Conjugacy and Least Commutative Congruences in Semigroups

Zak Mesyan

University of Colorado Colorado Springs

October 28, 2025

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that

$$s = pr, rp = t.$$

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that

$$s = pr$$
, $rp = t$.

Let \sim_p denote the transitive closure of the relation \sim_p^1 . That is, $s\sim_p t$ if there exist $p_1, r_1, p_2, r_2, \ldots, p_n, r_n \in S^1$ such that

$$s = p_1 r_1, r_1 p_1 = p_2 r_2, r_2 p_2 = p_3 r_3, \ldots, r_{n-1} p_{n-1} = p_n r_n, r_n p_n = t.$$

The relations \sim_p^1 and \sim_p are known as the *primary conjugacy* relations.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that

$$s = pr, rp = t.$$

Let \sim_p denote the transitive closure of the relation \sim_p^1 . That is, $s \sim_p t$ if there exist $p_1, r_1, p_2, r_2, \ldots, p_n, r_n \in S^1$ such that

$$s = p_1 r_1, \ r_1 p_1 = p_2 r_2, \ r_2 p_2 = p_3 r_3, \ldots, \ r_{n-1} p_{n-1} = p_n r_n, \ r_n p_n = t.$$

The relations \sim_p^1 and \sim_p are known as the *primary conjugacy* relations.

■ In any semigroup, \sim_p is an equivalence relation.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that

$$s = pr, rp = t.$$

Let \sim_p denote the transitive closure of the relation \sim_p^1 . That is, $s \sim_p t$ if there exist $p_1, r_1, p_2, r_2, \ldots, p_n, r_n \in S^1$ such that

$$s = p_1 r_1, \ r_1 p_1 = p_2 r_2, \ r_2 p_2 = p_3 r_3, \ldots, \ r_{n-1} p_{n-1} = p_n r_n, \ r_n p_n = t.$$

The relations \sim_p^1 and \sim_p are known as the *primary conjugacy* relations.

- In any semigroup, \sim_p is an equivalence relation.
- \blacksquare In a commutative semigroup, \sim_p is the identity relation.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that

$$s = pr$$
, $rp = t$.

Let \sim_p denote the transitive closure of the relation \sim_p^1 . That is, $s \sim_p t$ if there exist $p_1, r_1, p_2, r_2, \ldots, p_n, r_n \in S^1$ such that

$$s = p_1 r_1, \ r_1 p_1 = p_2 r_2, \ r_2 p_2 = p_3 r_3, \ldots, \ r_{n-1} p_{n-1} = p_n r_n, \ r_n p_n = t.$$

The relations \sim_p^1 and \sim_p are known as the *primary conjugacy* relations.

- In any semigroup, \sim_p is an equivalence relation.
- In a commutative semigroup, \sim_p is the identity relation.
- In the C^* -algebra literature, \sim_p^1 is known as the *Murray-von Neumann* equivalence, and is used on projections in to construct the K_0 -group.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that

$$s = pr, rp = t.$$

Let \sim_p denote the transitive closure of the relation \sim_p^1 . That is, $s \sim_p t$ if there exist $p_1, r_1, p_2, r_2, \ldots, p_n, r_n \in S^1$ such that

$$s = p_1 r_1, r_1 p_1 = p_2 r_2, r_2 p_2 = p_3 r_3, \ldots, r_{n-1} p_{n-1} = p_n r_n, r_n p_n = t.$$

The relations \sim_{p}^{1} and \sim_{p} are known as the *primary conjugacy* relations.

- to an experience of the entire terms of the experience of
- In any semigroup, ~p is an equivalence relation.
 In a commutative semigroup, ~p is the identity relation.
- In the C^* -algebra literature, \sim_p^1 is known as the *Murray-von Neumann* equivalence, and is used on projections in to construct the K_0 -group.
- In symbolic dynamics, \sim_p^1 is called the *elementary shift equivalence*, and \sim_p is called the *strong shift equivalence*.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that

$$s = pr, rp = t.$$

Let \sim_p denote the transitive closure of \sim_p^1 .

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that

$$s = pr, rp = t.$$

Let \sim_p denote the transitive closure of \sim_p^1 .

■ If S is a ring and $p, r, s, t \in S$ are such that s = pr and rp = t, then

$$s-t=pr-rp=[r,p]$$

is an additive commutator.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that

$$s = pr$$
, $rp = t$.

Let \sim_p denote the transitive closure of \sim_p^1 .

■ If S is a ring and $p, r, s, t \in S$ are such that s = pr and rp = t, then

$$s - t = pr - rp = [r, p]$$

is an additive commutator.

■ More generally, if $s \sim_p t$, then s - t is a sum of additive commutators.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that

$$s = pr, rp = t.$$

Let \sim_p denote the transitive closure of \sim_p^1 .

■ If S is a ring and $p, r, s, t \in S$ are such that s = pr and rp = t, then

$$s - t = pr - rp = [r, p]$$

is an additive commutator.

- More generally, if $s \sim_p t$, then s t is a sum of additive commutators.
- Shoda–Albert–Muckenhoupt Theorem: Given a field F, a matrix in $\mathbb{M}_n(F)$ has trace 0 if and only if it is a commutator.

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_p^1 t$ if there exist $p, r \in S^1$ such that

$$s = pr, rp = t.$$

Let \sim_p denote the transitive closure of \sim_p^1 .

$$s-t=pr-rp=[r,p]$$

if and only if $S \sim_{p} T$.

is an additive commutator.

■ If S is a ring and $p, r, s, t \in S$ are such that s = pr and rp = t, then

- More generally, if $s \sim_p t$, then s t is a sum of additive commutators.
- Shoda–Albert–Muckenhoupt Theorem: Given a field F, a matrix in $\mathbb{M}_n(F)$ has trace 0 if and only if it is a commutator.
- It can be shown that for all $S, T \in \mathbb{M}_n(F)$, we have $\operatorname{trace}(S) = \operatorname{trace}(T)$

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that s=pr and rp=t. Let \sim_p denote the transitive closure of \sim_p^1 .

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that s=pr and rp=t. Let \sim_p denote the transitive closure of \sim_p^1 .

■ If S is a group, and $s, t \in S$, then there exist $p, r \in S$ such that s = pr and rp = t if and only if there exist $p, r \in S$ such that $s = ptp^{-1}$ and $t = rsr^{-1}$.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that s=pr and rp=t. Let \sim_p denote the transitive closure of \sim_p^1 .

- If S is a group, and $s, t \in S$, then there exist $p, r \in S$ such that s = pr and rp = t if and only if there exist $p, r \in S$ such that $s = ptp^{-1}$ and $t = rsr^{-1}$.
- So, for a group, \sim_p^1 coincides with the usual conjugacy. Since conjugacy is transitive, also $\sim_p^1 = \sim_p$.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_p^1 t$ if there exist $p,r\in S^1$ such that s=pr and rp=t. Let \sim_p denote the transitive closure of \sim_p^1 .

- If S is a group, and $s, t \in S$, then there exist $p, r \in S$ such that s = pr and rp = t if and only if there exist $p, r \in S$ such that $s = ptp^{-1}$ and $t = rsr^{-1}$.
- So, for a group, \sim_p^1 coincides with the usual conjugacy. Since conjugacy is transitive, also $\sim_p^1 = \sim_p$.
- Class Equation Theorem: Let G be a finite group, and let $g_1, \ldots, g_n \in G$ be representatives of the distinct conjugacy classes of G, not contained in the center Z(G). Then

$$|G| = |Z(G)| + \sum_{i=1}^{n} [G : C(g_i)],$$

where $C(g) = \{h \in G \mid hg = gh\}$ for all $g \in G$.

Definition 1

Let S be a semigroup and $s, t \in S$. Write $s \sim_p^1 t$ if there exist $p, r \in S^1$ such that s = pr and rp = t. Let \sim_p denote the transitive closure of \sim_p^1 .

- If S is a group, and $s, t \in S$, then there exist $p, r \in S$ such that s = prand rp = t if and only if there exist $p, r \in S$ such that $s = ptp^{-1}$ and $t = rsr^{-1}$.
- So, for a group, \sim_p^1 coincides with the usual conjugacy. Since conjugacy is transitive, also $\sim_p^1 = \sim_p$.
- Class Equation Theorem: Let G be a finite group, and let $g_1, \ldots, g_n \in G$ be representatives of the distinct conjugacy classes of G, not contained in the center Z(G). Then

$$|G| = |Z(G)| + \sum_{i=1}^{n} [G : C(g_i)],$$

- where $C(g) = \{h \in G \mid hg = gh\}$ for all $g \in G$.
- For semigroups, \sim_p is the most common generalization of conjugacy.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_o t$ if there exist $p,r\in S^1$ such that

$$sp = pt, rs = tr.$$

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_o t$ if there exist $p,r\in S^1$ such that

$$sp = pt, rs = tr.$$

■ This is another way of rewriting $s = ptp^{-1}$, without explicit reference to inverses.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_o t$ if there exist $p,r\in S^1$ such that

$$sp = pt, rs = tr.$$

- This is another way of rewriting $s = ptp^{-1}$, without explicit reference to inverses.
- \blacksquare For any semigroup, \sim_o is an equivalence relation.

