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Plan of the talk

(2005 Email? 2008 AIM)

1 Canonical heights for polarized dynamical systems

2 Canonical heights on affine space

3 Canonical heights for surface automorphisms

4 Arithmetic degrees

The emphasis is on canonical heights other than Néron-Tate heights or

those on Pn for morphisms.
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Part 1 Canonical heights for polarized

dynamical systems

XXX: a projective variety defined over Q̄ (for simplicity)

f : X → Xf : X → Xf : X → X: a morphism

DDD ∈ Div(X)R := Div(X)⊗ R : a Cartier R-divisor on X

Assume that f∗D ∼ dDf∗D ∼ dDf∗D ∼ dD for some d > 1.

If D is ample, then the triple (X, f,D)(X, f,D)(X, f,D) is called a polarized

dynamical system.

Example (polarized dynamical systems)
• X: Abelian variety, D ample with [−1]∗D ∼ D,

f = [2]: twice multiplication map (=⇒ Néron-Tate height )

• X = PN , f : a morphism of degree > 1, D: a hyperplane

(=⇒ canonical height ĥf : PN (Q̄) → R )
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Theorem (Call–Silverman 1993)

(D: not necessarily ample.) There exists a unique height function ĥDĥDĥD

associated to D,

ĥD : X(Q̄) → RĥD : X(Q̄) → RĥD : X(Q̄) → R,

satisfying ĥD ◦ f = d ĥDĥD ◦ f = d ĥDĥD ◦ f = d ĥD.

Properties of Call–Silverman canonical heights

1 Assume that D is ample. Then ĥD is non-negative and

ĥD(x) = 0ĥD(x) = 0ĥD(x) = 0 if and only if x ∈ X(Q̄) is preperiodic.

In particular, the set of preperiodic points PrePer(f, Q̄)PrePer(f, Q̄)PrePer(f, Q̄) is a set of

bounded height.
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2 Assume that D is ample. Take x ∈ X(Q̄) that is not preperiodic.

Then

#{y ∈ O+
f (x) | hH(y) ≤ T} ∼ log T

log d
as T → ∞ ,

where O+
f (x) is the forward orbit of x under f , and H is any

ample divisor.

3 Decomposition into the sum of local canonical heights

Take a number field K over which f is defined.

For a finite extension L/K and x ∈ X(L) \ |D|, one has

ĥD(x) =
∑

v∈ML

[Lv : Kv]

[L : K]
λ̂D,v(x).
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4 Variation of the canonical height

π : V → C a family over a smooth projective curve C

C◦ a Zariski open subset of C, and set V◦ := π−1(C◦)

f : V◦ → V◦ over C◦ and D ∈ Div(V◦)R as before

hC : a Weil height on C corresponding to a divisor of degree 1

P : C → V a section

lim
hT (t)→∞

ĥDt(Pt)

hT (t)
= ĥD(P ).

Followed by stronger results by Ingram

More properties of the canonical heights . . .

From talks of this conference: Equidistribution (Baker–Rumely,

Chambert-Loir, Favre–Rivera-Letlier, Yuan ...), Masser–Zannier

unlikely intersection (Baker–DeMarco, Ghioca–Tucker–Hsia,

DeMarco–Wang–Ye, Ghioca–Krieger–Nguyen–Ye ...) . . .
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Part 2 Canonical heights on affine

space

Hénon map

A2: affine plane (over Q̄)

f : A2 → A2: a Hénon map, i.e., an automorphism of the form

f (x, y) = (y + P (x), x)

for some polynomial P (x) ∈ Q̄[x] with d := deg(P ) ≥ 2.

Then f extends to a birational map f : P2 99K P2,

(x : y : z) 7→ (yzd−1 + zdP (x/z) : xzd−1 : zd).

Since f has the indeterminacy set If = {(1 : 0 : 0)},
f is not a morphism.
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The Hénon map f : P2 99K P2 is not a polarized dynamical system, but

Silverman proved the following theorem.

