

Axiomatizing small varieties of periodic ℓ -pregroups

Simon Santschi

(Joint work with Nick Galatos)

Mathematical Institute
University of Bern

Panglobal Algebra and Logic Seminar

November 18, 2025

Lattice-ordered groups

A **lattice-ordered group** (ℓ -group) is an algebra $\langle L, \wedge, \vee, \cdot, ^{-1}, 1 \rangle$ s.t.

- $\langle L, \cdot, ^{-1}, 1 \rangle$ is a group,
- $\langle L, \wedge, \vee \rangle$ is a lattice,
- $a(b \vee c)d = abd \vee acd$ and $a(b \wedge c)d = abd \wedge acd$ for all $a, b, c, d \in S$.

We denote by LG the variety of ℓ -groups.

- ▷ ℓ -groups have been extensively studied in the last century.
- ▶ Every ℓ -group has a distributive lattice reduct.
- ▶ (Holland 1963) Every ℓ -group embeds into the automorphism ℓ -group

$$\mathbf{Aut}(\mathbf{C}) = \langle \text{Aut}(\mathbf{C}), \wedge, \vee, \circ, ^{-1}, id_C \rangle,$$

for some chain $\mathbf{C} = \langle C, \leq \rangle$, where \wedge and \vee are defined point-wise.

Pregroups

A **pregroup** is a structure $\mathbf{L} = \langle L, \cdot, 1, \ell, r, \leq \rangle$ such that $\langle L, \cdot, 1 \rangle$ is a monoid, $\langle L, \leq \rangle$ is a poset and for each $a \in L$,

$$a^\ell a \leq 1 \leq aa^\ell \text{ and } aa^r \leq 1 \leq a^r a.$$

- ▷ Pregroups were introduced in mathematical linguistics (Lambek, Buzskowski).

Lattice-ordered pregroups

A **lattice-ordered pregroup (ℓ -pregroup)** is an algebra $(L, \wedge, \vee, \cdot, \cdot^\ell, \cdot^r, 1)$ such that (L, \wedge, \vee) is a lattice, $(L, \cdot, 1)$ is a monoid, multiplication preserves the lattice order \leq , and for every $a \in L$,

$$a^\ell a \leq 1 \leq aa^\ell \text{ and } aa^r \leq 1 \leq a^r a.$$

- ▷ ℓ -pregroups are precisely the **involutive residuated lattices**, where multiplication coincides with its De Morgan dual.
 - ↳ In ℓ -pregroups: $(a \cdot b)^\ell = b^\ell \cdot a^\ell$, $(a^\ell)^r = (a^r)^\ell = a$, $a(b \bullet c)d = abd \bullet acd$ ($\bullet \in \{\wedge, \vee\}$), and De Morgan laws hold.

An ℓ -pregroup **L** is called **distributive** if its lattice reduct is distributive.

- ▷ Every ℓ -group 'is' a distributive ℓ -pregroup with $a^\ell = a^r = a^{-1}$.
- ▷ **Longstanding problem:** is every ℓ -pregroup distributive?
- ▷ ℓ -pregroups are semi-distributive (Galatos-Jipsen-Kinyon-Přenosil 2021).

Periodic ℓ -pregroups

An ℓ -pregroup is called **n -periodic** (for $n \geq 1$) if it satisfies the equation

$$x^{\ell^n} \approx x^{r^n} \text{ (or equivalently } x^{\ell^{2n}} \approx x\text{)},$$

where $x^{\ell^1} = x^\ell$, $x^{\ell^{n+1}} = (x^{\ell^n})^\ell$ and similarly for x^{r^n}

▷ For $n = 1$, we get ℓ -groups.

We denote the variety of distributive ℓ -pregroups by **DLP** and the variety of n -periodic ℓ -pregroups by **LP_n**.

► Every periodic ℓ -pregroup is distributive, i.e., $\text{LP}_n \subseteq \text{DLP}$ for any $n \geq 1$ (Galatos-Jipsen 2012).

Symmetric ℓ -pregroup of a chain

Let \mathbf{C} be a chain. Maps $f: C \rightarrow C$ and $g: C \rightarrow C$, are said to form a **residuated pair** if for all $a, b \in C$:

$$f(a) \leq b \iff a \leq g(b).$$

We say that g is the **residual** of f and f is the **dual residual** of g .

