Interpreting Euclidean structure in the ample cone for elliptic K3 surfaces

Arthur Baragar

University of Nevada Las Vegas

Happy Birthday Joe! Silvermania, August 13th, 2015

A hyperbolic cross section of an ample cone for a particular K3 surface X with an elliptic fibration with a section.

The accumulation point [E] represents a divisor class in $\operatorname{Pic}(X)$ with $[E]\cdot [E]=0$, an elliptic fibration of X.

Let us unfold this Poincaré ball into the Poincaré upper half space, with [E] the point at infinity \dots

... and we get this, which has a visible Euclidean structure.

The Neron-Tate pairing

• Recall the canonical height on an elliptic curve *E*:

$$\hat{h}(P) = \lim_{n \to \infty} \frac{h([n]P)}{n^2}.$$

The Neron-Tate pairing

Recall the canonical height on an elliptic curve E:

$$\hat{h}(P) = \lim_{n \to \infty} \frac{h([n]P)}{n^2}.$$

And the Neron-Tate pairing:

$$\langle P, Q \rangle = \hat{h}(P+Q) - \hat{h}(P) - \hat{h}(Q),$$

which is a symmetric positive definite bilinear form.

Questions

Question 1

Can we explain the Euclidean structure of the ample cone?

Questions

Question 1

Can we explain the Euclidean structure of the ample cone?

Question 2

Is there a natural underlying geometry to the Neron-Tate pairing?

Result

The translational symmetry corresponds to the additive group on the elliptic curves in the fibration.

Result

The translational symmetry corresponds to the additive group on the elliptic curves in the fibration.

The relative geometry comes from the Neron-Tate pairing.

• The intersection pairing is a symmetric bilinear form with signature $(1, \rho - 1)$.

- The intersection pairing is a symmetric bilinear form with signature $(1, \rho 1)$.
- There is a light cone:

$$\mathcal{L} = \{ \vec{x} \in \text{Pic}(X) \otimes \mathbb{R} : \vec{x} \cdot \vec{x} > 0, D \cdot \vec{x} > 0 \},$$

- The intersection pairing is a symmetric bilinear form with signature $(1, \rho 1)$.
- There is a light cone:

$$\mathcal{L} = \{ \vec{x} \in \text{Pic}(X) \otimes \mathbb{R} : \vec{x} \cdot \vec{x} > 0, D \cdot \vec{x} > 0 \},$$

Let

$$\mathcal{E}_{-2} = \{C : C \text{ is a smooth rational curve on } X\}.$$

- The intersection pairing is a symmetric bilinear form with signature $(1, \rho 1)$.
- There is a light cone:

$$\mathcal{L} = \{ \vec{x} \in \text{Pic}(X) \otimes \mathbb{R} : \vec{x} \cdot \vec{x} > 0, D \cdot \vec{x} > 0 \},$$

Let

$$\mathcal{E}_{-2} = \{C : C \text{ is a smooth rational curve on } X\}.$$

• Note that $C \cdot C = 2g - 2$ (the adjunction formula).

- The intersection pairing is a symmetric bilinear form with signature $(1, \rho 1)$.
- There is a light cone:

$$\mathcal{L} = \{ \vec{x} \in \text{Pic}(X) \otimes \mathbb{R} : \vec{x} \cdot \vec{x} > 0, D \cdot \vec{x} > 0 \},$$

Let

$$\mathcal{E}_{-2} = \{C : C \text{ is a smooth rational curve on } X\}.$$

- Note that $C \cdot C = 2g 2$ (the adjunction formula).
- The ample cone is

$$\mathcal{K} = \{ \vec{x} \in \mathcal{L} : \vec{x} \cdot C > 0 \text{ for all } C \in \mathcal{E}_{-2}. \}$$

• Each plane $C \cdot \vec{x} = 0$ is a face of the ample cone.

- Each plane $C \cdot \vec{x} = 0$ is a face of the ample cone.
- Let J be the intersection matrix. We say T is an isometry if $T^tJT=J$ and $T\mathcal{L}=\mathcal{L}$. We denote by \mathcal{O} the group of isometries.