Theorem (Silverman 1994)

Let f : A2 → A2 be a Hénon map of degree 2 over Q̄. Then

1 the set of periodic points Per(f, Q̄)Per(f, Q̄)Per(f, Q̄) is a set of bounded height.

2 Take x ∈ A2(Q̄) that is not periodic. Then

#{y ∈ Of (x) | hWeil(y) ≤ T} ∼ 2
log T

log 2
as T → ∞,

where Of (x) = {fn(x) | n ∈ Z} is the f -orbit, and hWeil is the

standard Weil function.

Remark The proof uses blow-ups along the indeterminacy sets If and

If−1 .
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Regular polynomial automorphism

AN : affine N -space (over Q̄)

f : AN → AN : a polynomial automorphism

Then f extends to a birational map f : PN 99K PN .

Following Sibony, f is called a regular polynomial automorphism

if If ∩ If−1 = ∅,

where If and If−1 is the indeterminacy sets of f and f−1.

Example

{Hénon maps} ⊂ {regular polynomial automorphisms}
Indeed, for a Hénon map, If = {(1 : 0 : 0)} and If−1 = {(0 : 1 : 0)}.
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Silverman’s results are generalized by Denis and Marcello.

Theorem (Denis, Marcello)

Let f : AN → AN be a regular polynomial automorphism of degree

d ≥ 2. Then

1 the set of periodic points Per(f, Q̄)Per(f, Q̄)Per(f, Q̄) is a set of bounded height.

2 Take x ∈ AN (Q̄) that is not periodic. Then

#{y ∈ Of (x) | hWeil(y) ≤ T} ∼ 2
log T

log d
as T → ∞,

where Of (x) = {fn(x) | n ∈ Z} is the f -orbit, and hWeil is the

standard Weil function.
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Canonical heights have not appeared so far, but they exist.

For a polynomial automorphism f : A2 → A2 on the affine plane,

the (first) dynamical degree (explained more later) is defined by

δδδ := δδδf := lim
n→∞

(deg fn)1/n,

which in this case is an integer. (For a Hénon map, δ = deg f .)

Theorem (K. (dimN = 2))

Let f : A2 → A2 be a polynomial automorphism with δ > 1.

Then the limits

ĥ+(x) := lim
n→∞

1

δn
hWeil(f

n(x)), ĥ−(x) := lim
n→∞

1

δn
hWeil(f

−n(x))

exist for all x ∈ A2(Q̄). We set ĥ := ĥ+ + ĥ−ĥ := ĥ+ + ĥ−ĥ := ĥ+ + ĥ− : A2(Q̄) → R≥0.

Then ĥ satisfy ĥ ≫≪ hWeil

and ĥ ◦ f + ĥ ◦ f−1 =

(
δ +

1

δ

)
ĥĥ ◦ f + ĥ ◦ f−1 =

(
δ +

1

δ

)
ĥĥ ◦ f + ĥ ◦ f−1 =

(
δ +

1

δ

)
ĥ. Further (... continued)
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ĥĥ ◦ f + ĥ ◦ f−1 =
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Properties of canonical heights

1 ĥ(x) = 0ĥ(x) = 0ĥ(x) = 0 if and only if x ∈ A2(Q̄) is periodic.

In particular, the set of periodic points Per(f, Q̄)Per(f, Q̄)Per(f, Q̄) is a set of

bounded height (Silverman).

2 Take x ∈ X(Q̄) that is not preperiodic. Then, as T → ∞,

#{y ∈ Of (x) | hWeil(y) ≤ T} = 2
log T

log δ
− ĥ(Of (x)) +O(1) ,

where ĥ(Of (x)) is a quantity defined by the orbit Of (x) and the

O(1) bound does not depend on x.

Remark

The construction of ĥ uses blow-ups along If and If−1 . The above

estimate ⃝2 is similar to Silverman’s canonical heights on Wehler K3

surfaces (explained later).
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These results are generalized to higher dimensional case by Lee and K.