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_o t$ if there exist $p, r \in S^1$ such that

$$sp = pt, rs = tr.$$

- This is another way of rewriting $s = ptp^{-1}$, without explicit reference to inverses.
- For any semigroup, \sim_o is an equivalence relation.
- In a group, either of the above equalities is equivalent to s and t being conjugate, but in an arbitrary semigroup both are needed, to ensure that the relation is symmetric.

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_o t$ if there exist $p, r \in S^1$ such that

$$sp = pt$$
, $rs = tr$.

- This is another way of rewriting $s = ptp^{-1}$, without explicit reference to inverses.
- For any semigroup, \sim_o is an equivalence relation.
- In a group, either of the above equalities is equivalent to *s* and *t* being conjugate, but in an arbitrary semigroup both are needed, to ensure that the relation is symmetric.
- If S has a zero element 0, then $s \cdot 0 = 0 \cdot t$ and $0 \cdot s = t \cdot 0$, for all $s, t \in S$, making the relation \sim_o is universal.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_c t$ if there exist $p\in \mathbb{P}(s)$ and $r\in \mathbb{P}(t)$ such that

$$sp = pt, rs = tr,$$

where $\mathbb{P}(s) = \{ p \in S^1 \mid \forall r \in S^1 \ (rs \neq 0 \implies rsp \neq 0) \}$, for each $s \in S \setminus \{0\}$.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_c t$ if there exist $p\in \mathbb{P}(s)$ and $r\in \mathbb{P}(t)$ such that

$$sp = pt, rs = tr,$$

where $\mathbb{P}(s) = \{ p \in S^1 \mid \forall r \in S^1 \ (rs \neq 0 \implies rsp \neq 0) \}$, for each $s \in S \setminus \{0\}$.

 \blacksquare For any semigroup, \sim_c is an equivalence relation, and reduces to the usual conjugacy in any group.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_c t$ if there exist $p\in \mathbb{P}(s)$ and $r\in \mathbb{P}(t)$ such that

$$sp = pt$$
, $rs = tr$,

where $\mathbb{P}(s)=\{p\in S^1\mid \forall r\in S^1\; (rs\neq 0\implies rsp\neq 0)\}$, for each $s\in S\setminus\{0\}$.

- For any semigroup, \sim_c is an equivalence relation, and reduces to the usual conjugacy in any group.
- lacktriangle This is a version of \sim_o that can be useful even in semigroups with zero.

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_n t$ if there exist $p, r \in S^1$ such that

$$sp = pt, rs = tr, rsp = t, ptr = s.$$

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_n t$ if there exist $p, r \in S^1$ such that

$$sp = pt, rs = tr, rsp = t, ptr = s.$$

The relation \sim_n is known as the *natural conjugacy* relation.

■ For any semigroup, \sim_n is an equivalence relation, and again reduces to the usual conjugacy in any group.

Definition

Let S be a semigroup and $s,t\in S$. Write $s\sim_n t$ if there exist $p,r\in S^1$ such that

$$sp = pt$$
, $rs = tr$, $rsp = t$, $ptr = s$.

- For any semigroup, \sim_n is an equivalence relation, and again reduces to the usual conjugacy in any group.
- Like \sim_c , the relation \sim_n can be useful in semigroups with zero.

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_n t$ if there exist $p, r \in S^1$ such that

$$sp = pt$$
, $rs = tr$, $rsp = t$, $ptr = s$.

- For any semigroup, \sim_n is an equivalence relation, and again reduces to the usual conjugacy in any group.
- Like \sim_c , the relation \sim_n can be useful in semigroups with zero.
- Recall that a semigroup S is an *inverse semigroup* if for each $s \in S$ there is a unique element $s^{-1} \in S$ satisfying $s = ss^{-1}s$ and $s^{-1} = s^{-1}ss^{-1}$.

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_n t$ if there exist $p, r \in S^1$ such that

$$sp = pt$$
, $rs = tr$, $rsp = t$, $ptr = s$.

- For any semigroup, \sim_n is an equivalence relation, and again reduces to the usual conjugacy in any group.
- Like \sim_c , the relation \sim_n can be useful in semigroups with zero.
- Recall that a semigroup S is an *inverse semigroup* if for each $s \in S$ there is a unique element $s^{-1} \in S$ satisfying $s = ss^{-1}s$ and $s^{-1} = s^{-1}ss^{-1}$.
- In any inverse semigroup, \sim_n coincides with the relation \sim_i , defined by $s \sim_i t$ if there exist $p, r \in S^1$ such that

$$p^{-1}sp = t$$
, $ptp^{-1} = s$.

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_n t$ if there exist $p, r \in S^1$ such that

$$sp=pt,\ rs=tr,\ rsp=t,\ ptr=s.$$
 The relation \sim_n is known as the *natural conjugacy* relation.

- lacksquare For any semigroup, \sim_n is an equivalence relation, and again reduces to
- For any semigroup, \sim_n is an equivalence relation, and again reduces to the usual conjugacy in any group.
 - the usual conjugacy in any group.

 Like \sim_c , the relation \sim_n can be useful in semigroups with zero.
 - Recall that a semigroup S is an inverse semigroup if for each s ∈ S there is a unique element s⁻¹ ∈ S satisfying s = ss⁻¹s and s⁻¹ = s⁻¹ss⁻¹.
 In any inverse semigroup, ~_n coincides with the relation ~_i, defined by

$s\sim_i t$ if there exist $p,r\in S^1$ such that $p^{-1}sp=t$. $ptp^{-1}=s$.

The relations \sim_p , \sim_o , and \sim_c generally do not coincide with \sim_i in an inverse semigroup.

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_w t$ if there exist $p, r \in S^1$ and $m \in \mathbb{Z}^+$ such that

$$sp = pt$$
, $rs = tr$, $pr = s^m$, $rp = t^m$.

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_w t$ if there exist $p, r \in S^1$ and $m \in \mathbb{Z}^+$ such that

$$sp = pt$$
, $rs = tr$, $pr = s^m$, $rp = t^m$.

■ This is another variation on \sim_o , that is an equivalence relation on any semigroup, reduces to the usual conjugacy in a group, and is not necessarily universal in a semigroup with zero.

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_w t$ if there exist $p, r \in S^1$ and $m \in \mathbb{Z}^+$ such that

$$sp = pt$$
, $rs = tr$, $pr = s^m$, $rp = t^m$.

- This is another variation on \sim_o , that is an equivalence relation on any semigroup, reduces to the usual conjugacy in a group, and is not necessarily universal in a semigroup with zero.
- The relation \sim_w has been explored in semigroups, but is most famously associated with symbolic dynamics, where it is called the *shift* equivalence.

Definition

Let S be a semigroup and $s, t \in S$. Write $s \sim_w t$ if there exist $p, r \in S^1$ and $m \in \mathbb{Z}^+$ such that

$$sp = pt$$
, $rs = tr$, $pr = s^m$, $rp = t^m$.

- This is another variation on \sim_o , that is an equivalence relation on any semigroup, reduces to the usual conjugacy in a group, and is not necessarily universal in a semigroup with zero.
- The relation \sim_w has been explored in semigroups, but is most famously associated with symbolic dynamics, where it is called the *shift* equivalence.
- In that context, \sim_p^1 ($\exists p, r \in S^1$ (s = pr, rp = t)) is called the *elementary* shift equivalence, and \sim_p (the transitive closure of \sim_p^1) is called the strong shift equivalence.

Symbolic Dynamics

■ In symbolic dynamics one studies *shift spaces*, which consist of certain infinite sequences of symbols from some alphabet, together with transformations on those spaces.

- In symbolic dynamics one studies *shift spaces*, which consist of certain infinite sequences of symbols from some alphabet, together with transformations on those spaces.
- The field arose from attempts to model the motion of various physical objects (e.g., planets and gas molecules), by recording the states of such an object at discrete intervals of time.

- In symbolic dynamics one studies *shift spaces*, which consist of certain infinite sequences of symbols from some alphabet, together with transformations on those spaces.
- The field arose from attempts to model the motion of various physical objects (e.g., planets and gas molecules), by recording the states of such an object at discrete intervals of time.
- Some shift spaces can be represented as directed graphs, and questions about directed graphs can often be translated into questions about (their adjacency) matrices.

