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Notation

Throughout this talk, we set the following notation:

I K is a field

I K is an algebraic closure of K

I | · | is a non-archimedean absolute value on K

I O = {x ∈ K : |x | ≤ 1} ⊆ K is the ring of integers,

I M = {x ∈ K : |x | < 1} ⊆ K is the maximal ideal,

I k = O/M is the residue field,

I p = char k ≥ 0 is the residue characteristic.

For example, K = Qp, K = Qp, O = Zp, k = Fp.

Or K = F((t)), K = F((t)), O = F[[t]], k = F.

Or K = K = Cp, k = Fp.



Dynamics on P1(K )

Let φ ∈ K (z) be a rational function of degree d ≥ 2.

[deg φ := max{deg f , deg g}, where φ = f /g in lowest terms.]

Then φ : P1(K )→ P1(K ). Write φn := φ ◦ φ ◦ · · · ◦ φ︸ ︷︷ ︸
n times

.

Any linear fractional map h(z) = az+b
cz+d ∈ PGL(2,K ) changes

coordinates on P1(K ).

φ−−−−→ P1 φ−−−−→ P1 φ−−−−→ P1 φ−−−−→ P1 φ−−−−→yh

yh

yh

yh

ψ−−−−→ P1 ψ−−−−→ P1 ψ−−−−→ P1 ψ−−−−→ P1 ψ−−−−→
The effect on φ is conjugation: ψ = h ◦ φ ◦ h−1.



Good Reduction

Given a polynomial f ∈ O[z ], denote by f (z) ∈ k[z ] the
polynomial formed by reducing all coefficients of f modulo M.

Definition (Morton, Silverman 1994)

Let φ(z) ∈ K (z) be a rational function. Write φ = f /g for
f , g ∈ O[z ] with at least one coefficient of f or g having absolute
value 1.
Let φ := f /g . We say

I φ has good reduction (at v) if deg φ = deg φ.

I φ has bad reduction (at v) if deg φ < deg φ.

I φ has potential good reduction (at v) if there is some
h ∈ PGL(2,K ) such that h ◦ φ ◦ h−1 ∈ K (z) has good
reduction.



Reduction Examples

Example. φ(z) =
z3 − 2z

z4 + 1
∈ Q5(z) has deg φ = 4.

But φ(z) =
z(z2 − 2)

(z2 + 2)(z2 − 2)
=

z

z2 + 2
∈ F5(z) has

deg φ = 2 < 4, so φ has bad reduction.

Example. φ(z) = z2 − 7

144
=

144z2 − 7

144
has bad reduction at p = 2 and p = 3,

since φ(z) =
−7

0
has degree 0 < 2.

But φ has good reduction at p = 5, 7, 11, . . ..



Potential Good Reduction Examples

Example. φ(z) = pz2 ∈ Qp(z) has bad reduction: φ(z) = 0.

But ψ(z) := pφ
(z

p

)
= z2 ∈ Qp(z) has good reduction.

Example. φ(z) = pz3 ∈ Qp(z) has bad reduction: φ(z) = 0.

But ψ(z) :=
√

pφ
( z
√

p

)
= z3 ∈ Qp(z) has good reduction.

Example. φ(z) = z2 − 1

2
∈ Q2(z) has bad reduction: φ(z) = 1/0.

But ψ(z) := φ
(

z +
1 + i

2

)
− 1 + i

2
= z2 + (1 + i)z − 1 ∈ Q2(z)

has good reduction.



Periodic points and multipliers

Definition
Let x ∈ P1(K ) such that φn(x) = x for some (minimal) n ≥ 1.
Then we say x is periodic of (exact) period n.

The multiplier of x is λ := (φn)′(x) ∈ K . We say x is

I repelling if |λ| > 1,

I attracting if |λ| < 1, or

I indifferent if |λ| = 1.

Theorem (Morton, Silverman, 1995)

If φ has potential good reduction, then all periodic points of φ are
attracting or indifferent.



But Not Conversely

However, there are maps with no repelling periodic points but also
not potentially good.

Example K = Qp, φ(z) = z2p2
+

1

p
zp2

has this property.

Example Let E be an elliptic curve of multiplicative reduction.

