An arithmetic dynamical Mordell-Lang conjecture

Rafe Jones

Carleton college

August 15, 2015

Silvermania!

Warmup: squares in polynomial orbits

For a field
$$K, f \in K(x)$$
, and $\alpha \in K$, the orbit $O_f(\alpha)$ is $\{f^n(\alpha) : n \geq 0\}$.

.

Let $f \in \mathbb{Q}[x]$ be monic and quadratic, and let S be the set of rational squares. Suppose there is $\alpha \in \mathbb{Q}$ such that $O_f(\alpha) \cap S$ is infinite. What can be said about f?

Motivation:

- ▶ If $f \in \mathbb{Q}(x)$ has degree at least two and there is $\alpha \in \mathbb{Q}$ with $O_f(\alpha) \cap \mathbb{Z}$ infinite, then $f^2(x) \in \mathbb{Q}[x]$ (Silverman 1993)
- ▶ If $f,g \in \mathbb{C}[x]$ have degree at least two and there are $\alpha,\beta \in \mathbb{C}$ with $O_f(\alpha) \cap O_g(\beta)$ infinite, then f and g have a common iterate (Ghioca-Tucker-Zieve 2008)

Theorem (Cahn-RJ-Spear 2015)

If $f \in \mathbb{Q}[x]$ is monic and quadratic and $O_f(\alpha) \cap S$ is infinite for some $\alpha \in \mathbb{Q}$, then either

- $f(x) = (x + c)^2$ for some $c \in \mathbb{Q}$, or
- $f(x) = x^2 + 4x$.

Remarks (let $f(x) = x^2 + 4x$):

- $O_f(1/2) = \{1/2, (3/2)^2, (15/4)^2, (255/16)^2, \ldots \}$
- $f^2(x) = (x^2 + 4x)(x+2)^2$
- ▶ $f(x) = T_2(x+2) 2$, where $T_2(x) = x^2 2$. Critical orbit of f(x) is $-2 \mapsto -4 \mapsto 0 \mapsto 0$.
- ▶ For any monic, quadratic $f \in \mathbb{Q}[x]$ and any $\alpha \in \mathbb{Q}$, $\{n : f^n(\alpha) \in S\}$ is a finite union of arithmetic progressions.

The Dynamical Mordell-Lang conjecture

Conjecture (Dynamical Mordell-Lang)

Let X/\mathbb{C} be a quasi-projective variety, $V\subseteq X$ a subvariety, and $f:X\to X$ a morphism. Then for all $\alpha\in X(\mathbb{C})$, the set $\{n:f^n(\alpha)\in V(\mathbb{C})\}$ is a finite union of arithmetic progressions.

Singletons are considered arithmetic progressions. So if $\{n: f^n(\alpha) \in V(\mathbb{C})\}$ is finite, then the conjecture holds.

Theorem (Skolem-Mahler-Lech)

If $F(x_0,\ldots,x_{\ell-1})=\sum_{i=0}^{\ell-1}a_ix_i$ is a linear form on \mathbb{C}^ℓ and $a_{n+\ell}=F(a_n,\ldots,a_{n+\ell-1})$ for all $n\geq 0$, then $\{n:a_n=0\}$ is a finite union of arithmetic progressions.

Special case of dynamical M-L conjecture: $f: \mathbb{A}^{\ell} \to \mathbb{A}^{\ell}$, $f(x_0, \dots, x_{\ell-1}) = (x_1, \dots, x_{\ell-1}, F(x_0, \dots, x_{\ell-1})), \ V = \{x_0 = 0\}.$

The dynamical M-L conjecture is known to hold for

- ▶ $X = \mathbb{A}^n$ and f an automorphism of X (Bell 2006)
- ► X a semi-abelian variety (Ghioca-Tucker 2009).
- ► X arbitrary and f étale (Bell-Ghioca-Tucker 2010)
- $X = \mathbb{A}^2$ (Xie 2015)
- ▶ $X = \mathbb{A}^n$, V is a curve, and $f = (f_1, \ldots, f_n)$ with $f_i \in \mathbb{C}[x]$ (Xie 2015)

A question over number fields

From now on, K is a number field.

A K-endomorphism of a variety X is a morphism $X \to X$ defined over K.

Question: Let X/K be a quasi-projective variety, $V \subset X(K)$ the value set $\lambda(X(K))$ of a K-endomorphism λ of X, and f a K-endomorphism of X. For $\alpha \in X(K)$, must $\{n: f^n(\alpha) \in V\}$ be a finite union of arithmetic progressions?

