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Primary Conjugacy

Definition

Let S be a semigroup and s, t ∈ S . Write s ∼1
p t if there exist p, r ∈ S1 such

that
s = pr , rp = t.

Let ∼p denote the transitive closure of the relation ∼1
p. That is, s ∼p t if

there exist p1, r1, p2, r2, . . . , pn, rn ∈ S1 such that

s = p1r1, r1p1 = p2r2, r2p2 = p3r3, . . . , rn−1pn−1 = pnrn, rnpn = t.

The relations ∼1
p and ∼p are known as the primary conjugacy relations.

In any semigroup, ∼p is an equivalence relation.
In a commutative semigroup, ∼p is the identity relation.
In the C ∗-algebra literature, ∼1

p is known as the Murray-von Neumann
equivalence, and is used on projections in to construct the K0-group.
In symbolic dynamics, ∼1

p is called the elementary shift equivalence, and
∼p is called the strong shift equivalence.
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Primary Conjugacy in Rings

Definition

Let S be a semigroup and s, t ∈ S . Write s ∼1
p t if there exist p, r ∈ S1 such

that
s = pr , rp = t.

Let ∼p denote the transitive closure of ∼1
p.

If S is a ring and p, r , s, t ∈ S are such that s = pr and rp = t, then

s − t = pr − rp = [r , p]

is an additive commutator.

More generally, if s ∼p t, then s − t is a sum of additive commutators.

Shoda–Albert–Muckenhoupt Theorem: Given a field F , a matrix in
Mn(F ) has trace 0 if and only if it is a commutator.

It can be shown that for all S ,T ∈ Mn(F ), we have trace(S) = trace(T )
if and only if S ∼p T .
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Primary Conjugacy in Groups

Definition

Let S be a semigroup and s, t ∈ S . Write s ∼1
p t if there exist p, r ∈ S1 such

that s = pr and rp = t. Let ∼p denote the transitive closure of ∼1
p.

If S is a group, and s, t ∈ S , then there exist p, r ∈ S such that s = pr
and rp = t if and only if there exist p, r ∈ S such that s = ptp−1 and
t = rsr−1.
So, for a group, ∼1

p coincides with the usual conjugacy. Since conjugacy
is transitive, also ∼1

p = ∼p.
Class Equation Theorem: Let G be a finite group, and let g1, . . . , gn ∈ G
be representatives of the distinct conjugacy classes of G , not contained in
the center Z (G ). Then

|G | = |Z (G )|+
n∑

i=1

[G : C (gi )],

where C (g) = {h ∈ G | hg = gh} for all g ∈ G .
For semigroups, ∼p is the most common generalization of conjugacy.
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Other Notions of Conjugacy in Semigroups 1

Definition

Let S be a semigroup and s, t ∈ S . Write s ∼o t if there exist p, r ∈ S1 such
that

sp = pt, rs = tr .

This is another way of rewriting s = ptp−1, without explicit reference to
inverses.

For any semigroup, ∼o is an equivalence relation.

In a group, either of the above equalities is equivalent to s and t being
conjugate, but in an arbitrary semigroup both are needed, to ensure that
the relation is symmetric.

If S has a zero element 0, then s · 0 = 0 · t and 0 · s = t · 0, for all
s, t ∈ S , making the relation ∼o is universal.
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Other Notions of Conjugacy in Semigroups 2

Definition

Let S be a semigroup and s, t ∈ S . Write s ∼c t if there exist p ∈ P(s) and
r ∈ P(t) such that

sp = pt, rs = tr ,

where P(s) = {p ∈ S1 | ∀r ∈ S1 (rs ̸= 0 =⇒ rsp ̸= 0)}, for each s ∈ S \ {0}.

For any semigroup, ∼c is an equivalence relation, and reduces to the
usual conjugacy in any group.

This is a version of ∼o that can be useful even in semigroups with zero.
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Other Notions of Conjugacy in Semigroups 3

Definition

Let S be a semigroup and s, t ∈ S . Write s ∼n t if there exist p, r ∈ S1 such
that

sp = pt, rs = tr , rsp = t, ptr = s.

The relation ∼n is known as the natural conjugacy relation.

For any semigroup, ∼n is an equivalence relation, and again reduces to
the usual conjugacy in any group.
Like ∼c , the relation ∼n can be useful in semigroups with zero.
Recall that a semigroup S is an inverse semigroup if for each s ∈ S there
is a unique element s−1 ∈ S satisfying s = ss−1s and s−1 = s−1ss−1.
In any inverse semigroup, ∼n coincides with the relation ∼i , defined by
s ∼i t if there exist p, r ∈ S1 such that

p−1sp = t, ptp−1 = s.