Then [2] : E → E induces a Lattès map φ : P1(K )→ P1(K ) with
x([2]P) = φ(x [P]).

See page 59 of The Arithmetic of Elliptic Curves.

φ is a quartic rational function with no repelling periodic points
but that is not potentially good.

E.g. y2 + xy = x3 + p gives φ(z) =
z4 − 8pz − p

4z3 + z2 + 4p
.



Good Reduction and disks

To say that φ(z) ∈ K (z) has good reduction is to say that
φ : P1(K )→ P1(K ) extends to a SpecO-morphism from P1

O to
itself.

To explain: writing D(a, r) := {x ∈ K : |x − a| < r}, we can
partition P1(K ) into residue classes: i.e., the open unit disks

D(a, 1) for |a| ≤ 1

and the “disk at infinity” D(∞, 1) := {x ∈ P1(K ) : |x | > 1}.

(Reduction-mod-M maps P1(K )→ P1(k) by D(a, 1)→ a.)

To say that φ has good reduction is to say that φ maps every
residue class D(a, 1) into (and in fact, onto) the residue class
D(φ(a), 1).
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Building the Berkovich Projective Line
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The Berkovich Projective Line P1
Ber

0
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∞



Good Reduction and the Berkovich Projective line

φ ∈ K (z) extends to a (continuous) map φ : P1
Ber → P1

Ber.
The point ζ(0, 1) corresponding to the closed unit disk is called the
Gauss point.

Theorem (Rivera-Letelier)

φ has good reduction if and only if the Gauss point is a totally
invariant fixed point, i.e., φ−1

(
ζ(0, 1)

)
= {ζ(0, 1)}.

Corollary

φ has potential good reduction if and only if
there is some a ∈ K and r ∈ |K×| such that
ζ(a, r) is a totally invariant fixed point.



Changing Coordinates

Any ζ(a, r) ∈ P1
Ber with r ∈ |K×| can be moved to ζ(0, 1) by a

coordinate change in PGL(2,K ).

0

1

∞

Pick x1, x2, x3 in separate branches
emanating from ζ(a, r).
Pick h ∈ PGL(2,K ) with h(x1) = 0,
h(x2) = 1, h(x3) =∞.
Then h(ζ(a, r)) = ζ(0, 1).

Rumely, 2013: gives an algorithm for determining whether or not
φ has potential good reduction.



A Lemma on Local Dynamics

Lemma
If φ has good reduction, and if the residue class D(a, 1) is fixed by
φ, then one of the following is true:

I D(a, 1) is an attracting component:
it contains an attracting fixed point b,
and lim

n→∞
φn(x) = b for all x ∈ D(a, 1).

I D(a, 1) is an indifferent component:
φ : D(a, 1)→ D(a, 1) is one-to-one

So (for good reduction):

I an attracting fixed point can’t share its residue class with
another fixed point.

I an indifferent fixed point can’t share its residue class with one
of its preimages.



A Fixed-Point Criterion for Potential Good Reduction

Theorem (RB, 2014)

Let φ ∈ K (z) with d := deg φ ≥ 2.
Let x1, . . . , xd+1 ∈ P1(K ) be the fixed points of φ.

I If any xi is repelling, then φ is not potentially good.

I If x1 is indifferent, we can choose y1 ∈ φ−1(x1) and
y2 ∈ φ−1(y1) with x1, y1, y2 all distinct.
Let h ∈ PGL(2,K ) with h(x1) = 0, h(y1) = 1, and h(y2) =∞.
Then φ is potentially good if and only if h ◦ φ ◦ h−1 has good
reduction.

I If x1 and x2 are attracting, then x1, x2, x3 are all distinct, so
there is a unique h ∈ PGL(2,K ) with h(x1) = 0, h(x2) = 1,
and h(x3) =∞.
Then φ is potentially good if and only if h ◦ φ ◦ h−1 has good
reduction.



How Big an Extension Do We Need?

If φ does have potential good reduction, the minimal field of
definition L of the coordinate change h ∈ PGL(2,K ) chosen in the
theorem could have [L : K ] = d3 − d , a priori.