- In symbolic dynamics one studies *shift spaces*, which consist of certain infinite sequences of symbols from some alphabet, together with transformations on those spaces.
- The field arose from attempts to model the motion of various physical objects (e.g., planets and gas molecules), by recording the states of such an object at discrete intervals of time.
- Some shift spaces can be represented as directed graphs, and questions about directed graphs can often be translated into questions about (their adjacency) matrices.
- Certain equivalence relations on directed graphs, studied in symbolic dynamics, when translated to rectangular matrices with nonnegative integer entries, correspond precisely to \sim_p^1 and \sim_p .

- In symbolic dynamics one studies *shift spaces*, which consist of certain infinite sequences of symbols from some alphabet, together with transformations on those spaces.
- The field arose from attempts to model the motion of various physical objects (e.g., planets and gas molecules), by recording the states of such an object at discrete intervals of time.
- Some shift spaces can be represented as directed graphs, and questions about directed graphs can often be translated into questions about (their adjacency) matrices.
- Certain equivalence relations on directed graphs, studied in symbolic dynamics, when translated to rectangular matrices with nonnegative integer entries, correspond precisely to \sim_p^1 and \sim_p .
- More explicitly, two matrices S and T (possibly of different sizes), with entries from \mathbb{N} , are elementary shift equivalent if there exist rectangular matrices P and R (over \mathbb{N}) such that S = PR and RP = T.

■ This symbolic dynamics setup can be translated into semigroup language.

- This symbolic dynamics setup can be translated into semigroup language.
- Let $\mathbb{M}_{\infty}(\mathbb{N})$ denote the semigroup of all finitary (i.e., having only finitely many nonzero entries) infinite matrices, indexed by \mathbb{N} , with entries from \mathbb{N} , under the usual matrix multiplication.

- \blacksquare This symbolic dynamics setup can be translated into semigroup language.
- Let $\mathbb{M}_{\infty}(\mathbb{N})$ denote the semigroup of all finitary (i.e., having only finitely many nonzero entries) infinite matrices, indexed by \mathbb{N} , with entries from \mathbb{N} , under the usual matrix multiplication.
- Each rectangular matrix in $\mathbb N$ can be viewed as an element of $\mathbb M_\infty(\mathbb N)$, and then two such matrices S,T are elementary shift equivalent, respectively, strong shift equivalent, if and only if $S \sim_p^1 T$, respectively, $S \sim_p T$, as elements of $\mathbb M_\infty(\mathbb N)$.

- \blacksquare This symbolic dynamics setup can be translated into semigroup language.
- Let $\mathbb{M}_{\infty}(\mathbb{N})$ denote the semigroup of all finitary (i.e., having only finitely many nonzero entries) infinite matrices, indexed by \mathbb{N} , with entries from \mathbb{N} , under the usual matrix multiplication.
- Each rectangular matrix in $\mathbb N$ can be viewed as an element of $\mathbb M_\infty(\mathbb N)$, and then two such matrices S,T are elementary shift equivalent, respectively, strong shift equivalent, if and only if $S \sim_p^1 T$, respectively, $S \sim_p T$, as elements of $\mathbb M_\infty(\mathbb N)$.
- It is very difficult, in general, to determine if two matrices are strong shift equivalent. So shift equivalence (i.e., \sim_w) was introduced as an easier-to-compute alternative.

- \blacksquare This symbolic dynamics setup can be translated into semigroup language.
- Let $\mathbb{M}_{\infty}(\mathbb{N})$ denote the semigroup of all finitary (i.e., having only finitely many nonzero entries) infinite matrices, indexed by \mathbb{N} , with entries from \mathbb{N} , under the usual matrix multiplication.
- Each rectangular matrix in $\mathbb N$ can be viewed as an element of $\mathbb M_\infty(\mathbb N)$, and then two such matrices S,T are elementary shift equivalent, respectively, strong shift equivalent, if and only if $S \sim_p^1 T$, respectively, $S \sim_p T$, as elements of $\mathbb M_\infty(\mathbb N)$.
- It is very difficult, in general, to determine if two matrices are strong shift equivalent. So shift equivalence (i.e., \sim_w) was introduced as an easier-to-compute alternative.
- In any semigroup S, we have $\sim_p \subseteq \sim_w$.

- \blacksquare This symbolic dynamics setup can be translated into semigroup language.
- Let $\mathbb{M}_{\infty}(\mathbb{N})$ denote the semigroup of all finitary (i.e., having only finitely many nonzero entries) infinite matrices, indexed by \mathbb{N} , with entries from \mathbb{N} , under the usual matrix multiplication.
- Each rectangular matrix in $\mathbb N$ can be viewed as an element of $\mathbb M_\infty(\mathbb N)$, and then two such matrices S,T are elementary shift equivalent, respectively, strong shift equivalent, if and only if $S \sim_p^1 T$, respectively, $S \sim_p T$, as elements of $\mathbb M_\infty(\mathbb N)$.
- It is very difficult, in general, to determine if two matrices are strong shift equivalent. So shift equivalence (i.e., \sim_w) was introduced as an easier-to-compute alternative.
- In any semigroup S, we have $\sim_p \subseteq \sim_w$.
- Proof: Suppose that $s, t \in S$ satisfy $s \sim_p^1 t$. Then $s^1 = pr$ and $rp = t^1$ for some $p, r \in S^1$. So sp = prp = pt and rs = rpr = tr. Thus $s \sim_w t$. The inclusion $\sim_p \subseteq \sim_w$ then follows from the transitivity of \sim_w .

Kim/Roush Example

■ The question of whether $\sim_p = \sim_w$ in the symbolic dynamics context (or $\mathbb{M}_{\infty}(\mathbb{N})$) was open for over 20 years.

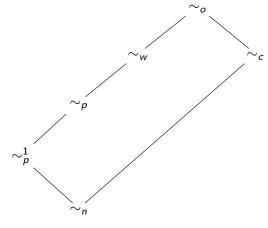
Kim/Roush Example

- The question of whether $\sim_p = \sim_w$ in the symbolic dynamics context (or $\mathbb{M}_{\infty}(\mathbb{N})$) was open for over 20 years.
- In 1997, Kim and Roush showed that $\sim_p \neq \sim_w$ in $\mathbb{M}_{\infty}(\mathbb{N})$.

Kim/Roush Example

- The question of whether $\sim_p = \sim_w$ in the symbolic dynamics context (or $\mathbb{M}_{\infty}(\mathbb{N})$) was open for over 20 years.
- In 1997, Kim and Roush showed that $\sim_p \neq \sim_w$ in $\mathbb{M}_{\infty}(\mathbb{N})$.
- Specifically, $S \sim_w T$, but $S \nsim_p T$, for the matrices below:

Comparison of Semigroup Conjugacy Relations



$$s \sim_{o} t \iff \exists p, r \in S^{1} \ (sp = pt, rs = tr)$$

$$s \sim_{w} t \iff \exists p, r \in S^{1} \ \exists m \in \mathbb{Z}^{+} \ (sp = pt, rs = tr, pr = s^{m}, rp = t^{m})$$

$$s \sim_{c} t \iff \exists p \in \mathbb{P}(s) \ \exists r \in \mathbb{P}(t) \ (sp = pt, rs = tr)$$

$$s \sim_{p}^{1} t \iff \exists p, r \in S^{1} \ (s = pr, rp = t)$$

$$s \sim_{n} t \iff \exists p, r \in S^{1} \ (sp = pt, rs = tr, rsp = t, ptr = s)$$

Definition

such that

Let S be a semigroup and $s, t \in S$. Write $s \sim_s^1 t$ if there exist $n \in \mathbb{Z}^+$, $p_1, \ldots, p_n \in S^1$, and $f \in \mathcal{S}(\{1, \ldots, n\})$, the symmetric group on $\{1, \ldots, n\}$,

$$s = p_1 \cdots p_n, \ p_{f(1)} \cdots p_{f(n)} = t.$$

Definition

such that

Let S be a semigroup and $s, t \in S$. Write $s \sim_s^1 t$ if there exist $n \in \mathbb{Z}^+$, $p_1, \ldots, p_n \in S^1$, and $f \in \mathcal{S}(\{1, \ldots, n\})$, the symmetric group on $\{1, \ldots, n\}$,

$$s = p_1 \cdots p_n, \ p_{f(1)} \cdots p_{f(n)} = t.$$

Let \sim_s denote the transitive closure of the relation \sim_s^1 . We refer to \sim_s as the *symmetric* or *permutation* (*conjugacy*) relation.

Definition

such that

Let S be a semigroup and $s, t \in S$. Write $s \sim_s^1 t$ if there exist $n \in \mathbb{Z}^+$, $p_1, \ldots, p_n \in S^1$, and $f \in \mathcal{S}(\{1, \ldots, n\})$, the symmetric group on $\{1, \ldots, n\}$,

$$s = p_1 \cdots p_n, \ p_{f(1)} \cdots p_{f(n)} = t.$$

Let \sim_s denote the transitive closure of the relation \sim_s^1 . We refer to \sim_s as the symmetric or permutation (conjugacy) relation.

■ Leroy/Nasernejad (2024) introduced analogous relations for rings.