Proposition

Let G be a finitely generated abelian group, $H \leq G$, and $f: G \to G$ a homomorphism. Then for any $\alpha \in G$, $\{n: f^n(\alpha) \in H\}$ is a finite union of arithmetic progressions.

Consequence: if X is an abelian variety, f and λ are isogenies on X, and $\alpha \in X(K)$, then $\{n : f^n(\alpha) \in \lambda(X(K))\}$ is a finite union of arithmetic progressions.

Bad example: $K = \mathbb{Q}$, $X = \mathbb{A}^1$, $\lambda(y) = y^2$, $V = \{\text{squares in } \mathbb{Q}\}$, f(x) = x + 1, $\alpha = 0$.

Then $f^n(0) = n$ for all $n \ge 0$, so

$${n: f^{n}(0) \in V} = {0, 1, 4, 9, \ldots}.$$

A heuristic

Revised Question: Let X/K be a quasi-projective variety, λ a K-endomorphism of X, $V = \lambda(X(K))$, and f a sufficiently complicated K-endomorphism of X. For $\alpha \in X(K)$, must $\{n: f^n(\alpha) \in V\}$ be a finite union of arithmetic progressions?

Suppose there is i with $f^i = \lambda \circ g$, where g is a K-endomorphism of X.

Then for $n \ge i$, we have $f^n(\alpha) = \lambda(g(f^{n-i}(\alpha))) \in \lambda(X(K))$.

So if an iterate of f has a "close functional relationship" to λ , we should expect the question to have an affirmative answer.

For $n \ge 1$, let Z_n be the subvariety of $X \times X$ given by $f^n(x) = \lambda(y)$.

Then there is a natural K-morphism $f: Z_{n+1} \to Z_n$ taking (x, y) to (f(x), y). Thus if i > j, a point in $Z_i(K)$ maps to a point in $Z_i(K)$.

Suppose that $\{n: f^n(\alpha) \in \lambda(X(K))\}$ is infinite.

Then $Z_n(K)$ is infinite for all $n \ge 1$.

First leap of faith: For each n, the infinitely many points in $Z_n(K)$ are Zariski dense in Z_n .

Second leap of faith: The Bombieri-Lang conjecture is true: if a variety has a Zariski-dense set of K-rational points, then it is not of general type (i.e. not of full Kodaira dimension). Therefore Z_n is not of general type for any n.

Third leap of faith: Because f is sufficiently complicated, the varieties Z_n will be of general type for large n unless some iterate of f has a "close functional relationship" to λ .

Conjecture (Arithmetic dynamical Mordell-Lang conjecture)

Let $X = (\mathbb{P}^1)^g$ and let $f = (f_1, \dots, f_g)$ with $f_i \in K(x)$, deg $f_i \geq 2$. Then for any K-endomorphism λ of X and any $\alpha \in X(K)$, the set $\{n : f^n(\alpha) \in \lambda(X(K))\}$ is a finite union of arithmetic progressions.

If $\lambda = (\lambda_1, \dots, \lambda_g)$ with $\lambda_i \in K(x)$, then the conjecture may be proved one coordinate at a time, and reduces to the case where $X = \mathbb{P}^1$.

Theorem (Cahn-RJ-Spear)

The conjecture holds for $X = \mathbb{P}^1$ and $\lambda(y) = y^m$, where $m \in \mathbb{Z}$.

Proof Sketch

Let $f \in K(x)$, and note Z_n is the curve $f^n(x) = y^m$. Suppose that $O_f(\alpha) \cap (\mathbb{P}^1(K))^m$ is infinite, so that $Z_n(K)$ is infinite for each n.

First leap of faith First fact: For each n, the infinitely many points in $Z_n(K)$ are Zariski-dense in Z_n .

Second leap of faith Second fact: The Bombieri-Lang conjecture is true for curves (Faltings' Theorem). Therefore Z_n is not of general type for any n, i.e. the genus of Z_n is ≤ 1 .

Third leap of faith Third step: Show the genus of $Z_n: f^n(x) = y^m$ is at least two unless some iterate of f has a "close functional relationship" to λ .

Definition

For $\beta \in \mathbb{P}^1(\mathbb{C})$, define $\rho_n(\beta)$ to be the number of $z \in f^{-n}(\beta)$ with $e_{f^n}(z)$ not divisible by m. Call β m-branch abundant for f if $\rho_n(\beta)$ is bounded as $n \to \infty$.