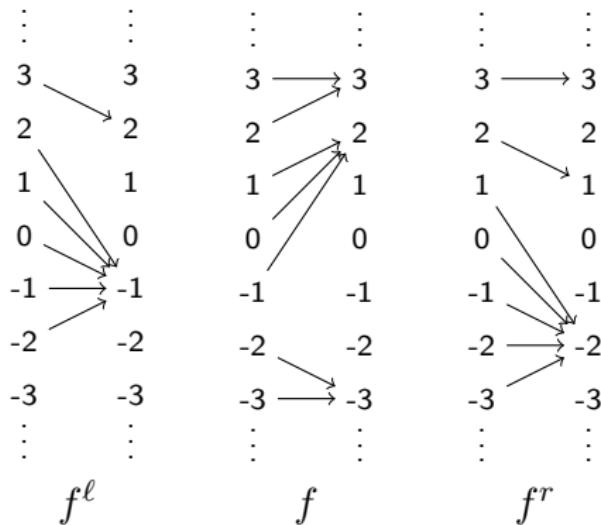
Fact. For any $f: C \rightarrow C$, the dual residual f^ℓ and residual f^r are unique if they exist: $f^\ell(y) = \bigwedge\{x : y \leq f(x)\}$ and $f^r(y) = \bigvee\{x : f(x) \leq y\}$.

The set $\mathbf{F}(\mathbf{C})$ of maps on C with residuals and dual residuals of every order forms a distributive ℓ -pregroup $\mathbf{F}(\mathbf{C}) = \langle \mathbf{F}(\mathbf{C}), \wedge, \vee, \circ, {}^\ell, {}^r, id_C \rangle$, where \circ is composition, and \wedge and \vee are defined point-wise.

- ▶ Every distributive ℓ -pregroup embeds into $\mathbf{F}(\mathbf{C})$ for some chain \mathbf{C} (Galatos-Jipsen 2012).

Example $\mathbf{F}(\mathbb{Z})$

The set $\mathbf{F}(\mathbb{Z})$ consists of all order-preserving functions from \mathbb{Z} to \mathbb{Z} that are **finite-to-one** (the preimage of an element is a finite set).



$$f^l(y) = \bigwedge \{x : y \leq f(x)\}$$

$$f^r(y) = \bigvee \{x : f(x) \leq y\}$$

$$f^l(3) = 2 \text{ and } f^r(3) = 3$$

$$f^l(2) = -1 \text{ and } f^r(2) = 1$$

$$f^l(1) = -1 = f^l(-2)$$

$$f^r(1) = -2 = f^r(-3)$$

► DLP = $\mathbb{V}(\mathbf{F}(\mathbb{Z}))$ (Galatos-Gallardo 2024).

Representation theorem in the periodic case

Fact. For an ℓ -pregroup \mathbf{L} and $n \in \mathbb{Z}^+$ the set $\{a \in L : a^{\ell^n} = a^{r^n}\}$ of n -periodic elements of \mathbf{L} forms an n -periodic subalgebra.

For a chain \mathbf{C} and $n \in \mathbb{Z}^+$ we denote by $\mathbf{F}_n(\mathbf{C})$ the subalgebra of $\mathbf{F}(\mathbf{C})$ consisting of its n -periodic members. \rightsquigarrow If $k \mid n$, then $\mathbf{F}_k(\mathbf{C}) \leq \mathbf{F}_n(\mathbf{C})$.

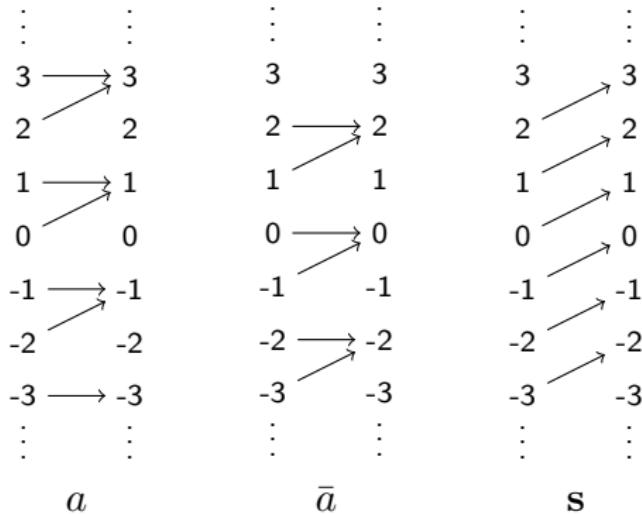
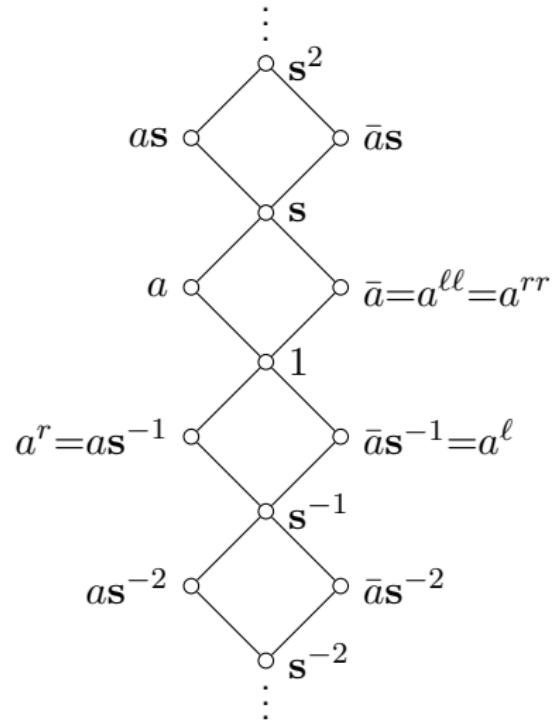
- ▶ Every n -periodic ℓ -pregroup embeds into $\mathbf{F}_n(\mathbf{C} \xrightarrow{\sim} \mathbb{Z}) \cong \mathbf{Aut}(\mathbf{C}) \wr \mathbf{F}_n(\mathbb{Z})$ for some chain \mathbf{C} (Galatos-Gallardo 2025).
 \rightsquigarrow n -periodic maps are exactly the maps s.t. $f(c, x + n) = f(c, x) + n$.
- ▶ $\text{DLP} = \bigvee_n \text{LP}_n = \bigvee_n \mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ (Galatos-Gallardo 2025).
- ▶ $\mathbb{V}(\mathbf{F}_n(\mathbb{Z})) \subsetneq \text{LP}_n = \mathbb{V}(\mathbf{F}_n(\mathbb{Q} \xrightarrow{\sim} \mathbb{Z}))$ (Galatos-Gallardo 2025).