Definition

such that

Let S be a semigroup and $s, t \in S$. Write $s \sim_s^1 t$ if there exist $n \in \mathbb{Z}^+$, $p_1, \ldots, p_n \in S^1$, and $f \in \mathcal{S}(\{1, \ldots, n\})$, the symmetric group on $\{1, \ldots, n\}$,

$$s = p_1 \cdots p_n, \ p_{f(1)} \cdots p_{f(n)} = t.$$

Let \sim_s denote the transitive closure of the relation \sim_s^1 . We refer to \sim_s as the symmetric or permutation (conjugacy) relation.

- Leroy/Nasernejad (2024) introduced analogous relations for rings.
- For example, Leroy/Nasernejad show that for any field F and any $S, T \in \mathbb{M}_n(F)$, we have $S \sim_s T$ if and only if $\det(S) = \det(T)$.

Definition

such that

Let S be a semigroup and $s, t \in S$. Write $s \sim_s^1 t$ if there exist $n \in \mathbb{Z}^+$, $p_1, \ldots, p_n \in S^1$, and $f \in \mathcal{S}(\{1, \ldots, n\})$, the symmetric group on $\{1, \ldots, n\}$,

$$s = p_1 \cdots p_n, \ p_{f(1)} \cdots p_{f(n)} = t.$$

Let \sim_s denote the transitive closure of the relation \sim_s^1 . We refer to \sim_s as the symmetric or permutation (conjugacy) relation.

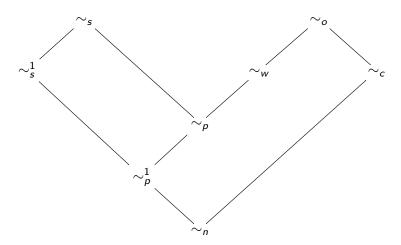
- Leroy/Nasernejad (2024) introduced analogous relations for rings.
- For example, Leroy/Nasernejad show that for any field F and any $S, T \in \mathbb{M}_n(F)$, we have $S \sim_s T$ if and only if $\det(S) = \det(T)$.
- Somewhat similar relations on semigroups have been studied before (e.g., Clifford/Cummings/Teymouri (2011), Piochi (1987)).

 $\blacksquare \ \, \mathsf{Clearly,} \,\, \sim_p^1 \,\subseteq\, \sim_s^1 \,\subseteq\, \sim_s \, \mathsf{and} \,\, \sim_p^1 \,\subseteq\, \sim_p \,\subseteq\, \sim_s \, \mathsf{in any semigroup}.$

- Clearly, $\sim_p^1 \subseteq \sim_s^1 \subseteq \sim_s$ and $\sim_p^1 \subseteq \sim_p \subseteq \sim_s$ in any semigroup.
- There are semigroups where $\sim_p \neq \sim_s$, $\sim_p^1 \neq \sim_s^1$, $\sim_s^1 \neq \sim_s$, $\sim_s^1 \nsubseteq \sim_p$, and $\sim_p \nsubseteq \sim_s^1$.

- Clearly, $\sim_p^1 \subseteq \sim_s^1 \subseteq \sim_s$ and $\sim_p^1 \subseteq \sim_p \subseteq \sim_s$ in any semigroup.
- There are semigroups where $\sim_p \neq \sim_s$, $\sim_p^1 \neq \sim_s^1$, $\sim_s^1 \neq \sim_s$, $\sim_s^1 \nsubseteq \sim_p$, and $\sim_p \nsubseteq \sim_s^1$.
- Also, generally, \sim_s^1 and \sim_s are not comparable to \sim_o , \sim_w , and \sim_c .

- Clearly, $\sim_p^1 \subseteq \sim_s^1 \subseteq \sim_s$ and $\sim_p^1 \subseteq \sim_p \subseteq \sim_s$ in any semigroup.
- There are semigroups where $\sim_p \neq \sim_s$, $\sim_p^1 \neq \sim_s^1$, $\sim_s^1 \neq \sim_s$, $\sim_s^1 \nsubseteq \sim_p$, and $\sim_p \nsubseteq \sim_s^1$.
- Also, generally, \sim_s^1 and \sim_s are not comparable to \sim_o , \sim_w , and \sim_c .



■ Recall that given a semigroup S, an equivalence relation $\rho \subseteq S \times S$ is a congruence if $s\rho t$ implies that $(sr)\rho(tr)$ and $(rs)\rho(rt)$ for all $r, s, t \in S$.

- Recall that given a semigroup S, an equivalence relation $\rho \subseteq S \times S$ is a congruence if $s\rho t$ implies that $(sr)\rho(tr)$ and $(rs)\rho(rt)$ for all $r,s,t\in S$.
- lacksquare If $\phi:S o T$ is a homomorphism of semigroups, then

$$\ker(\phi) = \{(s, t) \in S \times S \mid \phi(s) = \phi(t)\}$$

is a congruence on S, and there is an isomorphism $S/\ker(\phi) \to \phi(S)$.

- Recall that given a semigroup S, an equivalence relation $\rho \subseteq S \times S$ is a congruence if $s\rho t$ implies that $(sr)\rho(tr)$ and $(rs)\rho(rt)$ for all $r, s, t \in S$.
- If $\phi: S \to T$ is a homomorphism of semigroups, then

$$\ker(\phi) = \{(s,t) \in \mathcal{S} \times \mathcal{S} \mid \phi(s) = \phi(t)\}$$

is a congruence on S, and there is an isomorphism $S/\ker(\phi) \to \phi(S)$.

Theorem

Let S be a semigroup, and let \approx denote any of $\sim_p^1, \sim_p, \sim_s^1$. Then \sim_s is the congruence generated by \approx , and it is the least congruence ρ on S such that S/ρ is commutative.

- Recall that given a semigroup S, an equivalence relation $\rho \subseteq S \times S$ is a congruence if $s\rho t$ implies that $(sr)\rho(tr)$ and $(rs)\rho(rt)$ for all $r, s, t \in S$.
- lacksquare If $\phi: S o T$ is a homomorphism of semigroups, then

$$\mathsf{ker}(\phi) = \{(s,t) \in \mathcal{S} imes \mathcal{S} \mid \phi(s) = \phi(t)\}$$

is a congruence on S, and there is an isomorphism $S/\ker(\phi) \to \phi(S)$.

Theorem

Let S be a semigroup, and let \approx denote any of $\sim_p^1, \sim_p, \sim_s^1$. Then \sim_s is the congruence generated by \approx , and it is the least congruence ρ on S such that S/ρ is commutative.

Proposition

Let S be the free semigroup on a nonempty set Ω , and \approx a reflexive symmetric relation on S such that $\approx \subseteq \sim_s$. Then the congruence generated by \approx is \sim_s if and only if $\alpha\beta\approx\beta\alpha$ for all $\alpha,\beta\in\Omega$.

Proof of Theorem

■ Suppose that $s \sim_s^1 t$ for some $s, t \in S$, and let $r = p_{n+1} \in S$. Write $s = p_1 \cdots p_n$, $t = p_{f(1)} \cdots p_{f(n)}$ for some $p_1, \ldots, p_n \in S^1$ and $f \in \mathcal{S}(\{1, \ldots, n\})$. Then $sr = p_1 \cdots p_n p_{n+1}$ and $tr = p_{f(1)} \cdots p_{f(n)} p_{n+1}$, and so $sr \sim_s^1 tr$. Analogously, $rs \sim_s^1 rt$.

Proof of Theorem

- Suppose that $s \sim_s^1 t$ for some $s, t \in S$, and let $r = p_{n+1} \in S$. Write $s = p_1 \cdots p_n$, $t = p_{f(1)} \cdots p_{f(n)}$ for some $p_1, \ldots, p_n \in S^1$ and $f \in \mathcal{S}(\{1, \ldots, n\})$. Then $sr = p_1 \cdots p_n p_{n+1}$ and $tr = p_{f(1)} \cdots p_{f(n)} p_{n+1}$, and so $sr \sim_s^1 tr$. Analogously, $rs \sim_s^1 rt$.
- Now suppose that $s \sim_s t$ for some $s, t \in S$. Then there exist $q_1, \ldots, q_m \in S$ such that

$$s=q_1\sim_s^1q_2\sim_s^1\cdots\sim_s^1q_m=t.$$

By the above, $sr \sim_s tr$ and $rs \sim_s rt$, for all $r \in S$. Since \sim_s is clearly an equivalence relation, it is therefore a congruence.