Theorem (RB, 2014)

Let p = char k ≥ 0 be the residue characteristic of K . Let
φ ∈ K (z) with deg φ = d ≥ 2. Let

B := max{ pvp(d)(d − 1), pvp(d−1)d , d + 1 }.

If φ has potential good reduction, then φ attains good reduction
over some field L with [L : K ] ≤ B.



A Key Case

Suppose that φ has potential good reduction,
with totally invariant Berkovich point ξ,
but that all points of P1(K ) lie in the same branch U from ξ.

Then this branch/disk U is a fixed component, and hence either
attracting or indifferent. Let’s assume it’s attracting.

Then exactly d of the d + 1 fixed points lie outside U.

If K is complete, the monic polynomial f with those d points as its
roots has coefficients in K .

Even if K is not complete, we can show there is a polynomial
f ∈ K [z ] with deg f = d and all roots of f outside U.



A Key Case, Continued

Let q := pvp(d). [Or q := 1 if p = 0.] A further argument shows
there is a polynomial g ∈ K [z ] with deg g = q and all roots of g
outside U.

Let α ∈ K be a root of g , so that [K (α) : K ] ≤ q.

Note: there are K (α)-rational points in at least two different
branches from ξ.

So some K (α)-rational coordinate change moves U to the open
disk D(0, r) for some r > 0.

Using the fact that U is attracting, we can show that
r ∈ |K (α)×|1/n for some n ≤ d − 1.
So there’s a field L with [L : K (α)] = n for which three different
branches off ξ contain L-rational points.



One Other Case

Suppose that φ has potential good reduction,
with totally invariant Berkovich point ξ,
and P1(K ) intersects exactly two branches U and V from ξ,
and φ(U) = V and φ(V ) = U.

Let f ∈ K [z ] be the degree-(d + 1) polynomial whose roots are the
fixed points of φ, and let α be a root of f .

Note that α 6∈ U ∪ V .

So [K (α) : K ] ≤ d + 1, and three different branches off ξ contain
K (α)-rational points.

(Recall B := max{ pvp(d)(d − 1), pvp(d−1)d , d + 1 }.)



The Bound is Sharp: The p|d Case

Assume K is discretely valued with uniformizer π.

Example. d = mpe with p - m. Let q := pe , and let

φ(z) := z +
(
π−1zq + 1

)m ∈ K [z ].

Then deg φ = d , and the Berkovich point ξ := ζ
(
π1/q, |π|m/(d−1)

)
is totally invariant.

Any coordinate change moving ξ to ζ(0, 1) requires an extension
L/K with ramification degree at least q(d − 1).

Note, of course, the attracting fixed point at ∞.

The other d − 1 fixed points are indifferent, and they lie in the disk
D
(
π1/q, |π|m/(d−1)

)
corresponding to ξ.



The Bound is Sharp: The p|(d − 1) Case
Assume K is discretely valued with uniformizer π.

Example. d − 1 = mpe with p - m. Let q := pe , and let

φ(z) := z +
πd−1

(zq − πq−1)m
∈ K (z).

Then deg φ = d , and the Berkovich point
ξ := ζ

(
π(q−1)/q, |π|(d−1)/d

)
is totally invariant.

Any coordinate change moving ξ to ζ(0, 1) requires an extension
L/K with ramification degree at least qd .

I The branch U containing P1(K ) is indifferent and contains all
of the fixed points (which are all at ∞).

I Another single branch V = D(π(q−1)/q, |π|(d−1)/d) contains
all the other d − 1 preimages of the points in U.

I So we need to take preimages of points in V — thus a further
degree-d extension — to realize a third branch.



The Bound is Sharp: The d + 1 Case
Assume K is discretely valued with uniformizer π.

Example. Let

φ(z) :=
π

zd
.

Then deg φ = d , and the Berkovich point ξ := ζ(0, |π1/(d+1)|) is
totally invariant.

Any coordinate change moving ξ to ζ(0, 1) requires an extension
L/K with ramification degree at least d + 1.

I The disk U := D(0, |π1/(d+1)|) maps d-to-1 onto V , the
complement of D(0, |π1/(d+1)|).

I And V maps d-to-1 onto U. So we have a totally invariant
attracting 2-cycle of components.

I To pick up another branch, we need to adjoin a fixed point,
requiring degree d + 1.