Theorem (Lee, K)

Let f : AN → AN be a regular polynomial automorphism of degree

d ≥ 2. Then there exists a canonical height function

ĥ : AN (Q̄) → Rĥ : AN (Q̄) → Rĥ : AN (Q̄) → R

defined in a similar way which satisfies ĥ ≫≪ hWeil and

ĥ ◦ f + ĥ ◦ f−1 =

(
d+

1

d

)
ĥĥ ◦ f + ĥ ◦ f−1 =

(
d+

1

d

)
ĥĥ ◦ f + ĥ ◦ f−1 =

(
d+

1

d

)
ĥ.

Further, ĥ enjoys the same properties ⃝1 ⃝2 as before.

Remark

To construct ĥ, Lee uses blow-ups along the indeterminacy sets If and

If−1 . My construction is to introduce local canonical heights and to

sum up (as explained in the next page).
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3 Decomposition into the sum of local canonical heights

f : AN → AN a regular polynomial automorphism of degree

d := deg(f) ≥ 2 defined over a number field K. Set

d− := deg(f−1).

x ∈ AN (L) for a finite extension L/K, v ∈ ML: a place

G+
v (x) := lim

n→∞

1

dn
log+∥fn(x)∥v,

G−
v (x) := lim

n→∞

1

dn−
log+∥f−n(x)∥v.

Then

ĥ(x) :=
∑

v∈ML

[Lv : Mv]

[L : K]

(
G+

v (x) +G−
v (x)

)
.

Remark

The most difficult part is to show hWeil ≫≪ ĥ.
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4 Variation of the canonical height for Hénon maps

Theorem (Ingram)

C a smooth projective curve over a number field K

f : A2 → A2 a Hénon map of degree d ≥ 2 defined over K(C)

hC : a Weil height on C corresponding to a divisor of degree 1

P ∈ A2(K(C))

Then

ĥt(Pt) = ĥ(P )hC(t) + ε(t),

where ε(t) = O(1) if C = P1 and ε(t) = O
(√

hC(t)
)
in general.

Thus canonical heights for Hénon maps (and regular polynomial

automorphisms) enjoy various nice properties.
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Canonical heights for other polynomial maps

f : A2 → A2 a polynomial map defined over Q̄
Let δδδ := δfδfδf := limn→∞(deg fn)1/n be the (first) dynamical degree

(explained more later). The topological degree eee := eeef is the number

of preimages under f of a general closed point in A2. By Bézout’s

theorem, e ≤ δ2.

Theorem (Jonsson–Wulcan)

Let f : A2 → A2 be a polynomial map with e < δ. Then the limit

ĥ(x) := lim
n→∞

1

δn
hWeil(f

n(x)),

exist for all x ∈ A2(Q̄). One has ĥ ̸≡ 0 and ĥ ◦ f = δ ĥĥ ◦ f = δ ĥĥ ◦ f = δ ĥ.

Remark For another case, Jonsson–Reschke construct canonical

heights for birational maps of surfaces (explained later).
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Part 3 Canonical heights for surface

automorphisms

Wehler K3 surface

XXX: a complete intersection of general (1, 1) and (2, 2) hypersurfaces

defined over Q̄ in P2 × P2

=⇒ X is a K3 surface

The projections pi : X → P2 (i = 1, 2) are double covers, inducing

involutions σiσiσi : X → X.

DiDiDi := p∗i (line) ∈ Div(X) (i = 1, 2)

Set E+ := (1 +
√
3)D1 −D2 and E− := −D1 + (1 +

√
3)D2 in Div(X)R
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Let X be a Wehler K3 surface with involutions σ1, σ2.

Theorem (Silverman 1991)

There exist a unique pair of functions,

ĥ+ĥ+ĥ+, ĥ−ĥ−ĥ− : X(Q̄) → R

such that h+ (resp. h−) is a height function associated to E+ (resp.

