Determining Potential Good Reduction in Arithmetic Dynamics

> Robert L. Benedetto Amherst College

> > Silvermania 2015

August 11, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation

Throughout this talk, we set the following notation:

- K is a field
- \overline{K} is an algebraic closure of K
- \triangleright $|\cdot|$ is a non-archimedean absolute value on \overline{K}
- ▶ $\mathcal{O} = \{x \in K : |x| \le 1\} \subseteq K$ is the ring of integers,
- $\mathcal{M} = \{x \in K : |x| < 1\} \subseteq K$ is the maximal ideal,

- $k = \mathcal{O}/\mathcal{M}$ is the residue field,
- $p = \text{char } k \ge 0$ is the residue characteristic.

For example, $\mathcal{K} = \mathbb{Q}_p$, $\overline{\mathcal{K}} = \overline{\mathbb{Q}}_p$, $\mathcal{O} = \mathbb{Z}_p$, $k = \mathbb{F}_p$.

Or
$$K = \mathbb{F}((t))$$
, $\overline{K} = \overline{\mathbb{F}((t))}$, $\mathcal{O} = \mathbb{F}[[t]]$, $k = \mathbb{F}$.

 $\text{Or } K = \overline{K} = \mathbb{C}_p, \ k = \overline{\mathbb{F}}_p.$

Dynamics on $\mathbb{P}^1(K)$

Let $\phi \in K(z)$ be a rational function of degree $d \ge 2$. [deg $\phi := \max\{\deg f, \deg g\}$, where $\phi = f/g$ in lowest terms.]

Then
$$\phi : \mathbb{P}^1(\overline{K}) \to \mathbb{P}^1(\overline{K})$$
. Write $\phi^n := \underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{n \text{ times}}$.

Any linear fractional map $h(z) = \frac{az+b}{cz+d} \in PGL(2, K)$ changes coordinates on $\mathbb{P}^1(\overline{K})$.

Good Reduction

Given a polynomial $f \in \mathcal{O}[z]$, denote by $\overline{f}(z) \in k[z]$ the polynomial formed by reducing all coefficients of f modulo \mathcal{M} .

Definition (Morton, Silverman 1994)

Let $\phi(z) \in K(z)$ be a rational function. Write $\phi = f/g$ for $f, g \in \mathcal{O}[z]$ with at least one coefficient of f or g having absolute value 1.

- Let $\overline{\phi} := \overline{f}/\overline{g}$. We say
 - ϕ has good reduction (at v) if deg $\overline{\phi} = \deg \phi$.
 - ϕ has bad reduction (at v) if deg $\overline{\phi} < \deg \phi$.
 - ϕ has potential good reduction (at v) if there is some $h \in PGL(2, \overline{K})$ such that $h \circ \phi \circ h^{-1} \in \overline{K}(z)$ has good reduction.

Reduction Examples

Example.
$$\phi(z) = \frac{z^3 - 2z}{z^4 + 1} \in \mathbb{Q}_5(z)$$
 has deg $\phi = 4$.
But $\overline{\phi}(z) = \frac{z(z^2 - 2)}{(z^2 + 2)(z^2 - 2)} = \frac{z}{z^2 + 2} \in \mathbb{F}_5(z)$ has deg $\overline{\phi} = 2 < 4$, so ϕ has bad reduction.

Example.
$$\phi(z) = z^2 - \frac{7}{144} = \frac{144z^2 - 7}{144}$$

has bad reduction at $p = 2$ and $p = 3$,
since $\overline{\phi}(z) = \frac{-7}{0}$ has degree $0 < 2$.
But ϕ has good reduction at $p = 5, 7, 11, \dots$

Potential Good Reduction Examples

Example.
$$\phi(z) = pz^2 \in \mathbb{Q}_p(z)$$
 has bad reduction: $\overline{\phi}(z) = 0$.
But $\psi(z) := p\phi\left(\frac{z}{p}\right) = z^2 \in \mathbb{Q}_p(z)$ has good reduction.

