic curve** or x is **periodic**."

In particular, the set $\operatorname{Per}(f, \overline{\mathbb{Q}}) \setminus \operatorname{periodic\ curves}$ is a set of bounded height.

A

2 Take x ∈ X(Q) such that x does not lies on a periodic curve and that x is not periodic. Then

$$#\{y \in O_f(x) \mid h_H(y) \le T\} = 2\frac{\log T}{\log \delta} - \hat{h}(O_f(x)) + O(1),$$

where $O_f(x) = \{f^n(x) \mid n \in \mathbb{Z}\}, H$ is any ample divisor on X ,
 $\hat{h}(O_f(x))$ is a quantity defined by the orbit $O_f(x)$ and the $O(1)$
bound does not depend on x .

Birational surface maps

Recently Jonsson–Reschke show the existence of canonical heights for birational surface maps.

Theorem (Jonsson–Reschke)

Let X be a smooth projective surface defined over $\overline{\mathbb{Q}}$, and $f: X \dashrightarrow X$ a birational selfmap. Assume that the first dynamical degree $\delta > 1$. Then, up to birational conjugacy, the limit

$$\hat{h}^+(x) := \lim_{n \to \infty} \frac{1}{\delta^n} h_{E^+}(f^n(x)),$$

exists and non-negative for all $x \in X(\overline{\mathbb{Q}})$ with well-defined forward orbit.

Part 4 Arithmetic degrees

A remark

Let d > 1, and

 $\{a_n\}_{n=0}^{\infty}$ be a sequence of positive numbers with $a_n \ge 1$.

Assume that
$$\lim_{n \to \infty} \frac{1}{d^n} a_n$$
 exists, and not zero.
Then $\lim_{n \to \infty} a_n^{1/n}$ exists, and equals to d .

The converse does not hold in general.

Part 4 Arithmetic degrees

A remark

Let d > 1, and

 $\{a_n\}_{n=0}^{\infty}$ be a sequence of positive numbers with $a_n \ge 1$.

Assume that
$$\lim_{n \to \infty} \frac{1}{d^n} a_n$$
 exists, and not zero.
Then $\lim_{n \to \infty} a_n^{1/n}$ exists, and equals to d .

The converse does not hold in general.

This suggests that " $\lim_{n \to \infty} h(f^n(x))^{1/n}$ " might exist even if the canonical height " $\lim_{n \to \infty} \frac{1}{d^n} h(f^n(x))$ " does not exist.

X: a smooth projective variety over \mathbb{Q} $f: X \dashrightarrow X$: a dominant rational map We fix (any) ample divisor H on X and a Weil height $h_H: X(\bar{\mathbb{Q}}) \to [1,\infty)$ associated to H $X(\bar{\mathbb{Q}})_f := \{x \in X(\bar{\mathbb{Q}}) \mid f^n(x) \text{ is well-defined for all } n \ge 0\}$ Definition (arithmetic degree, Silverman) Let $x \in X(\bar{\mathbb{Q}})_f$. If the limit $\lim_{n \to \infty} h_H (f^n(x))^{1/n}$ exists, then we set

$$\boldsymbol{\alpha_f(x)} := \lim_{n \to \infty} h_H \left(f^n(x) \right)^{1/n}$$

and call the **arithmetic degree** of x for f. In general, we set $\overline{\alpha}_f(x) := \limsup_{n \to \infty} h_H (f^n(x))^{1/n}$.