E−) and such that

ĥ± ◦ σ1 = (2 +
√
3)∓ĥ∓ĥ± ◦ σ1 = (2 +

√
3)∓ĥ∓ĥ± ◦ σ1 = (2 +

√
3)∓ĥ∓ ,

ĥ± ◦ σ2 = (2 +
√
3)±ĥ∓ĥ± ◦ σ2 = (2 +

√
3)±ĥ∓ĥ± ◦ σ2 = (2 +

√
3)±ĥ∓.

Further (... continued)
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Silverman showed the following properties of canonical heights.

1
ĥ+(x) = 0ĥ+(x) = 0ĥ+(x) = 0 if and only if ĥ−(x) = 0ĥ−(x) = 0ĥ−(x) = 0 if and only if

Oσ1,σ2(x) := {σ(x) | σ ∈ ⟨σ1, σ2⟩}Oσ1,σ2(x) := {σ(x) | σ ∈ ⟨σ1, σ2⟩}Oσ1,σ2(x) := {σ(x) | σ ∈ ⟨σ1, σ2⟩} is a finite set.

2 Take x ∈ X(Q̄) such that Oσ1,σ2(x) is infinite. Then

#{y ∈ Oσ1,σ2(x) | hH(y) ≤ T}

= ϵ
log T

log(2 +
√
3)

− ĥ(Oσ1,σ2(x)) +O(1),

where H is any ample divisor on X, ϵ = 1 or 2 (depending on x),

ĥ(Oσ1,σ2(x)) is a quantity defined by the orbit Oσ1,σ2(x) and the

O(1) bound does not depend on x.

19 / 39



Let X be a Wehler K3 surface with involutions σ1, σ2.

Put fff := σ1 ◦ σ2.

Then for E+ := (1 +
√
3)D1 −D2 and E− := −D1 + (1 +

√
3)D2,

one has f∗(E+) ∼ (7 + 4
√
3)E+f∗(E+) ∼ (7 + 4

√
3)E+f∗(E+) ∼ (7 + 4

√
3)E+ and f−1∗(E−) ∼ (7 + 4

√
3)E−f−1∗(E−) ∼ (7 + 4

√
3)E−f−1∗(E−) ∼ (7 + 4

√
3)E−.

So, by Call–Silverman, there exist canonical heights ĥE+ĥE+ĥE+ and ĥE−ĥE−ĥE− .

Giving {ĥ+, ĥ−} is essentially the same as giving {ĥE+ , ĥE−}.

Remark

Since ĥE+ , ĥE− are Call-Silverman canonical heights, they have

properties ⃝3 (decomposition into local canonical heights) and ⃝4
(variation).

Remark

f : X → X is an automorphism of positive topological entropy

(explained in the next page).
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Topological entropy for surface automorphisms

X: a smooth projective surface defined over Q̄
f : X → X: an automorphism

The (first) dynamical degree of f is defined by

δ := max

{
|λ|

∣∣∣∣∣ λ is an eigenvalue of

f∗ ⊗ C : H2(X,C) → H2(X,C)

}
.

The topological entropy of f equals log δlog δlog δ (Gromov, Yomdin).

Remark

1 f has positive topological entropy ⇐⇒ δ > 1

2 If X has an automorphism of positive topological entropy, then a

minimal model of X is either an Abelian surface, K3 surface,

Enriques surface, or a rational surface (Cantat).
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Surface automorphism of positive topological entropy

X: a smooth projective surface defined over Q̄
f : X → X: an automorphism of positive topological entropy log δ.

An irreducible curve C is periodic if fn(C) = C (as a set) for some

n ≥ 1.

Theorem (K.)

• There are at most finitely many irreducible periodic curves.

• There exist nef divisors E+ and E− ∈ Div(X)R such that

f∗(E+) ∼ δE+ and f−1∗(E−) ∼ δE−. (They are unique up to

scales.) Further, E+ + E− is nef and big.

