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Notation

Throughout this talk, we set the following notation:
» K is a field
» K is an algebraic closure of K
> |- | is a non-archimedean absolute value on K
» O ={xe€ K:|x| <1} C K is the ring of integers,
» M ={xe€ K:|x| <1} C K is the maximal ideal,
» k= O/M is the residue field,

» p = char k > 0 is the residue characteristic.

For example, K = Qp, K= @p, O =Zp, k =Fp.

Or K = F((t)), K = F((t)), © = F[[t]], k =F.

OrK=K=Cp, k=F,.



Dynamics on P}(K)
Let ¢ € K(z) be a rational function of degree d > 2.
[deg ¢ := max{deg f,deg g}, where ¢ = /g in lowest terms.]

Then ¢ : PY(K) — PY(K). Write ¢" := ¢po¢o---0 ¢.

n times

Any linear fractional map h(z) = gig € PGL(2, K) changes
coordinates on P1(K).
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The effect on ¢ is conjugation: 1) = ho ¢ o h™1L.



Good Reduction

Given a polynomial f € O[z], denote by f(z) € k[z] the
polynomial formed by reducing all coefficients of £ modulo M.

Definition (Morton, Silverman 1994)
Let ¢(z) € K(z) be a rational function. Write ¢ = f /g for
f,g € O|z] with at least one coefficient of f or g having absolute
value 1.
Let ¢ := f/g. We say
> ¢ has good reduction (at v) if deg ¢ = deg ¢.
> ¢ has bad reduction (at v) if deg ¢ < deg ¢.
> ¢ has potential good reduction (at v) if there is some
h € PGL(2, K) such that ho ¢ o h™! € K(z) has good
reduction.



Reduction Examples

723 -2z
Example. ¢(z) = 1 € Qs(z) has deg ¢ = 4.
z(z? - 2) z

But ¢(z) = 122 -2) =519 € F5(z) has

deg® =2 < 4, so ¢ has bad reduction.

7 1442% — 7
Example. ¢(z) = Z2 _ 47 = #

has bad reduction at p =2 and p = 3,
since ¢(z) = %7 has degree 0 < 2.

But ¢ has good reduction at p =5,7,11,....



Potential Good Reduction Examples

Example. ¢(z) = pz> € Q,(z) has bad reduction: ¢(z) = 0.

But ¢(z) := P¢(§) = z? € Q,(2) has good reduction.

Example. ¢(z) = pz*> € Q,(z) has bad reduction: ¢(z) = 0.
But ¢(z) := \/f)d)(

z

NG

) = z*> € Q,(z) has good reduction.

1 _
Example. ¢(z) = z° — 5 € Q2(z) has bad reduction: ¢(z) =1/0.

l—i—i) 14+

5 5 =224+ (14)z-1€Qy(2)

But ¢(z) := qﬁ(z +

has good reduction.



Periodic points and multipliers

Definition
Let x € P}(K) such that ¢"(x) = x for some (minimal) n > 1.
Then we say x is periodic of (exact) period n.
The multiplier of x is X := (¢")/(x) € K. We say x is
> repelling if || > 1,
» attracting if |\| <1, or
> indifferent if |\| = 1.

Theorem (Morton, Silverman, 1995)

If ¢ has potential good reduction, then all periodic points of ¢ are
attracting or indifferent.



But Not Conversely

However, there are maps with no repelling periodic points but also
not potentially good.

1
Example K = Qp, ¢(z) = 227" 4 2P has this property.
p

Example Let E be an elliptic curve of multiplicative reduction.
Then [2] : E — E induces a Lattés map ¢ : P1(K) — P*(K) with
x([2]P) = o(x[P]).

See page 59 of The Arithmetic of Elliptic Curves.

¢ is a quartic rational function with no repelling periodic points
but that is not potentially good.
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Good Reduction and disks

To say that ¢(z) € K(z) has good reduction is to say that
¢ : PY(K) — P(K) extends to a Spec O-morphism from P, to
itself.

To explain: writing D(a,r) := {x € K : |x — a| < r}, we can
partition P}(K) into residue classes: i.e., the open unit disks

D(a,1) for|a| <1

and the “disk at infinity” D(o00,1) := {x € P(K) : |x| > 1}.
(Reduction-mod-M maps P}(K) — P!(k) by D(a,1) — a.)

To say that ¢ has good reduction is to say that ¢ maps every
residue class D(a, 1) into (and in fact, onto) the residue class

D(¢(a), 1).
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The Berkovich Projective Line Péer
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Good Reduction and the Berkovich Projective line

¢ € K(z) extends to a (continuous) map ¢ : Ps_ — P§_.
The point ¢(0,1) corresponding to the closed unit disk is called the
Gauss point.

Theorem (Rivera-Letelier)

¢ has good reduction if and only if the Gauss point is a totally
invariant fixed point, i.e., ¢ (¢(0,1)) = {¢(0,1)}.

Corollary

¢ has potential good reduction if and only if
there is some a € K and r € K| such that
¢(a, r) is a totally invariant fixed point.



Changing Coordinates

Any ((a,r) € P with r € |K”™| can be moved to ¢(0,1) by a
coordinate change in PGL(2, K).

3

Pick x1,x2,x3 in separate branches
1 emanating from ((a, r).

Pick h € PGL(2, K) with h(x,) = 0,

h(x2) =1, h(x3) = 0.

Then h({(a, r)) = ¢(0,1).

0

Rumely, 2013: gives an algorithm for determining whether or not
¢ has potential good reduction.