Proof of Theorem

- Suppose that $s \sim_s^1 t$ for some $s, t \in S$, and let $r = p_{n+1} \in S$. Write $s = p_1 \cdots p_n$, $t = p_{f(1)} \cdots p_{f(n)}$ for some $p_1, \ldots, p_n \in S^1$ and $f \in S(\{1, \ldots, n\})$. Then $sr = p_1 \cdots p_n p_{n+1}$ and $tr = p_{f(1)} \cdots p_{f(n)} p_{n+1}$, and so $sr \sim_s^1 tr$. Analogously, $rs \sim_s^1 rt$.
- Now suppose that $s \sim_s t$ for some $s, t \in S$. Then there exist $q_1, \ldots, q_m \in S$ such that

$$s=q_1\sim_s^1q_2\sim_s^1\cdots\sim_s^1q_m=t.$$

By the above, $sr \sim_s tr$ and $rs \sim_s rt$, for all $r \in S$. Since \sim_s is clearly an equivalence relation, it is therefore a congruence.

■ Let ρ be a congruence on S such that $\sim_p^1 \subseteq \rho$, and let $[s]_\rho$ denote the ρ -congruence class of $s \in S$. Then for all $s, t \in S$ we have $st \sim_p^1 ts$, and hence

$$[s]_{
ho}[t]_{
ho} = [st]_{
ho} = [ts]_{
ho} = [t]_{
ho}[s]_{
ho}.$$

Therefore S/ρ is commutative. In particular, S/\sim_s is commutative.

Proof of Theorem (Continued)

■ Suppose that ρ is a congruence on S such that S/ρ is commutative. Then for all $p_1, \ldots, p_n \in S^1$ and $f \in S(\{1, \ldots, n\})$,

$$[p_1\cdots p_n]_{
ho}=[p_1]_{
ho}\cdots[p_n]_{
ho}=[p_{f(1)}]_{
ho}\cdots[p_{f(n)}]_{
ho}=[p_{f(1)}\cdots p_{f(n)}]_{
ho},$$

i.e., $(p_1 \cdots p_n) \rho(p_{f(1)} \cdots p_{f(n)})$. Therefore $\sim_s^1 \subseteq \rho$, and since ρ is transitive, it follows that $\sim_s \subseteq \rho$. Hence \sim_s is the least congruence on S that produces a commutative quotient semigroup.

Proof of Theorem (Continued)

■ Suppose that ρ is a congruence on S such that S/ρ is commutative. Then for all $p_1, \ldots, p_n \in S^1$ and $f \in S(\{1, \ldots, n\})$,

$$[p_1\cdots p_n]_{\rho}=[p_1]_{\rho}\cdots [p_n]_{\rho}=[p_{f(1)}]_{\rho}\cdots [p_{f(n)}]_{\rho}=[p_{f(1)}\cdots p_{f(n)}]_{\rho},$$

- i.e., $(p_1 \cdots p_n) \rho(p_{f(1)} \cdots p_{f(n)})$. Therefore $\sim_s^1 \subseteq \rho$, and since ρ is transitive, it follows that $\sim_s \subseteq \rho$. Hence \sim_s is the least congruence on S that produces a commutative quotient semigroup.
- Finally, let ρ denote the congruence on S generated by \sim_p^1 , \sim_p , or \sim_s^1 . Since $\sim_p^1 \subseteq \rho$, the quotient S/ρ is commutative, and so $\sim_s \subseteq \rho$. But since \sim_p^1 , \sim_p , $\sim_s^1 \subseteq \sim_s$, we have $\sim_s = \rho$.

Corollary

1 A semigroup S is commutative if and only if \sim_s (or \sim_p^1 , or \sim_p , or \sim_s^1) is the identity relation on S.

Corollary

- **1** A semigroup S is commutative if and only if \sim_s (or \sim_p^1 , or \sim_p , or \sim_s^1) is the identity relation on S.
- 2 A semigroup S has no nontrivial commutative homomorphic images if and only if \sim_s is the universal relation on S.

Corollary

- **1** A semigroup S is commutative if and only if \sim_s (or \sim_p^1 , or \sim_p , or \sim_s^1) is the identity relation on S.
- 2 A semigroup S has no nontrivial commutative homomorphic images if and only if \sim_s is the universal relation on S.

Proposition (Generalizing Leroy/Nasernejad)

Let S be a semigroup and $s,t\in S$. Write $s\sim^1_*t$ if there exist $p_1,p_2,p_3\in S^1$ such that

$$s = p_1 p_2 p_3, p_1 p_3 p_2 = t,$$

and denote by \sim_* the transitive closure of the relation \sim_*^1 . Then $\sim_* = \sim_s$.

Permutation Conjugacy in Groups

Corollary

Let G be a group and $s, t \in G$. Then $st^{-1} \in [G, G]$ (the multiplicative commutator subgroup) if and only if $s \sim_s^1 t$ if and only if $s \sim_s t$.

Permutation Conjugacy in Groups

Corollary

Let G be a group and $s, t \in G$. Then $st^{-1} \in [G, G]$ (the multiplicative commutator subgroup) if and only if $s \sim_s^1 t$ if and only if $s \sim_s t$.

Proof.

Suppose that $st^{-1} \in [G, G]$, and write

$$st^{-1} = p_1 r_1 p_1^{-1} r_1^{-1} \cdots p_n r_n p_n^{-1} r_n^{-1}$$

for some $p_i, r_i \in G$. Then

$$s = (p_1 r_1 p_1^{-1} r_1^{-1} \cdots p_n r_n p_n^{-1} r_n^{-1})t, \ t = (p_1 p_1^{-1})(r_1 r_1^{-1}) \cdots (p_n p_n^{-1})(r_n r_n^{-1})t,$$

showing that $s \sim_s^1 t$.

Permutation Conjugacy in Groups

Corollary

Let G be a group and $s, t \in G$. Then $st^{-1} \in [G, G]$ (the multiplicative commutator subgroup) if and only if $s \sim_s^1 t$ if and only if $s \sim_s t$.

Proof.

Suppose that $st^{-1} \in [G, G]$, and write

$$st^{-1} = p_1 r_1 p_1^{-1} r_1^{-1} \cdots p_n r_n p_n^{-1} r_n^{-1}$$

for some $p_i, r_i \in G$. Then

$$s = (p_1 r_1 p_1^{-1} r_1^{-1} \cdots p_n r_n p_n^{-1} r_n^{-1})t, \ t = (p_1 p_1^{-1})(r_1 r_1^{-1}) \cdots (p_n p_n^{-1})(r_n r_n^{-1})t,$$

showing that $s \sim_s^1 t$. Clearly, $s \sim_s^1 t$ implies that $s \sim_s t$.

Permutation Conjugacy in Groups

Corollary

Let G be a group and $s, t \in G$. Then $st^{-1} \in [G, G]$ (the multiplicative commutator subgroup) if and only if $s \sim_s^1 t$ if and only if $s \sim_s t$.

Proof.

 $st^{-1} \in [G, G].$

Suppose that $st^{-1} \in [G, G]$, and write

$$st^{-1} = p_1 r_1 p_1^{-1} r_1^{-1} \cdots p_n r_n p_n^{-1} r_n^{-1}$$

for some $p_i, r_i \in G$. Then

$$s = (p_1 r_1 p_1^{-1} r_1^{-1} \cdots p_n r_n p_n^{-1} r_n^{-1}) t, \ t = (p_1 p_1^{-1}) (r_1 r_1^{-1}) \cdots (p_n p_n^{-1}) (r_n r_n^{-1}) t,$$

change that a 14 Clearly a 14 invaling that a

showing that $s \sim_s^1 t$. Clearly, $s \sim_s^1 t$ implies that $s \sim_s t$. Now, let $\phi: G \to G/[G,G]$ be the natural projection. Since G/[G,G] is commutative, $\sim_s \subseteq \ker(\phi) = [G,G]$, by the theorem. That is, if $s \sim_s t$, then

Permutation Conjugacy in Rings

Corollary

Let R be a ring, let I_1 be the additive subgroup of R generated by $\{s-t\mid s,t\in R,s\sim_s^1t\}$, and let I_2 be the additive subgroup of R generated by $\{s-t\mid s,t\in R,s\sim_st\}$. Then $I_1=I_2=[R,R]$, where [R,R] is the ideal of R generated by the additive commutators ([p,r]=pr-rp).

Permutation Conjugacy in Rings

Corollary

Let R be a ring, let I_1 be the additive subgroup of R generated by $\{s-t\mid s,t\in R,s\sim_s^1t\}$, and let I_2 be the additive subgroup of R generated by $\{s-t\mid s,t\in R,s\sim_s t\}$. Then $I_1=I_2=[R,R]$, where [R,R] is the ideal

of R generated by the additive commutators ([p, r] = pr - rp).

Proof.

R/[R,R] is a commutative ring, and hence a commutative semigroup. Thus, by the theorem, if $s \sim_s t$, for some $s, t \in R$, then $s - t \in [R, R]$. In particular, $I_1 \subseteq I_2 \subseteq [R, R]$.