• By the above, we have Call–Silverman canonical heights ĥE+ and

ĥE−. We set ĥ := ĥE+ + ĥE−ĥ := ĥE+ + ĥE−ĥ := ĥE+ + ĥE−, which is a height function

associated to E+ + E−.

Further (... continued)
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1
ĥ(x) = 0ĥ(x) = 0ĥ(x) = 0 if and only if “x lies on a periodic curve or x is

periodic.”

In particular, the set Per(f, Q̄) \ periodic curvesPer(f, Q̄) \ periodic curvesPer(f, Q̄) \ periodic curves is a set of

bounded height.

2 Take x ∈ X(Q̄) such that x does not lies on a periodic curve and

that x is not periodic. Then

#{y ∈ Of (x) | hH(y) ≤ T} = 2
log T

log δ
− ĥ(Of (x)) +O(1),

where Of (x) = {fn(x) | n ∈ Z}, H is any ample divisor on X,

ĥ(Of (x)) is a quantity defined by the orbit Of (x) and the O(1)

bound does not depend on x.
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Birational surface maps

Recently Jonsson–Reschke show the existence of canonical heights for

birational surface maps.

Theorem (Jonsson–Reschke)

Let X be a smooth projective surface defined over Q̄, and f : X 99K X

a birational selfmap. Assume that the first dynamical degree δ > 1.

Then, up to birational conjugacy, the limit

ĥ+(x) := lim
n→∞

1

δn
hE+(fn(x)),

exists and non-negative for all x ∈ X(Q̄) with well-defined forward

orbit.
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Part 4 Arithmetic degrees

A remark

Let d > 1, and

{an}∞n=0 be a sequence of positive numbers with an ≥ 1.

Assume that lim
n→∞

1

dn
anlim

n→∞

1

dn
anlim

n→∞

1

dn
an exists, and not zero.

Then lim
n→∞

a1/nnlim
n→∞

a1/nnlim
n→∞

a1/nn exists, and equals to d.

The converse does not hold in general.

This suggests that “ lim
n→∞

h(fn(x))1/nlim
n→∞

h(fn(x))1/nlim
n→∞

h(fn(x))1/n” might exist even if the canonical

height “ lim
n→∞

1

dn
h(fn(x))lim

n→∞

1

dn
h(fn(x))lim

n→∞

1

dn
h(fn(x))” does not exist.
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XXX: a smooth projective variety over Q̄
f : X 99K Xf : X 99K Xf : X 99K X: a dominant rational map

We fix (any) ample divisor H on X and

a Weil height hH : X(Q̄) → [1,∞) associated to H

X(Q̄)fX(Q̄)fX(Q̄)f := {x ∈ X(Q̄) | fn(x) is well-defined for all n ≥ 0}

Definition (arithmetic degree, Silverman)

Let x ∈ X(Q̄)f . If the limit lim
n→∞

hH (fn(x))1/n exists, then we set

αf (x)αf (x)αf (x) := lim
n→∞

hH (fn(x))1/n.

and call the arithmetic degree of x for f .

In general, we set αf (x)αf (x)αf (x) := lim sup
n→∞

hH (fn(x))1/n.
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Remark

The arithmetic degree αf (x) := limn→∞ hH (fn(x))1/n (if exists)

measures the “size” of the forward orbit Of (x) of x:

#{y ∈ Of (x) | hH(y) ≤ T} ∼ log T

logαf (x)
as T → ∞.

First dynamical degree

X a smooth projective variety over Q̄
f : X 99K X a dominant rational map

NS(X)NS(X)NS(X) := Div(X)/(algebraic equivalence)

Néron-Severi group of X

Then NS(X)R := NS(X)⊗ R (resp. NS(X)C := NS(X)⊗ C)
a finite dimensional R-vector (resp. C-vector) space.
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Definition (dynamical degree of f , one of equivalent definitions)

fn : X 99K X induces a linear transformation fn∗ on NS(X).