The relations ∼p, ∼o , and ∼c generally do not coincide with ∼i in an
inverse semigroup.
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Other Notions of Conjugacy in Semigroups 4

Definition

Let S be a semigroup and s, t ∈ S . Write s ∼w t if there exist p, r ∈ S1 and
m ∈ Z+ such that

sp = pt, rs = tr , pr = sm, rp = tm.

This is another variation on ∼o , that is an equivalence relation on any
semigroup, reduces to the usual conjugacy in a group, and is not
necessarily universal in a semigroup with zero.

The relation ∼w has been explored in semigroups, but is most famously
associated with symbolic dynamics, where it is called the shift
equivalence.

In that context, ∼1
p (∃p, r ∈ S1 (s = pr , rp = t)) is called the elementary

shift equivalence, and ∼p (the transitive closure of ∼1
p) is called the

strong shift equivalence.
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Symbolic Dynamics

In symbolic dynamics one studies shift spaces, which consist of certain
infinite sequences of symbols from some alphabet, together with
transformations on those spaces.

The field arose from attempts to model the motion of various physical
objects (e.g., planets and gas molecules), by recording the states of such
an object at discrete intervals of time.

Some shift spaces can be represented as directed graphs, and questions
about directed graphs can often be translated into questions about (their
adjacency) matrices.

Certain equivalence relations on directed graphs, studied in symbolic
dynamics, when translated to rectangular matrices with nonnegative
integer entries, correspond precisely to ∼1

p and ∼p.

More explicitly, two matrices S and T (possibly of different sizes), with
entries from N, are elementary shift equivalent if there exist rectangular
matrices P and R (over N) such that S = PR and RP = T .
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Symbolic Dynamics

This symbolic dynamics setup can be translated into semigroup language.

Let M∞(N) denote the semigroup of all finitary (i.e., having only finitely
many nonzero entries) infinite matrices, indexed by N, with entries from
N, under the usual matrix multiplication.

Each rectangular matrix in N can be viewed as an element of M∞(N),
and then two such matrices S ,T are elementary shift equivalent,
respectively, strong shift equivalent, if and only if S ∼1

p T , respectively,
S ∼p T , as elements of M∞(N).
It is very difficult, in general, to determine if two matrices are strong shift
equivalent. So shift equivalence (i.e., ∼w ) was introduced as an
easier-to-compute alternative.

In any semigroup S , we have ∼p ⊆ ∼w .

Proof: Suppose that s, t ∈ S satisfy s ∼1
p t. Then s1 = pr and rp = t1

for some p, r ∈ S1. So sp = prp = pt and rs = rpr = tr . Thus s ∼w t.
The inclusion ∼p ⊆ ∼w then follows from the transitivity of ∼w .
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Kim/Roush Example

The question of whether ∼p = ∼w in the symbolic dynamics context (or
M∞(N)) was open for over 20 years.

In 1997, Kim and Roush showed that ∼p ̸= ∼w in M∞(N).
Specifically, S ∼w T , but S ̸∼p T , for the matrices below:

S =



0 0 1 1 3 0 0
1 0 0 0 3 0 0
0 1 0 0 3 0 0
0 0 1 0 3 0 0
0 0 0 0 0 0 1
1 1 1 1 10 0 0
1 1 1 1 0 1 0


, T =



0 0 1 1 3 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
4 5 6 3 10 0 0
4 5 6 3 0 1 0


.
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Comparison of Semigroup Conjugacy Relations
∼o

∼w ∼c

∼p

∼1
p

∼n

s ∼o t ⇐⇒ ∃p, r ∈ S1 (sp = pt, rs = tr)
s ∼w t ⇐⇒ ∃p, r ∈ S1 ∃m ∈ Z+ (sp = pt, rs = tr , pr = sm, rp = tm)
s ∼c t ⇐⇒ ∃p ∈ P(s) ∃r ∈ P(t) (sp = pt, rs = tr)
s ∼1

p t ⇐⇒ ∃p, r ∈ S1 (s = pr , rp = t)
s ∼n t ⇐⇒ ∃p, r ∈ S1 (sp = pt, rs = tr , rsp = t, ptr = s)



Permutation Conjugacy

Definition

Let S be a semigroup and s, t ∈ S . Write s ∼1
s t if there exist n ∈ Z+,

p1, . . . , pn ∈ S1, and f ∈ S({1, . . . , n}), the symmetric group on {1, . . . , n},
such that

s = p1 · · · pn, pf (1) · · · pf (n) = t.