Example. $\phi(z) = pz^3 \in \mathbb{Q}_p(z)$ has bad reduction: $\overline{\phi}(z) = 0$. But $\psi(z) := \sqrt{p}\phi\left(\frac{z}{\sqrt{p}}\right) = z^3 \in \overline{\mathbb{Q}}_p(z)$ has good reduction.

Example. $\phi(z) = z^2 - \frac{1}{2} \in \mathbb{Q}_2(z)$ has bad reduction: $\overline{\phi}(z) = 1/0$. But $\psi(z) := \phi\left(z + \frac{1+i}{2}\right) - \frac{1+i}{2} = z^2 + (1+i)z - 1 \in \overline{\mathbb{Q}}_2(z)$ has good reduction.

(日)、(型)、(目)、(目)、(目)、(の)、(の)

Periodic points and multipliers

Definition

Let $x \in \mathbb{P}^1(\overline{K})$ such that $\phi^n(x) = x$ for some (minimal) $n \ge 1$. Then we say x is *periodic* of (exact) period n.

The multiplier of x is $\lambda := (\phi^n)'(x) \in \overline{K}$. We say x is

- repelling if $|\lambda| > 1$,
- attracting if $|\lambda| < 1$, or
- indifferent if $|\lambda| = 1$.

Theorem (Morton, Silverman, 1995)

If ϕ has potential good reduction, then all periodic points of ϕ are attracting or indifferent.

But Not Conversely

However, there **are** maps with no repelling periodic points but also **not** potentially good.

Example
$$\mathcal{K} = \mathbb{Q}_p$$
, $\phi(z) = z^{2p^2} + \frac{1}{p}z^{p^2}$ has this property.

Example Let *E* be an elliptic curve of multiplicative reduction. Then [2] : $E \to E$ induces a *Lattès map* $\phi : \mathbb{P}^1(\overline{K}) \to \mathbb{P}^1(\overline{K})$ with $x([2]P) = \phi(x[P])$.

See page 59 of The Arithmetic of Elliptic Curves.

 ϕ is a quartic rational function with no repelling periodic points but that is not potentially good.

E.g.
$$y^2 + xy = x^3 + p$$
 gives $\phi(z) = \frac{z^4 - 8pz - p}{4z^3 + z^2 + 4p}$

Good Reduction and disks

To say that $\phi(z) \in K(z)$ has good reduction is to say that $\phi : \mathbb{P}^1(K) \to \mathbb{P}^1(K)$ extends to a Spec \mathcal{O} -morphism from $\mathbb{P}^1_{\mathcal{O}}$ to itself.

To explain: writing $D(a, r) := \{x \in \overline{K} : |x - a| < r\}$, we can partition $\mathbb{P}^1(\overline{K})$ into residue classes: i.e., the open unit disks

D(a,1) for $|a| \leq 1$

and the "disk at infinity" $D(\infty, 1) := \{x \in \mathbb{P}^1(\overline{K}) : |x| > 1\}.$ (Reduction-mod- \mathcal{M} maps $\mathbb{P}^1(\overline{K}) \to \mathbb{P}^1(\overline{k})$ by $D(a, 1) \to \overline{a}.$)

To say that ϕ has good reduction is to say that ϕ maps every residue class D(a, 1) into (and in fact, onto) the residue class $D(\phi(a), 1)$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

The Berkovich Projective Line $\mathbb{P}^1_{\mathsf{Ber}}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Good Reduction and the Berkovich Projective line

 $\phi \in K(z)$ extends to a (continuous) map $\phi : \mathbb{P}^1_{Ber} \to \mathbb{P}^1_{Ber}$. The point $\zeta(0, 1)$ corresponding to the closed unit disk is called the **Gauss point**.

Theorem (Rivera-Letelier)

 ϕ has good reduction if and only if the Gauss point is a totally invariant fixed point, *i.e.*, $\phi^{-1}(\zeta(0,1)) = \{\zeta(0,1)\}$.