From genus formulae for superelliptic curves, the genus of Z_n is bounded if and only if 0 and ∞ are m-branch abundant for f.

We classified all rational functions over \mathbb{C} with two m-branch abundant points, and showed their components are defined over K.

First attempt: determine all possible ramification structures of pre-image trees of an *m*-branch abundant point.

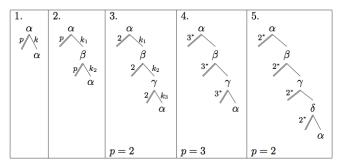


FIGURE 1. Ramification structures for $O^-(\alpha)$, where α is p-branch abundant for $f \in \mathbb{C}(z)$ and $p \nmid \deg f$.

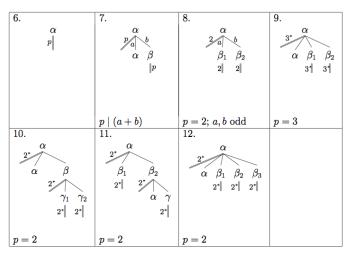


FIGURE 2. Ramification structures for $O^-(\alpha)$, where α is p-branch abundant for $f \in \mathbb{C}(z)$ and $p \mid \deg f$.

Theorem (Cahn-RJ-Spear)

Let $f \in K(x)$ and fix $m \ge 2$. Then the genus of $Z_n : f^n(x) = y^m$ is bounded as $n \to \infty$ if and only if one of the following holds:

- ▶ $f(x) = cx^{j}(g(x))^{m}$ with $g(x) \in K(x)$, $0 \le j \le m-1$, $c \in K^{*}$;
- (requires $m \in \{2,3,4\}$) f is a Lattès map with 0 and ∞ in its post-critical set;
- (requires m=2) Either f(x) or 1/f(1/x) can be written in one of the following ways $(B, C \in K^*, p, q, r \in K[x] \setminus \{0\})$:

1.
$$-\frac{p(x)^2}{(x-C)q(x)^2}$$
 with $p(x)^2 + C(x-C)q(x)^2 = Cxr(x)^2$;

2.
$$-\frac{(x-C)p(x)^2}{q(x)^2}$$
 with $(x-C)p(x)^2 + Cq(x)^2 = xr(x)^2$;

3.
$$B\frac{(x-C)p(x)^2}{q(x)^2}$$
 with $B(x-C)p(x)^2 - Cq(x)^2 = -Cr(x)^2$;

4.
$$B \frac{x(x-C)p(x)^2}{q(x)^2}$$
 with $Bx(x-C)p(x)^2 - Cq(x)^2 = -Cr(x)^2$;

In each case of the theorem, the genus of Z_n is at most 1 for all n.

Theorem (Cahn-RJ-Spear)

Let $f \in K(x)$ and fix $m \ge 2$. Then the genus of $Z_n : f^n(x) = y^m$ is bounded as $n \to \infty$ if and only if one of the following holds:

- ▶ $f(x) = cx^{j}(g(x))^{m}$ with $g(x) \in K(x)$, $0 \le j \le m-1$, $c \in K^{*}$;
- (requires $m \in \{2,3,4\}$) f is a Lattès map with 0 and ∞ in its post-critical set;
- (requires m=2) Either f(x) or 1/f(1/x) can be written in one of the following ways $(B, C \in K^*, p, q, r \in K[x] \setminus \{0\})$:

1.
$$-\frac{p(x)^2}{(x-C)q(x)^2}$$
 with $p(x)^2 + C(x-C)q(x)^2 = Cxr(x)^2$;

2.
$$-\frac{(x-C)p(x)^2}{q(x)^2}$$
 with $(x-C)p(x)^2 + Cq(x)^2 = xr(x)^2$;

3.
$$B\frac{(x-C)p(x)^2}{q(x)^2}$$
 with $B(x-C)p(x)^2 - Cq(x)^2 = -Cr(x)^2$;

4.
$$B \frac{x(x-C)p(x)^2}{q(x)^2}$$
 with $Bx(x-C)p(x)^2 - Cq(x)^2 = -Cr(x)^2$;

In each case of the theorem, the genus of Z_n is at most 1 for all n.