A Lemma on Local Dynamics

Lemma
If ¢ has good reduction, and if the residue class D(a,1) is fixed by

¢, then one of the following is true:

» D(a,1) is an attracting component:
it contains an attracting fixed point b,
and lim ¢"(x) = b for all x € D(a, 1).

n—oo

» D(a,1) is an indifferent component:
¢ : D(a,1) — D(a,1) is one-to-one

So (for good reduction):
> an attracting fixed point can’t share its residue class with
another fixed point.

» an indifferent fixed point can’t share its residue class with one
of its preimages.



A Fixed-Point Criterion for Potential Good Reduction

Theorem (RB, 2014)
Let ¢ € K(z) with d := deg¢ > 2.
Let x1,...,x441 € PL(K) be the fixed points of ¢.
» If any x; is repelling, then ¢ is not potentially good.

» If x; is indifferent, we can choose y; € qb_l(xl) and
y2 € ¢ Y(y1) with x1, y1, yo all distinct.
Let h € PGL(2, K) with h(x1) = 0, h(y1) = 1, and h(y») = co.
Then ¢ is potentially good if and only if ho ¢o h™! has good
reduction.

» If x; and x» are attracting, then xi, x2, x3 are all distinct, so
there is a unique h € PGL(2, K) with h(x1) = 0, h(x2) = 1,
and h(x3) = oc.

Then ¢ is potentially good if and only if ho ¢ o h™! has good
reduction.



How Big an Extension Do We Need?

If ¢ does have potential good reduction, the minimal field of
definition L of the coordinate change h € PGL(2, K) chosen in the
theorem could have [L : K] = d® — d, a priori.

Theorem (RB, 2014)

Let p = char k > 0 be the residue characteristic of K. Let
¢ € K(z) withdegp =d > 2. Let

B := max{ p"f’(d)(d —1), pld=Dd d+1 }.

If ¢ has potential good reduction, then ¢ attains good reduction
over some field L with [L: K] < B.



A Key Case

Suppose that ¢ has potential good reduction,
with totally invariant Berkovich point &,
but that all points of P(K) lie in the same branch U from &.

Then this branch/disk U is a fixed component, and hence either
attracting or indifferent. Let’s assume it’s attracting.

Then exactly d of the d + 1 fixed points lie outside U.

If K is complete, the monic polynomial f with those d points as its
roots has coefficients in K.

Even if K is not complete, we can show there is a polynomial
f € K[z] with deg f = d and all roots of f outside U.



A Key Case, Continued

Let g := p*»(9). [Or g :=1if p=0.] A further argument shows

there is a polynomial g € K|[z] with degg = g and all roots of g
outside U.

Let @ € K be a root of g, so that [K(a) : K] < gq.

Note: there are K(«)-rational points in at least two different
branches from &.

So some K(a)-rational coordinate change moves U to the open
disk D(0, r) for some r > 0.

Using the fact that U is attracting, we can show that

r € |K(a)*|Y/" for some n < d — 1.

So there's a field L with [L : K(a)] = n for which three different
branches off & contain L-rational points.



One Other Case

Suppose that ¢ has potential good reduction,

with totally invariant Berkovich point &,

and P1(K) intersects exactly two branches U and V from ¢,
and ¢(U) = V and ¢(V) = U.

Let f € K[z] be the degree-(d + 1) polynomial whose roots are the
fixed points of ¢, and let « be a root of f.

Note that a ¢ UU V.

So [K(a) : K] <d + 1, and three different branches off £ contain
K («)-rational points.

(Recall B := max{ p»(@)(d — 1), p»(d1d, d+1})



The Bound is Sharp: The p|d Case

Assume K is discretely valued with uniformizer 7.

Example. d = mp® with pt m. Let g := p€, and let
o(z) =z + (71'_12‘7 +1)" € K[z].

Then deg ¢ = d, and the Berkovich point & := ¢ (x%/9, |z|™/(d~1))
is totally invariant.

Any coordinate change moving & to (0, 1) requires an extension
L/K with ramification degree at least g(d — 1).

Note, of course, the attracting fixed point at oc.

The other d — 1 fixed points are indifferent, and they lie in the disk
D (w4, |z|™/(4=1)) corresponding to ¢&.



The Bound is Sharp: The p|(d — 1) Case

Assume K is discretely valued with uniformizer 7.
Example. d — 1 = mp® with p{ m. Let g := p®, and let
d—1

(ij—Tl)m S K(Z)

oz) =z +
Then deg ¢ = d, and the Berkovich point
£ = C(ﬂ(q_l)/q, ]W\(d_l)/d) is totally invariant.

Any coordinate change moving & to ((0,1) requires an extension
L/K with ramification degree at least qd.

» The branch U containing P1(K) is indifferent and contains all
of the fixed points (which are all at o0).

> Another single branch V = D(x(9=1)/a |7|(d=1)/d) contains
all the other d — 1 preimages of the points in U.

> So we need to take preimages of points in V — thus a further
degree-d extension — to realize a third branch.



The Bound is Sharp: The d + 1 Case

Assume K is discretely valued with uniformizer .

Example. Let

Then deg ¢ = d, and the Berkovich point £ := ((0, ]wl/(d+1)|) is
totally invariant.

Any coordinate change moving & to ((0,1) requires an extension
L/K with ramification degree at least d + 1.

» The disk U := D(0, |7'/(¢*1)|) maps d-to-1 onto V/, the
complement of D(0, |x/(d+1)]).

» And V maps d-to-1 onto U. So we have a totally invariant
attracting 2-cycle of components.

» To pick up another branch, we need to adjoin a fixed point,
requiring degree d + 1.