Remark

The arithmetic degree $\alpha_f(x) := \lim_{n \to \infty} h_H (f^n(x))^{1/n}$ (if exists) measures the "size" of the forward orbit $O_f(x)$ of x:

$$\#\{y \in O_f(x) \mid h_H(y) \le T\} \sim \frac{\log T}{\log \alpha_f(x)} \quad \text{as } T \to \infty.$$

Remark

The arithmetic degree $\alpha_f(x) := \lim_{n \to \infty} h_H (f^n(x))^{1/n}$ (if exists) measures the "size" of the forward orbit $O_f(x)$ of x:

$$\#\{y \in O_f(x) \mid h_H(y) \le T\} \sim \frac{\log T}{\log \alpha_f(x)} \quad \text{as } T \to \infty.$$

First dynamical degree

X a smooth projective variety over $\overline{\mathbb{Q}}$ f: X ---> X a dominant rational map

$$\begin{split} \mathbf{NS}(X) &:= \mathrm{Div}(X) / (\mathrm{algebraic\ equivalence}) \\ &\mathrm{N\acute{e}ron-Severi\ group\ of\ } X \\ &\mathrm{Then\ } \mathrm{NS}(X)_{\mathbb{R}} := \mathrm{NS}(X) \otimes \mathbb{R} \ (\mathrm{resp.\ } \mathrm{NS}(X)_{\mathbb{C}} := \mathrm{NS}(X) \otimes \mathbb{C}) \\ &\mathrm{a\ finite\ dimensional\ } \mathbb{R}\text{-vector\ } (\mathrm{resp.\ } \mathbb{C}\text{-vector}) \ \mathrm{space}. \end{split}$$

Definition (dynamical degree of f, one of equivalent definitions) $f^n: X \dashrightarrow X$ induces a linear transformation f^{n*} on NS(X).

$$\boldsymbol{d(f^n)} := \max \left\{ |\lambda| \; \left| \; \begin{array}{c} \lambda \text{ is an eigenvalue of} \\ f^{n*} \otimes \mathbb{C} : \mathrm{NS}(X)_{\mathbb{C}} \to \mathrm{NS}(X)_{\mathbb{C}} \end{array} \right\} \right.$$

Then the (first) dynamical degree of f is defined by

$$\boldsymbol{\delta} := \boldsymbol{\delta}_{\boldsymbol{f}} := \lim_{n \to \infty} d(f^n)^{1/n}$$

Remark

Dynamical degrees have been extensively studied in complex dynamical systems and integrable systems.

Relation between the dynamical degree and the arithmetic degree

 $\begin{array}{ll} X: & \text{a smooth projective variety over } \bar{\mathbb{Q}} \\ f: X \dashrightarrow X: & \text{a dominant rational map} \\ \delta_f: & \text{dynamical degree of } f \\ \overline{\alpha}_f(x) := \limsup_{n \to \infty} h_H \, (f^n(x))^{1/n} \\ & \text{arithmetic degree of any } x \in X(\bar{\mathbb{Q}})_f \text{ for } f \end{array}$

Theorem (Silverman $(X = \mathbb{P}^N)$; K.–Silverman (X general))

In the above setting, one has

$$\overline{\alpha}_f(x) \leq \delta_f$$

Monomial maps

 $f: \mathbb{P}^N \dashrightarrow \mathbb{P}^N$ is a **monomial map** if it is a rational extension of $f: \mathbb{G}_m^N \to \mathbb{G}_m^N$, $f = (X_1^{a_{11}} \cdots X_N^{a_{1N}}, \dots, X_1^{a_{N1}} \cdots X_N^{a_{NN}})$ for some $A = (a_{ij}) \in M_N(\mathbb{Z})$.

Theorem (Silverman 2014)

Let $f : \mathbb{P}^N \dashrightarrow \mathbb{P}^N$ be a monomial map such that A is diagonalizable.

- The limit defining $\alpha_f(x) = \lim_{n \to \infty} h_H (f^n(x))^{1/n}$ exists (and independent of the choice of an ample divisor H).
- **2** $\alpha_f(x)$ is an algebraic integer for any $\mathbb{G}_m^N(\overline{\mathbb{Q}})$.
- **3** $\{\alpha_f(x) \mid x \in \mathbb{G}_m^N(\overline{\mathbb{Q}})\}$ is a finite set.
- **4** Let $x \in \mathbb{G}_m^N(\overline{\mathbb{Q}})$. Then, if $O_f^+(x)$ is Zariski dense in \mathbb{P}^N , then $\alpha_f(x) = \delta_f$.