Permutation Conjugacy in Rings

Corollary

Let R be a ring, let I_1 be the additive subgroup of R generated by $\{s-t\mid s,t\in R,s\sim_s^1t\}$, and let I_2 be the additive subgroup of R generated by $\{s-t \mid s,t \in R, s \sim_s t\}$. Then $I_1 = I_2 = [R,R]$, where [R,R] is the ideal

by the theorem, if $s \sim_s t$, for some $s, t \in R$, then $s - t \in [R, R]$. In particular,

Proof.

R/[R,R] is a commutative ring, and hence a commutative semigroup. Thus,

 $I_1 \subseteq I_2 \subseteq [R, R]$. As an additive group, [R, R] is generated by elements of the form

of R generated by the additive commutators ([p, r] = pr - rp).

q(rs - sr)t = qrst - qsrt.

Since
$$qrst \sim_s^1 qsrt$$
, we have $[R, R] \subseteq I_1$, and so $[R, R] = I_1 = I_2$.

Proposition

Let S be a semigroup, $T\subseteq S$, and $\overline{T}\subseteq S$ the closure of T under \sim_s .

Proposition

Let S be a semigroup, $T \subseteq S$, and $\overline{T} \subseteq S$ the closure of T under \sim_s .

- $\overline{T} = \overline{\overline{T}}.$
- **2** If T is a subsemigroup of S, then so is \overline{T} .

Proposition

Let S be a semigroup, $T \subseteq S$, and $\overline{T} \subseteq S$ the closure of T under \sim_s .

3 If T is a left, respectively right, respectively two-sided, ideal of S, then T

 $T = \overline{T}$

is a two-sided ideal.

- If T is a subsemigroup of S, then so is T.

Proposition

Let S be a semigroup, $T \subseteq S$, and $\overline{T} \subseteq S$ the closure of T under \sim_s .

1 $\overline{T} = \overline{\overline{T}}$.

so is T.

- **2** If T is a subsemigroup of S, then so is \overline{T} .
- 2 If T is a subsemigroup of S, then so is T. 3 If T is a left, respectively right, respectively two-sided, ideal of S, then \overline{T}
- is a two-sided ideal. 4 If S is an inverse semigroup, and \mathcal{T} is an inverse subsemigroup of S, then

Proposition

Let S be a semigroup, $T \subseteq S$, and $\overline{T} \subseteq S$ the closure of T under \sim_s .

 $\overline{T} = \overline{\overline{T}}.$

so is T.

- **2** If T is a subsemigroup of S, then so is \overline{T} .
- 2 If I is a subsemigroup of S, then so is I
- 3 If T is a left, respectively right, respectively two-sided, ideal of S, then T is a two-sided ideal.
 4 If S is an inverse semigroup, and T is an inverse subsemigroup of S, then
- 5 If S is a group, and T is a subgroup of S, then \overline{T} is the (normal) subgroup of S generated by T and [S,S].

For a set Ω , denote by $\mathcal{T}(\Omega)$ the monoid of all functions $\Omega \to \Omega$, by $\mathcal{PT}(\Omega)$ the monoid of all partial functions $\Omega \to \Omega$, and by $\mathcal{I}(\Omega)$ the symmetric inverse monoid on Ω .

the monoid of all partial functions $\Omega \to \Omega$, and by $\mathcal{I}(\Omega)$ the symmetric inverse monoid on Ω . Definition

For a set Ω , denote by $\mathcal{T}(\Omega)$ the monoid of all functions $\Omega \to \Omega$, by $\mathcal{PT}(\Omega)$

Let Ω be a set, $\Sigma \subseteq \Omega$ nonempty, and $s \in \mathcal{T}(\Omega)$. We say that Σ is a connected component or cycle of s if the following conditions are satisfied: (i) $s(\alpha) \in \Sigma$ if and only if $\alpha \in \Sigma$, for all $\alpha \in \Omega$;

description of \sim_p in $\mathcal{I}(\Omega)$ for countable Ω .

(ii) Σ has no proper nonempty subset satisfying (i).

Theorem (Kudryavtseva/Mazorchuk (2007)) Let Ω be a finite set, $S \in \{\mathcal{T}(\Omega), \mathcal{PT}(\Omega), \mathcal{I}(\Omega)\}$, and $s, t \in S$. For each $n \leq |\Omega|$, let l_n^s denote the number of cycles of s of size n, and let

 $\operatorname{ct}(s) = (I_1^s, \dots, I_{|\Omega|}^s)$. Then $s \sim_p t$ if and only if $\operatorname{ct}(s) = \operatorname{ct}(t)$.

Kudryavtseva and Mazorchuk also gave a (much more complicated)

Proposition

Let Ω be a set. If Ω is infinite, then \sim_s is the universal relation on $\mathcal{T}(\Omega)$, $\mathcal{PT}(\Omega)$, and $\mathcal{I}(\Omega)$. If Ω is finite, then in each of these semigroups there are three \sim_s -congruence classes–consisting of even permutations of Ω , odd permutations of Ω , and (partial) transformations with image of size $< |\Omega|$.

Proposition

Let Ω be a set. If Ω is infinite, then \sim_s is the universal relation on $\mathcal{T}(\Omega)$, $\mathcal{PT}(\Omega)$, and $\mathcal{I}(\Omega)$. If Ω is finite, then in each of these semigroups there are three \sim_s -congruence classes—consisting of even permutations of Ω , odd permutations of Ω , and (partial) transformations with image of size $< |\Omega|$.

Proof Summary for $\mathcal{T}(\Omega)$: Finite Case.

■ Suppose that Ω is finite, and consider $s,t \in \mathcal{S}(\Omega)$ (the permutation group of Ω) such that $st^{-1} \in [\mathcal{S}(\Omega),\mathcal{S}(\Omega)]$ (which is the alternating subgroup, by Ore's theorem (1951)). Then $s \sim_s t$.

Proposition

Let Ω be a set. If Ω is infinite, then \sim_s is the universal relation on $\mathcal{T}(\Omega)$, $\mathcal{PT}(\Omega)$, and $\mathcal{I}(\Omega)$. If Ω is finite, then in each of these semigroups there are three \sim_s -congruence classes–consisting of even permutations of Ω , odd permutations of Ω , and (partial) transformations with image of size $< |\Omega|$.

Proof Summary for $\mathcal{T}(\Omega)$: Finite Case.

- Suppose that Ω is finite, and consider $s,t\in\mathcal{S}(\Omega)$ (the permutation group of Ω) such that $st^{-1}\in[\mathcal{S}(\Omega),\mathcal{S}(\Omega)]$ (which is the alternating subgroup, by Ore's theorem (1951)). Then $s\sim_s t$.
- According to Mal'cev's theorem (1979), there is only one non-universal congruence \approx on $\mathcal{T}(\Omega)$ that relates all the odd permutations and all the even permutations (which also relates all the transformations in $\mathcal{T}(\Omega) \setminus \mathcal{S}(\Omega)$). So $\approx \subseteq \sim_s$.

Proposition

Let Ω be a set. If Ω is infinite, then \sim_s is the universal relation on $\mathcal{T}(\Omega)$, $\mathcal{PT}(\Omega)$, and $\mathcal{I}(\Omega)$. If Ω is finite, then in each of these semigroups there are three \sim_s -congruence classes–consisting of even permutations of Ω , odd permutations of Ω , and (partial) transformations with image of size $< |\Omega|$.

Proof Summary for $\mathcal{T}(\Omega)$: Finite Case.

- Suppose that Ω is finite, and consider $s,t\in\mathcal{S}(\Omega)$ (the permutation group of Ω) such that $st^{-1}\in[\mathcal{S}(\Omega),\mathcal{S}(\Omega)]$ (which is the alternating subgroup, by Ore's theorem (1951)). Then $s\sim_s t$.
- According to Mal'cev's theorem (1979), there is only one non-universal congruence \approx on $\mathcal{T}(\Omega)$ that relates all the odd permutations and all the even permutations (which also relates all the transformations in $\mathcal{T}(\Omega) \setminus \mathcal{S}(\Omega)$). So $\approx \subseteq \sim_s$.
- But $\mathcal{T}(\Omega)/\approx$ is commutative, and so $\sim_s \subseteq \approx$. Hence $\sim_s = \approx$.

Proposition

Let Ω be a set. If Ω is infinite, then \sim_s is the universal relation on $\mathcal{T}(\Omega)$, $\mathcal{PT}(\Omega)$, and $\mathcal{I}(\Omega)$. If Ω is finite, then in each of these semigroups there are three \sim_s -congruence classes–consisting of even permutations of Ω , odd permutations of Ω , and (partial) transformations with image of size $< |\Omega|$.

Proof Summary for $\mathcal{T}(\Omega)$: Infinite Case.

Suppose that Ω is infinite, and let $p \in \mathcal{T}(\Omega)$. Then p = sqt, for some $s, t \in \mathcal{T}(\Omega)$ such that st = 1, and some $q \in \mathcal{S}(\Omega)$.