Corollary

 ϕ has potential good reduction if and only if there is some $a \in \overline{K}$ and $r \in |\overline{K}^{\times}|$ such that $\zeta(a, r)$ is a totally invariant fixed point.

Changing Coordinates

Any $\zeta(a, r) \in \mathbb{P}^1_{Ber}$ with $r \in |\overline{K}^{\times}|$ can be moved to $\zeta(0, 1)$ by a coordinate change in PGL(2, \overline{K}).

Pick x_1, x_2, x_3 in separate branches emanating from $\zeta(a, r)$. Pick $h \in PGL(2, \overline{K})$ with $h(x_1) = 0$, $h(x_2) = 1$, $h(x_3) = \infty$. Then $h(\zeta(a, r)) = \zeta(0, 1)$.

Rumely, 2013: gives an algorithm for determining whether or not ϕ has potential good reduction.

A Lemma on Local Dynamics

Lemma

If ϕ has good reduction, and if the residue class D(a, 1) is fixed by ϕ , then one of the following is true:

- ▶ D(a, 1) is an attracting component: it contains an attracting fixed point b, and $\lim_{n\to\infty} \phi^n(x) = b$ for all $x \in D(a, 1)$.
- ▶ D(a, 1) is an indifferent component: $\phi: D(a, 1) \rightarrow D(a, 1)$ is one-to-one

So (for good reduction):

- an attracting fixed point can't share its residue class with another fixed point.
- an indifferent fixed point can't share its residue class with one of its preimages.

A Fixed-Point Criterion for Potential Good Reduction

Theorem (RB, 2014)

Let $\phi \in K(z)$ with $d := \deg \phi \ge 2$. Let $x_1, \ldots, x_{d+1} \in \mathbb{P}^1(\overline{K})$ be the fixed points of ϕ .

- If any x_i is repelling, then ϕ is not potentially good.
- If x_1 is indifferent, we can choose $y_1 \in \phi^{-1}(x_1)$ and $y_2 \in \phi^{-1}(y_1)$ with x_1, y_1, y_2 all distinct. Let $h \in PGL(2, \overline{K})$ with $h(x_1) = 0$, $h(y_1) = 1$, and $h(y_2) = \infty$. Then ϕ is potentially good if and only if $h \circ \phi \circ h^{-1}$ has good reduction.

If x₁ and x₂ are attracting, then x₁, x₂, x₃ are all distinct, so there is a unique h ∈ PGL(2, K̄) with h(x₁) = 0, h(x₂) = 1, and h(x₃) = ∞.
Then φ is potentially good if and only if h ∘ φ ∘ h⁻¹ has good reduction.

・ロト・(中下・(中下・(中下・))

How Big an Extension Do We Need?

If ϕ does have potential good reduction, the minimal field of definition L of the coordinate change $h \in PGL(2, \overline{K})$ chosen in the theorem could have $[L:K] = d^3 - d$, a priori.

Theorem (RB, 2014)

Let $p = \text{char } k \ge 0$ be the residue characteristic of K. Let $\phi \in K(z)$ with deg $\phi = d \ge 2$. Let

$$B := \max\{ p^{v_p(d)}(d-1), p^{v_p(d-1)}d, d+1 \}.$$

If ϕ has potential good reduction, then ϕ attains good reduction over some field L with $[L:K] \leq B$.

(日) (同) (三) (三) (三) (○) (○)

A Key Case

Suppose that ϕ has potential good reduction, with totally invariant Berkovich point ξ , but that all points of $\mathbb{P}^1(K)$ lie in the same branch U from ξ .

Then this branch/disk U is a fixed component, and hence either attracting or indifferent. Let's assume it's attracting.

Then exactly d of the d + 1 fixed points lie outside U.

If K is complete, the monic polynomial f with those d points as its roots has coefficients in K.

Even if K is not complete, we can show there is a polynomial $f \in K[z]$ with deg f = d and all roots of f outside U.