- Each plane $C \cdot \vec{x} = 0$ is a face of the ample cone.
- Let J be the intersection matrix. We say T is an isometry if $T^tJT=J$ and $T\mathcal{L}=\mathcal{L}$. We denote by \mathcal{O} the group of isometries.
- ullet Let the group of symmetries of ${\mathcal K}$ be

$$\Gamma = \{ T \in \mathcal{O} : T\mathcal{K} = \mathcal{K} \}.$$

- Each plane $C \cdot \vec{x} = 0$ is a face of the ample cone.
- Let J be the intersection matrix. We say T is an isometry if $T^tJT=J$ and $T\mathcal{L}=\mathcal{L}$. We denote by \mathcal{O} the group of isometries.
- ullet Let the group of symmetries of ${\mathcal K}$ be

$$\Gamma = \{ T \in \mathcal{O} : T\mathcal{K} = \mathcal{K} \}.$$

• Γ is large, in the sense that there exists a finite set S such that $\mathcal{E}_{-2} = \Gamma S$.

Symmetries of the ample cone.

Cross sections: An example with $\rho = 3$

A planar cross section ...

Cross sections: An example with $\rho = 3$

A planar cross section ...

... gives this.

Projecting onto the Poincaré disc

• Intersect with a hyperboloid.

Projecting onto the Poincaré disc

- Intersect with a hyperboloid.
- Project onto the unit disc.

Projecting onto the Poincaré disc

The Beltrami-Klein model

The Poincaré model

A hyperbolic cross section for an example with $\rho=4.$

Euclidean structure

Unfolded

Unfolded

- Euclidean structure
- This is true in general:

Unfolded

- Euclidean structure
- This is true in general:
 - $\partial \mathbb{H}^m \setminus \{P\}$ has a Euclidean structure.

Unfolded

- Euclidean structure
- This is true in general:
 - $\partial \mathbb{H}^m \setminus \{P\}$ has a Euclidean structure.
 - \mathcal{O}_P , the stabilizer of P, acts as a group of Euclidean isometries.

• The light cone modulo rays through the origin is $\partial \mathbb{H}^m$.

- The light cone modulo rays through the origin is $\partial \mathbb{H}^m$.
- Take two rays on the cone, representing two points at infinity, and consider their tangent planes.

- The light cone modulo rays through the origin is $\partial \mathbb{H}^m$.
- Take two rays on the cone, representing two points at infinity, and consider their tangent planes.
- Where the tangent planes intersect is a subspace where the intersection pairing is negative-definite.

- The light cone modulo rays through the origin is $\partial \mathbb{H}^m$.
- Take two rays on the cone, representing two points at infinity, and consider their tangent planes.
- Where the tangent planes intersect is a subspace where the intersection pairing is negative-definite.
- Hence yields an inner product and a Euclidean structure.

- The light cone modulo rays through the origin is $\partial \mathbb{H}^m$.
- Take two rays on the cone, representing two points at infinity, and consider their tangent planes.
- Where the tangent planes intersect is a subspace where the intersection pairing is negative-definite.
- Hence yields an inner product and a Euclidean structure.
- The rays represent the origin and the point at infinity.

• This plane (red circle), $D_1 \cdot \vec{x} = 0$, represents a section. I.e. $[E] \cdot D_1 = 1$.

- This plane (red circle), $D_1 \cdot \vec{x} = 0$, represents a section. I.e. $[E] \cdot D_1 = 1$.
- Gives a way of defining zeros O_E on all fibers.

- This plane (red circle), $D_1 \cdot \vec{x} = 0$, represents a section. I.e. $[E] \cdot D_1 = 1$.
- Gives a way of defining zeros O_E on all fibers.
- For $P \in X$, there exists an $E \in [E]$ such that $P \in E$. Define

$$\sigma(P) = -P.$$

- This plane (red circle), $D_1 \cdot \vec{x} = 0$, represents a section. I.e. $[E] \cdot D_1 = 1$.
- Gives a way of defining zeros O_E on all fibers.
- For $P \in X$, there exists an $E \in [E]$ such that $P \in E$. Define

$$\sigma(P) = -P.$$

• σ^* is the -1 map on the Euclidean space, with origin $D_1 + [E]$, the center of the red circle.

• Another section, D_2 .

- Another section, D_2 .
- Gives a way of defining Q_1 on all fibers.

- Another section, D_2 .
- Gives a way of defining Q_1 on all fibers.
- $\sigma_1(P) = Q_1 P$.

- Another section, D_2 .
- Gives a way of defining Q_1 on all fibers.
- $\sigma_1(P) = Q_1 P$.
- σ_1^* is the -1 map centered at the midpoint between the centers of the circles.

- Another section, D_2 .
- Gives a way of defining Q_1 on all fibers.
- $\sigma_1(P) = Q_1 P$.
- σ_1^* is the -1 map centered at the midpoint between the centers of the circles.
- $\tau_1(P) = \sigma_1 \sigma(P) = P + Q_1$.