Let ∼s denote the transitive closure of the relation ∼1
s . We refer to ∼s as the

symmetric or permutation (conjugacy) relation.

Leroy/Nasernejad (2024) introduced analogous relations for rings.

For example, Leroy/Nasernejad show that for any field F and any
S ,T ∈ Mn(F ), we have S ∼s T if and only if det(S) = det(T ).

Somewhat similar relations on semigroups have been studied before (e.g.,
Clifford/Cummings/Teymouri (2011), Piochi (1987)).
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Comparison of Relations

Clearly, ∼1
p ⊆∼1

s ⊆∼s and ∼1
p ⊆∼p ⊆∼s in any semigroup.

There are semigroups where ∼p ̸=∼s , ∼1
p ̸=∼1

s , ∼1
s ̸=∼s , ∼1

s ̸⊆∼p, and
∼p ̸⊆∼1

s .
Also, generally, ∼1

s and ∼s are not comparable to ∼o , ∼w , and ∼c .
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Permutation Conjugacy Properties

Recall that given a semigroup S , an equivalence relation ρ ⊆ S × S is a
congruence if sρt implies that (sr)ρ(tr) and (rs)ρ(rt) for all r , s, t ∈ S .

If ϕ : S → T is a homomorphism of semigroups, then

ker(ϕ) = {(s, t) ∈ S × S | ϕ(s) = ϕ(t)}

is a congruence on S , and there is an isomorphism S/ ker(ϕ) → ϕ(S).

Theorem

Let S be a semigroup, and let ≈ denote any of ∼1
p, ∼p, ∼1

s . Then ∼s is the
congruence generated by ≈, and it is the least congruence ρ on S such that
S/ρ is commutative.

Proposition

Let S be the free semigroup on a nonempty set Ω, and ≈ a reflexive
symmetric relation on S such that ≈⊆∼s . Then the congruence generated
by ≈ is ∼s if and only if αβ ≈ βα for all α, β ∈ Ω.
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Proof of Theorem

Suppose that s ∼1
s t for some s, t ∈ S , and let r = pn+1 ∈ S . Write

s = p1 · · · pn, t = pf (1) · · · pf (n) for some p1, . . . , pn ∈ S1 and
f ∈ S({1, . . . , n}). Then sr = p1 · · · pnpn+1 and tr = pf (1) · · · pf (n)pn+1,
and so sr ∼1

s tr . Analogously, rs ∼1
s rt.

Now suppose that s ∼s t for some s, t ∈ S . Then there exist
q1, . . . , qm ∈ S such that

s = q1 ∼1
s q2 ∼1

s · · · ∼1
s qm = t.

By the above, sr ∼s tr and rs ∼s rt, for all r ∈ S . Since ∼s is clearly an
equivalence relation, it is therefore a congruence.

Let ρ be a congruence on S such that ∼1
p ⊆ ρ, and let [s]ρ denote the

ρ-congruence class of s ∈ S . Then for all s, t ∈ S we have st ∼1
p ts, and

hence
[s]ρ[t]ρ = [st]ρ = [ts]ρ = [t]ρ[s]ρ.

Therefore S/ρ is commutative. In particular, S/ ∼s is commutative.
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Proof of Theorem (Continued)

Suppose that ρ is a congruence on S such that S/ρ is commutative.
Then for all p1, . . . , pn ∈ S1 and f ∈ S({1, . . . , n}),

[p1 · · · pn]ρ = [p1]ρ · · · [pn]ρ = [pf (1)]ρ · · · [pf (n)]ρ = [pf (1) · · · pf (n)]ρ,

i.e., (p1 · · · pn)ρ(pf (1) · · · pf (n)). Therefore ∼1
s ⊆ ρ, and since ρ is

transitive, it follows that ∼s ⊆ ρ. Hence ∼s is the least congruence on S
that produces a commutative quotient semigroup.

Finally, let ρ denote the congruence on S generated by ∼1
p, ∼p, or ∼1

s .
Since ∼1

p ⊆ ρ, the quotient S/ρ is commutative, and so ∼s ⊆ ρ. But
since ∼1

p,∼p,∼1
s ⊆∼s , we have ∼s = ρ.
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Permutation Conjugacy Properties

Corollary

1 A semigroup S is commutative if and only if ∼s (or ∼1
p, or ∼p, or ∼1

s ) is
the identity relation on S .