d(fn)d(fn)d(fn) := max

{
|λ|

∣∣∣∣∣ λ is an eigenvalue of

fn∗ ⊗ C : NS(X)C → NS(X)C

}

Then the (first) dynamical degree of f is defined by

δδδ := δfδfδf := lim
n→∞

d(fn)1/n

Remark

Dynamical degrees have been extensively studied in complex dynamical

systems and integrable systems.
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Relation between the dynamical degree and the arithmetic

degree

X: a smooth projective variety over Q̄
f : X 99K X: a dominant rational map

δf : dynamical degree of f

αf (x) := lim sup
n→∞

hH (fn(x))1/n

arithmetic degree of any x ∈ X(Q̄)f for f

Theorem (Silverman (X = PN); K.–Silverman (X general))

In the above setting, one has

αf (x) ≤ δfαf (x) ≤ δfαf (x) ≤ δf .
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Monomial maps

f : PN 99K PN is a monomial map

if it is a rational extension of f : GN
m → GN

m,

f = (Xa11
1 · · ·Xa1N

N , . . . , XaN1
1 · · ·XaNN

N ) for some A = (aij) ∈ MN (Z).

Theorem (Silverman 2014)

Let f : PN 99K PN be a monomial map such that A is diagonalizable.

1 The limit defining αf (x) = lim
n→∞

hH (fn(x))1/nαf (x) = lim
n→∞

hH (fn(x))1/nαf (x) = lim
n→∞

hH (fn(x))1/n exists (and

independent of the choice of an ample divisor H).

2 αf (x) is an algebraic integer for any GN
m(Q̄).

3 {αf (x) | x ∈ GN
m(Q̄)} is a finite set.

4 Let x ∈ GN
m(Q̄). Then, if O+

f (x) is Zariski dense in PN , then

αf (x) = δf .
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Conjecture (Silverman)

X: a smooth projective variety over Q̄
f : X 99K X: a dominant rational map

1 The limit defining αf (x) = lim
n→∞

hH (fn(x))1/nαf (x) = lim
n→∞

hH (fn(x))1/nαf (x) = lim
n→∞

hH (fn(x))1/n exists.

2 αf (x) is an algebraic integer for any X(Q̄)f .

3 {αf (x) | x ∈ X(Q̄)f} is a finite set.

4 Let x ∈ X(Q̄)f . Then, if O
+
f (x) is Zariski dense in X, then

αf (x) = δf .

Remark

The conjecture ⃝2 corresponds to Bellon–Viallet’s conjecture, which

asks whether the dynamical degree δf is an algebraic integer.

The conjecture ⃝4 seems the most difficult.
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Conjectures for morphisms

X: a smooth projective variety over Q̄
f : X → X: a morphism

Theorem (K.–Silverman)

Conjectures ⃝1⃝2⃝3 hold true for morphisms:

1 The limit defining αf (x) = lim
n→∞

hH (fn(x))1/n exists.

2 αf (x) is an algebraic integer for any X(Q̄).

3 {αf (x) | x ∈ X(Q̄)} is a finite set.

Remark

To prove the above statements,

we study the action of f∗ on Div(X)C, and construct nice height

functions related to f .
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Jordan Block Canonical Heights

X: a projective variety over Q̄
f : X → X: a morphism

λλλ ∈ C with |λ| > 1,

Assume that there exist D0, D1, D2 . . . ,∈ Div(X)⊗ CD0, D1, D2 . . . ,∈ Div(X)⊗ CD0, D1, D2 . . . ,∈ Div(X)⊗ C be such that

f∗D0 ∼ λD0,

f∗D1 ∼ D0 + λD1,

f∗D2 ∼ D1 + λD2,
...

. . .
. . .