- Another section, D_2 .
- Gives a way of defining Q_1 on all fibers.
- $\sigma_1(P) = Q_1 P$.
- σ_1^* is the -1 map centered at the midpoint between the centers of the circles.
- $\tau_1(P) = \sigma_1 \sigma(P) = P + Q_1$.
- au_1^* is a translation (red \mapsto green) by $\vec{v}_1 = D_2 D_1$.

- Another section, D_2 .
- Gives a way of defining Q_1 on all fibers.
- $\sigma_1(P) = Q_1 P$.
- σ₁* is the -1 map centered at the midpoint between the centers of the circles.
- $\bullet \ \tau_1(P) = \sigma_1 \sigma(P) = P + Q_1.$
- au_1^* is a translation (red \mapsto green) by $\vec{v}_1 = D_2 D_1$.
- $\tau_1^*(\vec{x}) = \vec{x} + (\vec{x} \cdot \vec{v}_1)[E] + \frac{1}{2}(\vec{x} \cdot [E])(\vec{v}_1 \cdot \vec{v}_1)[E] + (\vec{x} \cdot [E])\vec{v}_1.$

• And another section.

- And another section.
- $\sigma_2(P) = Q_2 P$.

- And another section.
- $\sigma_2(P) = Q_2 P$.
- $\tau_2^* = (\sigma_2 \sigma)^*$ is another translation (red \mapsto blue).

• $\mathcal{D} = \{D_1, ..., D_\rho\}$ a basis of $\operatorname{Pic}(X)$.

- $\mathcal{D} = \{D_1, ..., D_{\rho}\}$ a basis of $\operatorname{Pic}(X)$.
- $\mathcal{D}^* = \{D_1^*, ..., D_{\rho}^*\}$ the dual basis, where $D_i \cdot D_j^* = \delta_{ij}$.

- $\mathcal{D} = \{D_1, ..., D_{\rho}\}$ a basis of $\operatorname{Pic}(X)$.
- $\mathcal{D}^* = \{D_1^*, ..., D_{\rho}^*\}$ the dual basis, where $D_i \cdot D_j^* = \delta_{ij}$.

•

$$\vec{h}: X \to \operatorname{Pic}(X) \otimes \mathbb{R}$$

$$\vec{h}(P) = \sum_{i=1}^{\rho} h_{D_i}(P) D_i^*.$$

- $\mathcal{D} = \{D_1, ..., D_{\rho}\}$ a basis of $\operatorname{Pic}(X)$.
- $\mathcal{D}^* = \{D_1^*, ..., D_{\rho}^*\}$ the dual basis, where $D_i \cdot D_j^* = \delta_{ij}$.

•

$$\vec{h}: X \to \operatorname{Pic}(X) \otimes \mathbb{R}$$

$$\vec{h}(P) = \sum_{i=1}^{\rho} h_{D_i}(P) D_i^*.$$

• Nice properties:

- $\mathcal{D} = \{D_1, ..., D_\rho\}$ a basis of $\operatorname{Pic}(X)$.
- $\mathcal{D}^* = \{D_1^*, ..., D_{\rho}^*\}$ the dual basis, where $D_i \cdot D_j^* = \delta_{ij}$.

•

$$\vec{h}: X \to \operatorname{Pic}(X) \otimes \mathbb{R}$$

$$\vec{h}(P) = \sum_{i=1}^{\rho} h_{D_i}(P) D_i^*.$$

- Nice properties:
 - $h_D(P) = \vec{h}(P) \cdot D + O(1)$.

- $\mathcal{D} = \{D_1, ..., D_{\rho}\}$ a basis of $\operatorname{Pic}(X)$.
- $\mathcal{D}^* = \{D_1^*, ..., D_{\rho}^*\}$ the dual basis, where $D_i \cdot D_j^* = \delta_{ij}$.

•

$$\vec{h}: X \to \operatorname{Pic}(X) \otimes \mathbb{R}$$

$$\vec{h}(P) = \sum_{i=1}^{\rho} h_{D_i}(P) D_i^*.$$

- Nice properties:
 - $h_D(P) = \vec{h}(P) \cdot D + O(1)$.
 - $\vec{h}(\sigma P) = \sigma_* \vec{h}(P) + \vec{O}(1)$.

 $\begin{array}{c} \text{Introduction} \\ \text{The ample cone} \\ \text{Automorphisms of } X \text{ fixing } E \\ \text{Heights and the Neron-Tate pairing} \end{array}$

• For $E \in [E]$ and $P \in E$, $h_{[E]}(P) = h_{[E]}(O_E)$, hence a height for E. We write h(E).