Theorem (Cahn-RJ-Spear)

Let $f \in K(x)$ and fix $m \ge 2$. Then the genus of $Z_n : f^n(x) = y^m$ is bounded as $n \to \infty$ if and only if one of the following holds:

- ▶ $f(x) = cx^{j}(g(x))^{m}$ with $g(x) \in K(x)$, $0 \le j \le m-1$, $c \in K^{*}$;
- (requires $m \in \{2,3,4\}$) f is a Lattès map with 0 and ∞ in its post-critical set;
- (requires m=2) Either f(x) or 1/f(1/x) can be written in one of the following ways $(B, C \in K^*, p, q, r \in K[x] \setminus \{0\})$:

1.
$$-\frac{p(x)^2}{(x-C)q(x)^2}$$
 with $p(x)^2 + C(x-C)q(x)^2 = Cxr(x)^2$;

2.
$$-\frac{(x-C)p(x)^2}{q(x)^2}$$
 with $(x-C)p(x)^2 + Cq(x)^2 = xr(x)^2$;

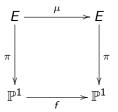
3.
$$B\frac{(x-C)p(x)^2}{q(x)^2}$$
 with $B(x-C)p(x)^2 - Cq(x)^2 = -Cr(x)^2$;

4.
$$B \frac{x(x-C)p(x)^2}{q(x)^2}$$
 with $Bx(x-C)p(x)^2 - Cq(x)^2 = -Cr(x)^2$;

In each case of the theorem, the genus of Z_n is at most 1 for all n.

Lattès maps

We say $f \in \mathbb{C}(z)$ is a *Lattès map* if there is an elliptic curve E, a morphism $\mu : E \to E$, and a finite separable map π such that the following diagram commutes:



Natural choices: π is the x-coordinate projection and $\mu = [j]$.

Question

Let $X=\mathbb{A}^2$ and $\lambda(y_1,y_2)=(y_1^{m_1},y_2^{m_2})$ with $m_1,m_2\geq 2$. Are there interesting examples of $f:\mathbb{A}^2\to\mathbb{A}^2$ not of the form $(f_1(x_1),f_2(x_2))$ such that $Z_n:f^n(x_1,x_2)=(y_1^{m_1},y_2^{m_2})$ is a surface of Kodaira dimension <2 for all n?

Corollary

Let $f \in K(x)$, fix $m \ge 2$, and suppose that the genus of Z_n is bounded as $n \to \infty$. Then there exist $a > b \ge 0$ with $f^a(x) = f^b(x)(g(x))^m$ for some $g(x) \in K(x)$.

Corollary

 $\{n: f^n(\alpha) \in (\mathbb{P}^1(K))^m\}$ is a finite union of arithmetic progressions, of modulus bounded by a-b.

Maximum modulus?

Example: let

$$f(x) = \frac{2(x-2)(x+2)^3}{x(x-4)^3}.$$

Then a = 3, b = 0 $(f^3(x) = x(g(x))^3)$, and no smaller a, b suffice.

$$O_f(6) = \left\{6, \frac{4}{3} \cdot 4^3, \left(\frac{655}{488}\right)^3, 6\left(-\frac{129900299507}{120418942015}\right)^3, \ldots\right\}$$

Indeed, for all $m \ge 3$ the modulus is bounded by m, and this is best possible (independent of K):

Let $f(x) = cx(x+1)^m$, where $c \notin K^p$ for each prime p dividing m.

Then
$$f^i(1) = c^i(k_i)^m$$
 for $k_i \in K$, for all $1 \le i \le m-1$. But $c^i \notin K^m$, and so $\{n : f^n(1) \in (\mathbb{P}^1(K))^m\} = \{0, m, 2m, 3m, \ldots\}$.

For m=2 one must have $a-b \le 4$. This is attained by certain Lattès maps descending from CM elliptic curves.

Example:

$$f(x) = (8 + 4\sqrt{3}) \frac{(x-1)(x - (4 + 4\sqrt{3}))^2}{x(x - (6 + 4\sqrt{3}))^2}$$

has post-critical orbit

$$0 \to \infty \to 8 + 4\sqrt{3} \to 1 \to 0$$
.

Thus $f^4(x) = x(g(x))^4$, but $f^i(x)$ is not of this form for i = 1, 2, 3.

This map arises from taking E to have CM by $\mathbb{Z}[\sqrt{-3}]$, $\mu(P) = [\sqrt{-3}]P + T$, where T is a non-trivial 2-torsion point, and π to be projection onto the x-coordinate.

Question 1: Do Lattès maps with this post-critical portrait have $\alpha \in K$ with $\{n : f^n(\alpha) \in (\mathbb{P}^1(K))^2\}$ an arithmetic progression of modulus 4?

Question 2: Can Lattès maps with this post-critical portrait be defined over \mathbb{Q} ?

Thank you!