2 A semigroup S has no nontrivial commutative homomorphic images if
and only if ∼s is the universal relation on S .

Proposition (Generalizing Leroy/Nasernejad)

Let S be a semigroup and s, t ∈ S . Write s ∼1
∗ t if there exist p1, p2, p3 ∈ S1

such that
s = p1p2p3, p1p3p2 = t,

and denote by ∼∗ the transitive closure of the relation ∼1
∗. Then ∼∗=∼s .
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Permutation Conjugacy in Groups

Corollary

Let G be a group and s, t ∈ G . Then st−1 ∈ [G ,G ] (the multiplicative
commutator subgroup) if and only if s ∼1

s t if and only if s ∼s t.

Proof.

Suppose that st−1 ∈ [G ,G ], and write

st−1 = p1r1p
−1
1 r−1

1 · · · pnrnp−1
n r−1

n

for some pi , ri ∈ G . Then

s = (p1r1p
−1
1 r−1

1 · · · pnrnp−1
n r−1

n )t, t = (p1p
−1
1 )(r1r

−1
1 ) · · · (pnp−1

n )(rnr
−1
n )t,

showing that s ∼1
s t. Clearly, s ∼1

s t implies that s ∼s t.

Now, let ϕ : G → G/[G ,G ] be the natural projection. Since G/[G ,G ] is
commutative, ∼s ⊆ ker(ϕ) = [G ,G ], by the theorem. That is, if s ∼s t, then
st−1 ∈ [G ,G ].
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Permutation Conjugacy in Rings

Corollary

Let R be a ring, let I1 be the additive subgroup of R generated by
{s − t | s, t ∈ R, s ∼1

s t}, and let I2 be the additive subgroup of R generated
by {s − t | s, t ∈ R, s ∼s t}. Then I1 = I2 = [R,R], where [R,R] is the ideal
of R generated by the additive commutators ([p, r ] = pr − rp).

Proof.

R/[R,R] is a commutative ring, and hence a commutative semigroup. Thus,
by the theorem, if s ∼s t, for some s, t ∈ R, then s − t ∈ [R,R]. In particular,
I1 ⊆ I2 ⊆ [R,R].

As an additive group, [R,R] is generated by elements of the form

q(rs − sr)t = qrst − qsrt.

Since qrst ∼1
s qsrt, we have [R,R] ⊆ I1, and so [R,R] = I1 = I2.
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Closure Under the Permutation Conjugacy

Proposition

Let S be a semigroup, T ⊆ S , and T ⊆ S the closure of T under ∼s .

1 T = T .

2 If T is a subsemigroup of S , then so is T .

3 If T is a left, respectively right, respectively two-sided, ideal of S , then T
is a two-sided ideal.

4 If S is an inverse semigroup, and T is an inverse subsemigroup of S , then
so is T .

5 If S is a group, and T is a subgroup of S , then T is the (normal)
subgroup of S generated by T and [S ,S ].
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Classical Transformation Semigroups

For a set Ω, denote by T (Ω) the monoid of all functions Ω → Ω, by PT (Ω)
the monoid of all partial functions Ω → Ω, and by I(Ω) the symmetric inverse
monoid on Ω.

Definition

Let Ω be a set, Σ ⊆ Ω nonempty, and s ∈ T (Ω). We say that Σ is a
connected component or cycle of s if the following conditions are satisfied:

(i) s(α) ∈ Σ if and only if α ∈ Σ, for all α ∈ Ω;

(ii) Σ has no proper nonempty subset satisfying (i).

Theorem (Kudryavtseva/Mazorchuk (2007))

Let Ω be a finite set, S ∈ {T (Ω),PT (Ω), I(Ω)}, and s, t ∈ S . For each
n ≤ |Ω|, let l sn denote the number of cycles of s of size n, and let
ct(s) = (l s1 , . . . , l

s
|Ω|). Then s ∼p t if and only if ct(s) = ct(t).

Kudryavtseva and Mazorchuk also gave a (much more complicated)
description of ∼p in I(Ω) for countable Ω.
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Classical Transformation Semigroups

Proposition

Let Ω be a set. If Ω is infinite, then ∼s is the universal relation on T (Ω),
PT (Ω), and I(Ω). If Ω is finite, then in each of these semigroups there are
three ∼s -congruence classes–consisting of even permutations of Ω, odd
permutations of Ω, and (partial) transformations with image of size < |Ω|.