A Key Case, Continued

Let $q := p^{v_p(d)}$. [Or q := 1 if p = 0.] A further argument shows there is a polynomial $g \in K[z]$ with deg g = q and all roots of g outside U.

Let $\alpha \in \overline{K}$ be a root of g, so that $[K(\alpha) : K] \leq q$.

Note: there are $K(\alpha)$ -rational points in at least two different branches from ξ .

So some $K(\alpha)$ -rational coordinate change moves U to the open disk D(0, r) for some r > 0.

Using the fact that U is attracting, we can show that $r \in |\mathcal{K}(\alpha)^{\times}|^{1/n}$ for some $n \leq d-1$. So there's a field L with $[L : \mathcal{K}(\alpha)] = n$ for which three different branches off ξ contain L-rational points.

One Other Case

Suppose that ϕ has potential good reduction, with totally invariant Berkovich point ξ , and $\mathbb{P}^1(K)$ intersects exactly two branches U and V from ξ , and $\phi(U) = V$ and $\phi(V) = U$.

Let $f \in K[z]$ be the degree-(d + 1) polynomial whose roots are the fixed points of ϕ , and let α be a root of f.

Note that $\alpha \notin U \cup V$.

So $[K(\alpha) : K] \leq d + 1$, and three different branches off ξ contain $K(\alpha)$ -rational points.

(Recall $B := \max\{ p^{\nu_p(d)}(d-1), p^{\nu_p(d-1)}d, d+1 \}.$)

The Bound is Sharp: The p|d Case

Assume K is discretely valued with uniformizer π .

Example. $d = mp^e$ with $p \nmid m$. Let $q := p^e$, and let

$$\phi(z) := z + (\pi^{-1}z^q + 1)^m \in K[z].$$

Then deg $\phi = d$, and the Berkovich point $\xi := \zeta(\pi^{1/q}, |\pi|^{m/(d-1)})$ is totally invariant.

Any coordinate change moving ξ to $\zeta(0,1)$ requires an extension L/K with ramification degree at least q(d-1).

Note, of course, the attracting fixed point at ∞ .

The other d-1 fixed points are indifferent, and they lie in the disk $\overline{D}(\pi^{1/q}, |\pi|^{m/(d-1)})$ corresponding to ξ .

The Bound is Sharp: The p|(d-1) Case

Assume K is discretely valued with uniformizer π .

Example. $d-1 = mp^e$ with $p \nmid m$. Let $q := p^e$, and let

$$\phi(z) := z + rac{\pi^{d-1}}{(z^q - \pi^{q-1})^m} \in K(z).$$

Then deg $\phi = d$, and the Berkovich point $\xi := \zeta(\pi^{(q-1)/q}, |\pi|^{(d-1)/d})$ is totally invariant.

Any coordinate change moving ξ to $\zeta(0, 1)$ requires an extension L/K with ramification degree at least qd.

- The branch U containing P¹(K) is indifferent and contains all of the fixed points (which are all at ∞).
- Another single branch V = D(π^{(q−1)/q}, |π|^{(d−1)/d}) contains all the other d − 1 preimages of the points in U.
- So we need to take preimages of points in V thus a further degree-d extension to realize a third branch.

The Bound is Sharp: The d + 1 Case

Assume K is discretely valued with uniformizer π .

Example. Let

$$\phi(z):=\frac{\pi}{z^d}.$$

Then deg $\phi = d$, and the Berkovich point $\xi := \zeta(0, |\pi^{1/(d+1)}|)$ is totally invariant.

Any coordinate change moving ξ to $\zeta(0, 1)$ requires an extension L/K with ramification degree at least d + 1.

- ► The disk $U := D(0, |\pi^{1/(d+1)}|)$ maps *d*-to-1 onto *V*, the complement of $\overline{D}(0, |\pi^{1/(d+1)}|)$.
- And V maps d-to-1 onto U. So we have a totally invariant attracting 2-cycle of components.
- ► To pick up another branch, we need to adjoin a fixed point, requiring degree d + 1.