- For $E \in [E]$ and $P \in E$, $h_{[E]}(P) = h_{[E]}(O_E)$, hence a height for E. We write h(E).
- $\vec{h}(\tau_1 P) \cdot [E] = \vec{h}(P) \cdot [E] = h(E)$.

- For $E \in [E]$ and $P \in E$, $h_{[E]}(P) = h_{[E]}(O_E)$, hence a height for E. We write h(E).
- $\vec{h}(\tau_1 P) \cdot [E] = \vec{h}(P) \cdot [E] = h(E)$.
- Thus, the error term satisfies $\vec{O}(1) \cdot [E] = 0$.

- For $E \in [E]$ and $P \in E$, $h_{[E]}(P) = h_{[E]}(O_E)$, hence a height for E. We write h(E).
- $\vec{h}(\tau_1 P) \cdot [E] = \vec{h}(P) \cdot [E] = h(E)$.
- Thus, the error term satisfies $\vec{O}(1) \cdot [E] = 0$.
- Note that $[n]Q_1 = \tau_1^n(O_E)$. We use this to calculate $\hat{h}(Q_1)$:

$$\hat{h}(Q_1) = \frac{1}{2}h(E)(\vec{v}_1 \cdot \vec{v}_1) + \vec{O}(1) \cdot \vec{v}_1.$$

- For $E \in [E]$ and $P \in E$, $h_{[E]}(P) = h_{[E]}(O_E)$, hence a height for E. We write h(E).
- $\vec{h}(\tau_1 P) \cdot [E] = \vec{h}(P) \cdot [E] = h(E)$.
- Thus, the error term satisfies $\vec{O}(1) \cdot [E] = 0$.
- Note that $[n]Q_1 = \tau_1^n(O_E)$. We use this to calculate $\hat{h}(Q_1)$:

$$\hat{h}(Q_1) = \frac{1}{2}h(E)(\vec{v}_1 \cdot \vec{v}_1) + \vec{O}(1) \cdot \vec{v}_1.$$

The specialization theorem!

- For $E \in [E]$ and $P \in E$, $h_{[E]}(P) = h_{[E]}(O_E)$, hence a height for E. We write h(E).
- $\vec{h}(\tau_1 P) \cdot [E] = \vec{h}(P) \cdot [E] = h(E)$.
- Thus, the error term satisfies $\vec{O}(1) \cdot [E] = 0$.
- Note that $[n]Q_1 = \tau_1^n(O_E)$. We use this to calculate $\hat{h}(Q_1)$:

$$\hat{h}(Q_1) = \frac{1}{2}h(E)(\vec{v}_1 \cdot \vec{v}_1) + \vec{O}(1) \cdot \vec{v}_1.$$

- The specialization theorem!
- From this, we get

$$\frac{2}{h(E)}\langle Q_i, Q_j \rangle = \vec{v}_i \cdot \vec{v}_j + O(1/h(E)).$$

- For $E \in [E]$ and $P \in E$, $h_{[E]}(P) = h_{[E]}(O_E)$, hence a height for E. We write h(E).
- $\vec{h}(\tau_1 P) \cdot [E] = \vec{h}(P) \cdot [E] = h(E)$.
- Thus, the error term satisfies $\vec{O}(1) \cdot [E] = 0$.
- Note that $[n]Q_1 = \tau_1^n(O_E)$. We use this to calculate $\hat{h}(Q_1)$:

$$\hat{h}(Q_1) = \frac{1}{2}h(E)(\vec{v}_1 \cdot \vec{v}_1) + \vec{O}(1) \cdot \vec{v}_1.$$

- The specialization theorem!
- From this, we get

$$\frac{2}{h(E)}\langle Q_i, Q_j \rangle = \vec{v}_i \cdot \vec{v}_j + O(1/h(E)).$$

ullet Thus, as E grows in height in the divisor class [E], the Neron-Tate pairing approaches the intersection pairing.

 The geometry of the Neron-Tate pairing, in the limit, is the geometry we see.

- The geometry of the Neron-Tate pairing, in the limit, is the geometry we see.
- This is true in general:
 - X a K3 surface with elliptic fibration [E] with a section
 - and such that $\Gamma_{[E]}$ has a subgroup isomorphic to $\mathbb{Z}^{\rho-2}$.

- The geometry of the Neron-Tate pairing, in the limit, is the geometry we see.
- This is true in general:
 - X a K3 surface with elliptic fibration [E] with a section
 - and such that $\Gamma_{[E]}$ has a subgroup isomorphic to $\mathbb{Z}^{\rho-2}$

Thank you.