Proof Summary for T (Ω): Finite Case.

Suppose that Ω is finite, and consider s, t ∈ S(Ω) (the permutation
group of Ω) such that st−1 ∈ [S(Ω),S(Ω)] (which is the alternating
subgroup, by Ore’s theorem (1951)). Then s ∼s t.

According to Mal’cev’s theorem (1979), there is only one non-universal
congruence ≈ on T (Ω) that relates all the odd permutations and all the
even permutations (which also relates all the transformations in
T (Ω) \ S(Ω)). So ≈⊆∼s .

But T (Ω)/ ≈ is commutative, and so ∼s ⊆≈. Hence ∼s =≈.
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three ∼s -congruence classes–consisting of even permutations of Ω, odd
permutations of Ω, and (partial) transformations with image of size < |Ω|.

Proof Summary for T (Ω): Infinite Case.

Suppose that Ω is infinite, and let p ∈ T (Ω). Then p = sqt, for some
s, t ∈ T (Ω) such that st = 1, and some q ∈ S(Ω).

By Ore’s theorem (1951), there exist r1, r2 ∈ S(Ω) such that
q = r1r2r

−1
1 r−1

2 , and so

p = sqt = s(r1r2r
−1
1 r−1

2 )t ∼s (st)(r1r
−1
1 )(r2r

−1
2 ) = 1.

Thus the ∼s -equivalence class of 1 is all of T (Ω).
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Injective Transformation Semigroup

For a set Ω, denote by J (Ω) the monoid of all injective functions Ω → Ω.

Theorem (Generalizing Araújo/Kinyon/Konieczny/Malheiro)

Let Ω be a set and s, t ∈ J (Ω). Then the following are equivalent.

1 s ∼p t.

2 s ∼1
p t.

3 s ∼n t.

4 s = ptp−1 for some p ∈ S(Ω).
5 There is a bijection between the set of cycles of s and the set of cycles of

t, that sends each cycle to one of the same type.

Theorem

Let Ω be a set and s, t ∈ J (Ω). If Ω is finite, and hence J (Ω) = S(Ω), then
s ∼s t if and only if st−1 is an even permutation. If Ω is infinite, then s ∼s t
if and only if |Ω \ s(Ω)| = |Ω \ t(Ω)|.
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5 There is a bijection between the set of cycles of s and the set of cycles of

t, that sends each cycle to one of the same type.

Theorem

Let Ω be a set and s, t ∈ J (Ω). If Ω is finite, and hence J (Ω) = S(Ω), then
s ∼s t if and only if st−1 is an even permutation. If Ω is infinite, then s ∼s t
if and only if |Ω \ s(Ω)| = |Ω \ t(Ω)|.



Surjective Transformation Semigroup

For a set Ω, denote by O(Ω) the monoid of all surjective functions Ω → Ω.

Definition

For any s ∈ T (Ω), define N(s) = {α ∈ Ω | ∃β ∈ Ω \ {α} (s(α) = s(β))},

C (s) = {α ∈ Ω | |s−1(α)| > 1}, and m(s) = sup{|s−1(α)| | α ∈ Ω}.

We say that s achieves m(s) if m(s) = |s−1(α)| for some α ∈ Ω.

Theorem

Let Ω be a countably infinite set, and s, t ∈ O(Ω). Write s ≈ t if any of the
following holds.

1 |N(s)|, |N(t)| < ℵ0, and |N(s)| − |C (s)| = |N(t)| − |C (t)|.
2 |N(s)| = |N(t)| = ℵ0, and m(s),m(t) < ℵ0.

3 m(s) = m(t) = ℵ0, but s and t do not achieve m(s) = m(t).

4 m(s) = m(t) = ℵ0, and s and t achieve m(s) = m(t).

Then ≈ is a congruence, and ∼s ⊆≈.
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Rees Matrix Semigroups

Let G be a group, I and Λ nonempty sets, and P = (pλi ) a Λ× I “sandwich”
matrix with entries in G ∪ {0}, such that no row or column consists entirely of
zeros. Then M0(G ; I ,Λ;P) = (I × G × Λ) ∪ {0}, with multiplication given by

(i , s, λ)(j , t, µ) =

{
(i , spλj t, µ) if pλj ̸= 0

0 otherwise

and
(i , s, λ)0 = 0 = 0(i , s, λ) = 0 · 0,

is a semigroup, called a Rees matrix semigroup.