Proposition

Let Ω be a set. If Ω is infinite, then \sim_s is the universal relation on $\mathcal{T}(\Omega)$, $\mathcal{PT}(\Omega)$, and $\mathcal{I}(\Omega)$. If Ω is finite, then in each of these semigroups there are three \sim_s -congruence classes–consisting of even permutations of Ω , odd permutations of Ω , and (partial) transformations with image of size $< |\Omega|$.

Proof Summary for $\mathcal{T}(\Omega)$: Infinite Case.

- Suppose that Ω is infinite, and let $p \in \mathcal{T}(\Omega)$. Then p = sqt, for some $s, t \in \mathcal{T}(\Omega)$ such that st = 1, and some $q \in \mathcal{S}(\Omega)$.
- By Ore's theorem (1951), there exist $r_1, r_2 \in \mathcal{S}(\Omega)$ such that $q = r_1 r_2 r_1^{-1} r_2^{-1}$, and so

$$p = sqt = s(r_1r_2r_1^{-1}r_2^{-1})t \sim_s (st)(r_1r_1^{-1})(r_2r_2^{-1}) = 1.$$

Proposition

Let Ω be a set. If Ω is infinite, then \sim_s is the universal relation on $\mathcal{T}(\Omega)$, $\mathcal{PT}(\Omega)$, and $\mathcal{I}(\Omega)$. If Ω is finite, then in each of these semigroups there are three \sim_s -congruence classes–consisting of even permutations of Ω , odd permutations of Ω , and (partial) transformations with image of size $< |\Omega|$.

Proof Summary for $\mathcal{T}(\Omega)$: Infinite Case.

- Suppose that Ω is infinite, and let $p \in \mathcal{T}(\Omega)$. Then p = sqt, for some $s, t \in \mathcal{T}(\Omega)$ such that st = 1, and some $q \in \mathcal{S}(\Omega)$.
- By Ore's theorem (1951), there exist $r_1, r_2 \in \mathcal{S}(\Omega)$ such that $q = r_1 r_2 r_1^{-1} r_2^{-1}$, and so

$$p = sqt = s(r_1r_2r_1^{-1}r_2^{-1})t \sim_s (st)(r_1r_1^{-1})(r_2r_2^{-1}) = 1.$$

■ Thus the \sim_s -equivalence class of 1 is all of $\mathcal{T}(\Omega)$.

Injective Transformation Semigroup

For a set Ω , denote by $\mathcal{J}(\Omega)$ the monoid of all injective functions $\Omega \to \Omega$.

Injective Transformation Semigroup

For a set Ω , denote by $\mathcal{J}(\Omega)$ the monoid of all injective functions $\Omega \to \Omega$.

Theorem (Generalizing Araújo/Kinyon/Konieczny/Malheiro)

- Let Ω be a set and $s,t\in\mathcal{J}(\Omega)$. Then the following are equivalent.
 - et 12 be a set and $s, t \in \mathcal{J}$ (12). Then the following are equivalent.
 - $\mathbf{1} \ s \sim_p t.$
- $2 s \sim_p^1 t.$
 - $s \sim_n t$.
 - 4 $s = ptp^{-1}$ for some $p \in \mathcal{S}(\Omega)$.
- 5 There is a bijection between the set of cycles of s and the set of cycles of t, that sends each cycle to one of the same type.

Injective Transformation Semigroup

For a set Ω , denote by $\mathcal{J}(\Omega)$ the monoid of all injective functions $\Omega \to \Omega$.

Theorem (Generalizing Araújo/Kinyon/Konieczny/Malheiro)

- Let Ω be a set and $s,t\in\mathcal{J}(\Omega)$. Then the following are equivalent.
 - $\mathbf{I} \ \ s \sim_p t.$
 - $s \sim_n t$.
 - 4 s = ptp⁻¹ for some p ∈ S(Ω).
 5 There is a bijection between the set of cycles of s and the set of cycles of t, that sends each cycle to one of the same type.

Theore

2 $s \sim_{p}^{1} t$.

Theorem Let Ω be a set and $s, t \in \mathcal{J}(\Omega)$. If Ω is finite, and hence $\mathcal{J}(\Omega) = \mathcal{S}(\Omega)$, then

Let Ω be a set and $s, t \in \mathcal{J}(\Omega)$. If Ω is finite, and hence $\mathcal{J}(\Omega) = \mathcal{S}(\Omega)$, then $s \sim_s t$ if and only if st^{-1} is an even permutation. If Ω is infinite, then $s \sim_s t$ if and only if $|\Omega \setminus s(\Omega)| = |\Omega \setminus t(\Omega)|$.

Surjective Transformation Semigroup

For a set Ω , denote by $\mathcal{O}(\Omega)$ the monoid of all surjective functions $\Omega \to \Omega$.

Surjective Transformation Semigroup

For a set Ω , denote by $\mathcal{O}(\Omega)$ the monoid of all surjective functions $\Omega \to \Omega$.

Definition

For any $s \in \mathcal{T}(\Omega)$, define $N(s) = \{\alpha \in \Omega \mid \exists \beta \in \Omega \setminus \{\alpha\} \ (s(\alpha) = s(\beta))\},$

$$\mathcal{C}(s) = \{\alpha \in \Omega \mid |s^{-1}(\alpha)| > 1\}, \text{ and } \mathit{m}(s) = \sup\{|s^{-1}(\alpha)| \mid \alpha \in \Omega\}.$$

We say that s achieves m(s) if $m(s) = |s^{-1}(\alpha)|$ for some $\alpha \in \Omega$.

Surjective Transformation Semigroup

For a set Ω , denote by $\mathcal{O}(\Omega)$ the monoid of all surjective functions $\Omega \to \Omega$. Definition

 $|N(s)|, |N(t)| < \aleph_0$, and |N(s)| - |C(s)| = |N(t)| - |C(t)|.

 $|N(s)| = |N(t)| = \aleph_0$, and $m(s), m(t) < \aleph_0$.

For any $s \in \mathcal{T}(\Omega)$, define $N(s) = \{\alpha \in \Omega \mid \exists \beta \in \Omega \setminus \{\alpha\} \ (s(\alpha) = s(\beta))\}\$,

following holds.

 $C(s) = \{\alpha \in \Omega \mid |s^{-1}(\alpha)| > 1\}, \text{ and } m(s) = \sup\{|s^{-1}(\alpha)| \mid \alpha \in \Omega\}.$

Let
$$\Omega$$
 be a countably infinite set, and $s,t\in\mathcal{O}(\Omega)$. Write $s\approx t$ if any of the

$m(s) = m(t) = \aleph_0$, but s and t do not achieve m(s) = m(t).

Then \approx is a congruence, and $\sim_{\mathfrak{s}} \subset \approx$.

We say that s achieves m(s) if $m(s) = |s^{-1}(\alpha)|$ for some $\alpha \in \Omega$.

- $\mathbf{4} \ m(s) = m(t) = \aleph_0$, and s and t achieve m(s) = m(t).

Let G be a group, I and Λ nonempty sets, and $P = (p_{\lambda i})$ a $\Lambda \times I$ "sandwich" matrix with entries in $G \cup \{0\}$, such that no row or column consists entirely of zeros. Then $\mathcal{M}^0(G; I, \Lambda; P) = (I \times G \times \Lambda) \cup \{0\}$, with multiplication given by

$$(i,s,\lambda)(j,t,\mu) = \left\{ egin{array}{ll} (i,sp_{\lambda j}t,\mu) & ext{if } p_{\lambda j}
eq 0 \\ 0 & ext{otherwise} \end{array}
ight.$$

and

$$(i,s,\lambda)0=0=0(i,s,\lambda)=0\cdot 0,$$

is a semigroup, called a Rees matrix semigroup.

Let G be a group, I and Λ nonempty sets, and $P=(p_{\lambda i})$ a $\Lambda \times I$ "sandwich" matrix with entries in $G \cup \{0\}$, such that no row or column consists entirely of zeros. Then $\mathcal{M}^0(G;I,\Lambda;P)=(I\times G\times \Lambda)\cup\{0\}$, with multiplication given by

$$(i,s,\lambda)(j,t,\mu) = \left\{ egin{array}{ll} (i,sp_{\lambda j}t,\mu) & ext{if } p_{\lambda j}
eq 0 \\ 0 & ext{otherwise} \end{array}
ight.$$

and

$$(i,s,\lambda)0=0=0(i,s,\lambda)=0\cdot 0,$$

is a semigroup, called a Rees matrix semigroup.

According to Rees's theorem, $\mathcal{M}^0(G; I, \Lambda; P)$ is completely 0-simple (i.e., it is a semigroup S such that $S^2 \neq \{0\}$, S and $\{0\}$ are the only ideals, and the inverse semigroup E(S) of idempotents of S has an element minimal in the natural partial order \leq), and every completely 0-simple semigroup is of this form.