Then, for k = 0, the limit ĥD0(x) := lim
n→∞

1

λn
hD0(f

n(x))ĥD0(x) := lim
n→∞

1

λn
hD0(f

n(x))ĥD0(x) := lim
n→∞

1

λn
hD0(f

n(x)) converges

(Call–Silverman), but, for k ≥ 1, the limit

lim
n→∞

1

λn
hDk

(fn(x))

does not converge in general.
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Theorem (Canonical heights for Jordan blocks)

There exist unique height function ĥDk
ĥDkĥDk

associated to Dk for all

k = 0, 1, 2, . . .,

ĥDk
: X(Q̄) → RĥDk
: X(Q̄) → RĥDk
: X(Q̄) → R,

satisfying ĥDk
(f(x)) = λ ĥDk

(x) + ĥDk−1
(x)ĥDk

(f(x)) = λ ĥDk
(x) + ĥDk−1

(x)ĥDk
(f(x)) = λ ĥDk

(x) + ĥDk−1
(x) for all k = 0, 1, 2, . . ..

Remark

Concretely, recursively for k = 0, 1, 2, . . ., we have

ĥDk
(x) := lim

n→∞

(
1

λn
hDk

(fn(x))−
k∑

i=1

(
n

i

)
1

λi
ĥDk−i

(x)

)
.
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ĥDk
: X(Q̄) → RĥDk
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Using canonical heights for Jordan blocks, we see that conjectures

⃝1⃝2⃝3 hold true for morphisms.

Remark

If |λ| >
√

δf , then a similar statement is true with the linear

equivalences replaced by numerical equivalences.

However, the condition ĥDk
= hDk

+O(1) is replaced by

ĥDk
= hDk

+O(
√
hH). (Here H is an ample divisor on X.)

Indeed, using αf (x) ≤ δf , one can show that if f : X → X is a

morphism, and D ∈ Div(X)R is a divisor such that f∗[D] = λ[D] in

NS(X)R for some λ >
√

δf , then the limit

ĥD(x) := lim
n→∞

1

λn
hD(f

n(x))ĥD(x) := lim
n→∞

1

λn
hD(f

n(x))ĥD(x) := lim
n→∞

1

λn
hD(f

n(x))

exists (Here hD is a Weil height associated to D).
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Conjecture ⃝4 for isogenies of abelian varieties

A: an abelian variety over Q̄
f : A → A an isogeny (i.e., a surjective group endomorphism)

In this case, in addition to Conjectures ⃝1⃝2⃝3 , Conjecture ⃝4 holds

true.

Theorem (K.–Silverman)

Let x ∈ A(Q̄). If the forward orbit O+
f (x) is Zariski dense in A, then

αf (x) = δf .

Remark

For an isogeny in general, one can find D ̸= 0 ∈ NS(A)R such that

f∗D = δfD. But often D is not ample, and is only nef.
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Example

E: elliptic curve over Q̄ without CM

A := E × EA := E × EA := E × E

Automorphism of A:

fff : A → A, (x, y) 7→ ([a]x+ [b] y, [c]x+ [d] y),

where

(
a b

c d

)
∈ GL2(Z) with a+ d > 2.

Let µ > 1 be a root of the characteristic polynomial t2 − (a+ d)t+ 1.

Then
∃DDD ∈ NS(A)R such that D is nef and symmetric, and

f∗D = µ2D in NS(A)R.

In this case, D is not ample.
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Theorem (nef canonical height theorem)

Let A be an abelian variety over Q̄, and

D ∈ Div(A)R a nef and symmetric R-divisor such that D ̸∼lin 0.

Let ĥD be the Néron-Tate height. Then

1 ĥD(x) ≥ 0 for any x ∈ A(Q̄).

2 There exists a subabelian variety BD ⊊ A over Q̄ such that

{x ∈ A(Q̄) | ĥD(x) = 0} = BD(Q̄) +A(Q̄)tor.

Remark

If D is ample, then {x ∈ A(Q̄) | ĥD(x) = 0} = A(Q̄)tor.
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Sketch of proof

For an isogeny f : A → A one can find a nef and symmetric

D ̸= 0 ∈ NS(A)R such that f∗D = δfD. Suppose αf (x) < δf . Then one

can show that ĥD(x) = 0. Using the nef canonical height theorem, one

can show that O+
f (x) is included in a proper subvariety of A.
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