According to Rees’s theorem, M0(G ; I ,Λ;P) is completely 0-simple (i.e., it is
a semigroup S such that S2 ̸= {0}, S and {0} are the only ideals, and the
inverse semigroup E (S) of idempotents of S has an element minimal in the
natural partial order ≤), and every completely 0-simple semigroup is of this
form.
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Rees Matrix Semigroups

Theorem

The following hold for all (i , s, λ), (j , t, µ) ∈ M0(G ; I ,Λ;P) \ {0}.
1 (i , s, λ) ∼p 0 ⇐⇒ pλi = 0.

2 (i , s, λ) ∼p (j , t, µ) ⇐⇒ either pλi = 0 = pµj , or pλi ̸= 0 ̸= pµj and
rpλi s = tpµj r for some r ∈ G .

3 If P has any 0 entries, then (i , s, λ) ∼s 0.

4 If P has only nonzero entries, then (i , s, λ) ̸∼s 0, and (i , s, λ) ∼s (j , t, µ)
⇐⇒ st−1 ∈ H, where H is the subgroup of G generated by [G ,G ] and
the entries of P.
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Graph Inverse Semigroups

Let E = (E 0,E 1, s, r) be a directed graph, with path set Path(E ), and closed
path set ClPath(E ) (consisting of p ∈ Path(E ) such that s(p) = r(p)).

The graph inverse semigroup G (E ) of E is the semigroup (with zero)
generated by the vertex set E 0 and the edge set E 1, together with
{e−1 | e ∈ E 1}, satisfying the relations:
(V) vw = δv ,wv for all v ,w ∈ E 0,
(E1) s(e)e = er(e) = e for all e ∈ E 1,
(E2) r(e)e−1 = e−1s(e) = e−1 for all e ∈ E 1,
(CK1) e−1f = δe,f r(e) for all e, f ∈ E 1.

Each nonzero element of G (E ) is of the form pq−1, for some p, q ∈ Path(E ),
where (e1 · · · en)−1 = e−1

n · · · e−1
1 for e1, . . . , en ∈ E 1 and v−1 = v for v ∈ E 0.

G (E ) is an inverse semigroup, with (pq−1)−1 = qp−1 for all paths p, q. (I.e.,
for each s ∈ G (E ) there is a unique t ∈ G (E ) satisfying sts = s and tst = t.)

These semigroups were introduced by Ash/Hall (1975), in order to show that
every partial order can be realized as that of the nonzero J -classes of an
inverse semigroup.
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Graph Inverse Semigroups

Lemma

Let E be a graph and p, q ∈ ClPath(E ). Write p ≈ q if there exist
r1, r2 ∈ Path(E ) such that p = r1r2 and r2r1 = q. Then ≈ is an equivalence
relation on ClPath(E ).

Theorem

Let E be a graph and s, t ∈ G (E ). Then s ∼p t if and only if exactly one of
the following holds.

1 There exist p1, p2 ∈ ClPath(E ) and q, r ∈ Path(E ) such that p1 ≈ p2,
r(q) = s(p1), r(r) = s(p2), s = qp1q

−1, and t = rp2r
−1.

2 There exist p1, p2 ∈ ClPath(E ) \ E 0 and q, r ∈ Path(E ) such that
p1 ≈ p2, r(q) = r(p1), r(r) = r(p2), s = qp−1

1 q−1, and t = rp−1
2 r−1.

3 Neither s nor t is of the form qpq−1 or qp−1q−1, for any p ∈ ClPath(E )
and q ∈ Path(E ). (This case occurs if and only if s ∼p 0 ∼p t.)



Graph Inverse Semigroups

Theorem

Let E be a graph and s, t ∈ G (E ). Then s ∼s t if and only if exactly one of
the following holds.

1 There exists a vertex v ∈ E 0 such that r−1(v) = {v} and s = v = t.

2 There exist a loop e ∈ E 1 (i.e., a closed path with only one edge) and
n1,m1, n2,m2 ∈ N such that r−1(s(e)) = {s(e), e}, s = en1e−m1 ,
t = en2e−m2 , and n1 −m1 = n2 −m2.

3 Neither s nor t is of the previous two forms. (This case occurs if and only
if s ∼s 0 ∼s t.)



Thank you!
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