Conjecture (Silverman)

- X: a smooth projective variety over $\overline{\mathbb{Q}}$
- $f: X \dashrightarrow X : \quad \text{a dominant rational map}$
 - The limit defining $\alpha_f(x) = \lim_{n \to \infty} h_H (f^n(x))^{1/n}$ exists.
 - **2** $\alpha_f(x)$ is an **algebraic integer** for any $X(\overline{\mathbb{Q}})_f$.
 - **3** $\{\alpha_f(x) \mid x \in X(\overline{\mathbb{Q}})_f\}$ is a **finite set**.
 - (4) Let $x \in X(\overline{\mathbb{Q}})_f$. Then, if $O_f^+(x)$ is Zariski dense in X, then $\alpha_f(x) = \delta_f$.

Remark

The conjecture (2) corresponds to Bellon–Viallet's conjecture, which asks whether the dynamical degree δ_f is an algebraic integer. The conjecture (4) seems the most difficult.

Conjectures for morphisms

- X: a smooth projective variety over $\overline{\mathbb{Q}}$
- $f: X \to X$: a morphism

Theorem (K.–Silverman)

Conjectures 123 hold true for morphisms:

The limit defining α_f(x) = lim_{n→∞} h_H (fⁿ(x))^{1/n} exists.
 α_f(x) is an algebraic integer for any X(Q̄).
 {α_f(x) | x ∈ X(Q̄)} is a finite set.

Remark

To prove the above statements,

we study the action of f^* on $\text{Div}(X)_{\mathbb{C}}$, and construct nice height functions related to f.

Jordan Block Canonical Heights

- X: a projective variety over $\overline{\mathbb{Q}}$
- $f: X \to X$: a morphism
- $\boldsymbol{\lambda} \in \mathbb{C} \text{ with } |\lambda| > 1,$

Assume that there exist $D_0, D_1, D_2 \dots, \in \text{Div}(X) \otimes \mathbb{C}$ be such that

$$f^*D_0 \sim \lambda D_0,$$

$$f^*D_1 \sim D_0 + \lambda D_1,$$

$$f^*D_2 \sim D_1 + \lambda D_2.$$

Then, for k = 0, the limit $\hat{h}_{D_0}(x) := \lim_{n \to \infty} \frac{1}{\lambda^n} h_{D_0}(f^n(x))$ converges (Call-Silverman), but, for $k \ge 1$, the limit

$$\lim_{n \to \infty} \frac{1}{\lambda^n} h_{D_k}(f^n(x))$$

does **not** converge in general.

Theorem (Canonical heights for Jordan blocks) There exist unique height function \hat{h}_{D_k} associated to D_k for all k = 0, 1, 2, ...,

$$\hat{h}_{D_k}: X(\bar{\mathbb{Q}}) \to \mathbb{R},$$

satisfying $\hat{h}_{D_k}(f(x)) = \lambda \hat{h}_{D_k}(x) + \hat{h}_{D_{k-1}}(x)$ for all $k = 0, 1, 2, \dots$

Theorem (Canonical heights for Jordan blocks) There exist unique height function \hat{h}_{D_k} associated to D_k for all k = 0, 1, 2, ...,

$$\hat{h}_{D_k}: X(\bar{\mathbb{Q}}) \to \mathbb{R},$$

satisfying $\hat{h}_{D_k}(f(x)) = \lambda \hat{h}_{D_k}(x) + \hat{h}_{D_{k-1}}(x)$ for all $k = 0, 1, 2, \dots$

Remark

Concretely, recursively for $k = 0, 1, 2, \ldots$, we have

$$\hat{h}_{D_k}(x) := \lim_{n \to \infty} \left(\frac{1}{\lambda^n} h_{D_k} \left(f^n(x) \right) - \sum_{i=1}^k \binom{n}{i} \frac{1}{\lambda^i} \hat{h}_{D_{k-i}}(x) \right).$$

Using canonical heights for Jordan blocks, we see that conjectures (1)(2)(3) hold true for **morphisms**.