Theorem

The following hold for all $(i, s, \lambda), (j, t, \mu) \in \mathcal{M}^0(G; I, \Lambda; P) \setminus \{0\}.$

- $(i, s, \lambda) \sim_p 0 \iff p_{\lambda i} = 0.$
- **2** $(i, s, \lambda) \sim_p (j, t, \mu) \iff$ either $p_{\lambda i} = 0 = p_{\mu j}$, or $p_{\lambda i} \neq 0 \neq p_{\mu j}$ and $rp_{\lambda i}s = tp_{\mu j}r$ for some $r \in G$.

Theorem

The following hold for all $(i, s, \lambda), (j, t, \mu) \in \mathcal{M}^0(G; I, \Lambda; P) \setminus \{0\}.$

- $(i, s, \lambda) \sim_{p} 0 \iff p_{\lambda i} = 0.$
- **2** $(i, s, \lambda) \sim_p (j, t, \mu) \iff$ either $p_{\lambda i} = 0 = p_{\mu j}$, or $p_{\lambda i} \neq 0 \neq p_{\mu j}$ and $rp_{\lambda i}s = tp_{\mu j}r$ for some $r \in G$.
- **3** If P has any 0 entries, then $(i, s, \lambda) \sim_s 0$.

Theorem

The following hold for all $(i, s, \lambda), (j, t, \mu) \in \mathcal{M}^0(G; I, \Lambda; P) \setminus \{0\}.$

- $(i, s, \lambda) \sim_p 0 \iff p_{\lambda i} = 0.$
- **2** $(i, s, \lambda) \sim_p (j, t, \mu) \iff$ either $p_{\lambda i} = 0 = p_{\mu j}$, or $p_{\lambda i} \neq 0 \neq p_{\mu j}$ and $rp_{\lambda i} s = tp_{\mu i} r$ for some $r \in G$.
- If P has any 0 entries, then $(i, s, \lambda) \sim_s 0$.
- If P has only nonzero entries, then $(i, s, \lambda) \not\sim_s 0$, and $(i, s, \lambda) \sim_s (j, t, \mu)$ $\iff st^{-1} \in H$, where H is the subgroup of G generated by [G, G] and the entries of P.

(E2) $\mathbf{r}(e)e^{-1} = e^{-1}\mathbf{s}(e) = e^{-1}$ for all $e \in E^1$, (CK1) $e^{-1}f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$.

Let $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$ be a directed graph, with path set Path(E), and closed path set ClPath(E) (consisting of $p \in Path(E)$ such that $\mathbf{s}(p) = \mathbf{r}(p)$).

The graph inverse semigroup G(E) of E is the semigroup (with zero) generated by the vertex set E^0 and the edge set E^1 , together with $\{e^{-1} \mid e \in E^1\}$, satisfying the relations: (V) $vw = \delta_{v,w}v$ for all $v, w \in E^0$, (E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$,

Let $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$ be a directed graph, with path set Path(E), and closed path set ClPath(E) (consisting of $p \in Path(E)$ such that $\mathbf{s}(p) = \mathbf{r}(p)$).

The graph inverse semigroup G(E) of E is the semigroup (with zero) generated by the vertex set E^0 and the edge set E^1 , together with $\{e^{-1} \mid e \in E^1\}$, satisfying the relations:

(V)
$$vw = \delta_{v,w}v$$
 for all $v, w \in E^0$,
(E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$,
(E2) $\mathbf{r}(e)e^{-1} = e^{-1}\mathbf{s}(e) = e^{-1}$ for all $e \in E^1$,
(CK1) $e^{-1}f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$.

Each nonzero element of G(E) is of the form pq^{-1} , for some $p, q \in \operatorname{Path}(E)$, where $(e_1 \cdots e_n)^{-1} = e_n^{-1} \cdots e_1^{-1}$ for $e_1, \ldots, e_n \in E^1$ and $v^{-1} = v$ for $v \in E^0$.

G(E) is an inverse semigroup, with $(pq^{-1})^{-1} = qp^{-1}$ for all paths p, q. (I.e., for each $s \in G(E)$ there is a unique $t \in G(E)$ satisfying sts = s and tst = t.)

 $\{e^{-1} \mid e \in E^1\}$, satisfying the relations:

inverse semigroup.

Let $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$ be a directed graph, with path set $\operatorname{Path}(E)$, and closed path set $\operatorname{ClPath}(E)$ (consisting of $p \in \operatorname{Path}(E)$ such that $\mathbf{s}(p) = \mathbf{r}(p)$).

The graph inverse semigroup G(E) of E is the semigroup (with zero) generated by the vertex set E^0 and the edge set E^1 , together with

(V)
$$vw = \delta_{v,w}v$$
 for all $v, w \in E^0$,
(E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$,
(E2) $\mathbf{r}(e)e^{-1} = e^{-1}\mathbf{s}(e) = e^{-1}$ for all $e \in E^1$,
(CK1) $e^{-1}f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$.

G(E) is an inverse semigroup, with $(pq^{-1})^{-1}=qp^{-1}$ for all paths p, q. (I.e., for each $s \in G(E)$ there is a unique $t \in G(E)$ satisfying sts=s and tst=t.) These semigroups were introduced by Ash/Hall (1975), in order to show that every partial order can be realized as that of the nonzero \mathscr{J} -classes of an

Each nonzero element of G(E) is of the form pq^{-1} , for some $p, q \in \text{Path}(E)$, where $(e_1 \cdots e_n)^{-1} = e_n^{-1} \cdots e_1^{-1}$ for $e_1, \ldots, e_n \in E^1$ and $v^{-1} = v$ for $v \in E^0$.

Lemma

Let E be a graph and $p, q \in \text{ClPath}(E)$. Write $p \approx q$ if there exist $r_1, r_2 \in \text{Path}(E)$ such that $p = r_1 r_2$ and $r_2 r_1 = q$. Then \approx is an equivalence relation on ClPath(E).

Theorem

Let E be a graph and $s, t \in G(E)$. Then $s \sim_p t$ if and only if exactly one of the following holds.

- There exist $p_1, p_2 \in \text{ClPath}(E)$ and $q, r \in \text{Path}(E)$ such that $p_1 \approx p_2$, $\mathbf{r}(q) = \mathbf{s}(p_1)$, $\mathbf{r}(r) = \mathbf{s}(p_2)$, $s = qp_1q^{-1}$, and $t = rp_2r^{-1}$.

 There exist $p_1, p_2 \in \text{ClPath}(E) \setminus E^0$ and $q, r \in \text{Path}(E)$ such that
 - 2 There exist $p_1, p_2 \in \text{ClPath}(E) \setminus E^0$ and $q, r \in \text{Path}(E)$ such that $p_1 \approx p_2$, $\mathbf{r}(q) = \mathbf{r}(p_1)$, $\mathbf{r}(r) = \mathbf{r}(p_2)$, $s = qp_1^{-1}q^{-1}$, and $t = rp_2^{-1}r^{-1}$.
 - Neither s nor t is of the form qpq^{-1} or $qp^{-1}q^{-1}$, for any $p \in \text{ClPath}(E)$ and $q \in \text{Path}(E)$. (This case occurs if and only if $s \sim_p 0 \sim_p t$.)

Theorem

Let *E* be a graph and $s, t \in G(E)$. Then $s \sim_s t$ if and only if exactly one of the following holds.

- **1** There exists a vertex $v \in E^0$ such that $\mathbf{r}^{-1}(v) = \{v\}$ and s = v = t.
- **2** There exist a loop $e \in E^1$ (i.e., a closed path with only one edge) and $n_1, m_1, n_2, m_2 \in \mathbb{N}$ such that $\mathbf{r}^{-1}(\mathbf{s}(e)) = \{\mathbf{s}(e), e\}$, $s = e^{n_1}e^{-m_1}$, $t = e^{n_2}e^{-m_2}$, and $n_1 m_1 = n_2 m_2$.
- Neither s nor t is of the previous two forms. (This case occurs if and only if s \sim_s 0 \sim_s t.)

Thank you!

Bibiliography

- J. Araújo, W. Bentz, M. Kinyon, J. Konieczny, A. Malheiro, and V. Mercier, Conjugacy in Semigroups: the Partition and Brauer Diagram Monoids, Conjugacy Growth, and Partial Inner Automorphisms, preprint (arXiv: 2301.04252).
- J. Araújo, M. Kinyon, J. Konieczny, and A. Malheiro, *Four Notions of Conjugacy for Abstract Semigroups*, Proc. Roy. Soc. Edinburgh Sect. A **147** (2017) 1169–1214.
- G. Kudryavtseva and V. Mazorchuk, *On Conjugation in Some Transformation and Brauer-type Semi-groups*, Publ. Math. Debrecen **70** (2007) 19–43.
- Z. Mesyan, Conjugacy and Least Commutative Congruences in Semigroups, Semigroup Forum 110 (2025) 655–690.
- A. G. Leroy and M. Nasernejad, *Symmetric Closure in Modules and Rings*, Comm. Algebra **52** (2024) 327–344.