Remark

If $|\lambda| > \sqrt{\delta_f}$, then a similar statement is true with the linear equivalences replaced by **numerical equivalences**. However, the condition $\hat{h}_{D_k} = h_{D_k} + O(1)$ is replaced by $\hat{h}_{D_k} = h_{D_k} + O(\sqrt{h_H})$. (Here *H* is an ample divisor on *X*.)

Indeed, using $\overline{\alpha}_f(x) \leq \delta_f$, one can show that if $f: X \to X$ is a morphism, and $D \in \text{Div}(X)_{\mathbb{R}}$ is a divisor such that $f^*[D] = \lambda[D]$ in $\text{NS}(X)_{\mathbb{R}}$ for some $\lambda > \sqrt{\delta_f}$, then the limit

$$\hat{h}_D(x) := \lim_{n \to \infty} \frac{1}{\lambda^n} h_D(f^n(x))$$

exists (Here h_D is a Weil height associated to D).

Conjecture ④ for isogenies of abelian varieties A: an abelian variety over $\overline{\mathbb{Q}}$

 $f:A \rightarrow A$ an isogeny (i.e., a surjective group endomorphism)

In this case, in addition to Conjectures (12)(3), Conjecture (4) holds true.

Theorem (K.–Silverman)

Let $x \in A(\overline{\mathbb{Q}})$. If the forward orbit $O_f^+(x)$ is Zariski dense in A, then $\alpha_f(x) = \delta_f$.

Remark

For an isogeny in general, one can find $D \neq 0 \in NS(A)_{\mathbb{R}}$ such that $f^*D = \delta_f D$. But often D is **not** ample, and is only **nef**.

Example

E: elliptic curve over $\overline{\mathbb{Q}}$ without CM $A := E \times E$

Automorphism of A:

$$f: A \to A, (x, y) \mapsto ([a] x + [b] y, [c] x + [d] y),$$

where
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z})$$
 with $a + d > 2$.
Let $\mu > 1$ be a root of the characteristic polynomial $t^2 - (a + d)t + 1$.
Then

 $\exists D \in \mathrm{NS}(A)_{\mathbb{R}}$ such that D is **nef** and symmetric, and $f^*D = \mu^2 D$ in $\mathrm{NS}(A)_{\mathbb{R}}$.

In this case, D is not ample.

Theorem (nef canonical height theorem)

Let A be an abelian variety over $\overline{\mathbb{Q}}$, and $D \in \text{Div}(A)_{\mathbb{R}}$ a **nef** and symmetric \mathbb{R} -divisor such that $D \not\sim_{lin} 0$. Let \hat{h}_D be the Néron-Tate height. Then

$$\hat{\mathbf{h}}_D(x) \ge 0 \text{ for any } x \in A(\overline{\mathbb{Q}}).$$

2 There exists a subabelian variety $B_D \subsetneq A$ over $\overline{\mathbb{Q}}$ such that

$$\{x \in A(\overline{\mathbb{Q}}) \mid \hat{h}_D(x) = 0\} = B_D(\overline{\mathbb{Q}}) + A(\overline{\mathbb{Q}})_{tor}.$$

Remark

If D is **ample**, then
$$\{x \in A(\overline{\mathbb{Q}}) \mid \hat{h}_D(x) = 0\} = A(\overline{\mathbb{Q}})_{tor}$$
.

Sketch of proof

For an isogeny $f: A \to A$ one can find a nef and symmetric $D \neq 0 \in \mathrm{NS}(A)_{\mathbb{R}}$ such that $f^*D = \delta_f D$. Suppose $\alpha_f(x) < \delta_f$. Then one can show that $\hat{h}_D(x) = 0$. Using the nef canonical height theorem, one can show that $O_f^+(x)$ is included in a proper subvariety of A.