Question: How is $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ axiomatized? Is it finitely axiomatized?

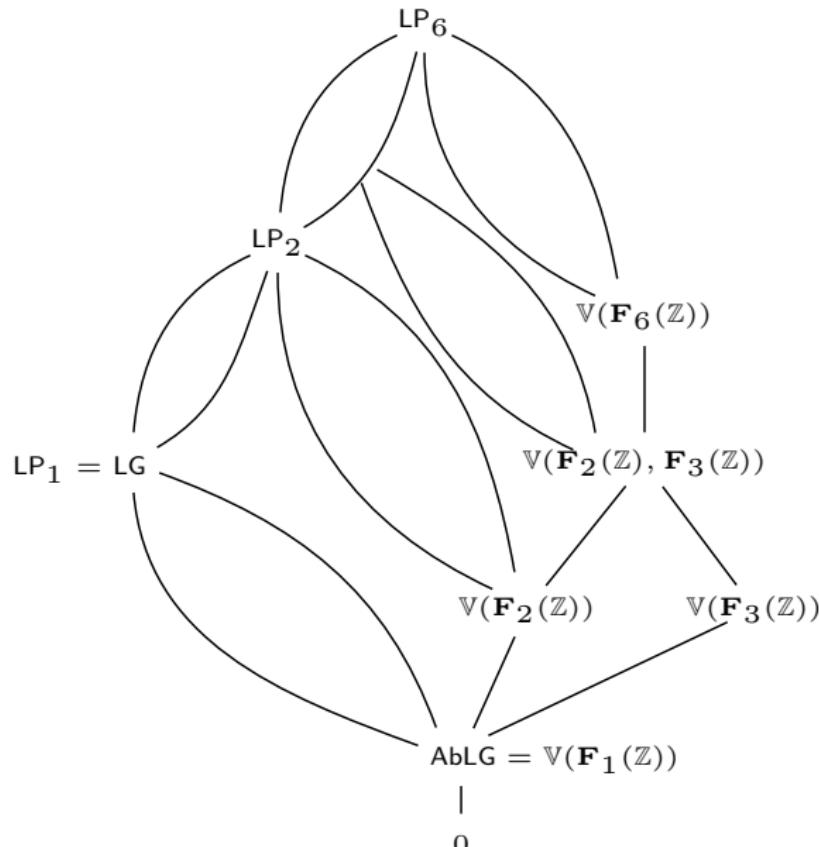
We will answer the second question positively.

Example $F_2(\mathbb{Z})$

$$F_2(\mathbb{Z}) = \{as^n, s^n, \bar{a}s^n : n \in \mathbb{Z}\}, \text{ where } \bar{a} = a^{\ell\ell}.$$



Part of the subvariety lattice of LP_6



Group skeleton

For any ℓ -pregroup \mathbf{L} , **the group skeleton** \mathbf{L}_g of \mathbf{L} is the subalgebra of \mathbf{L} with universe $L_g = \{a \in L : a^{\ell\ell} = a\}$.

- ▶ \mathbf{L}_g is an ℓ -group and consists exactly of the invertible elements in \mathbf{L} .

Rmk. For an ℓ -pregroup \mathbf{L} the map $a \mapsto a^{\ell\ell}$ is an automorphism:

- ▶ L_g is its set of fixed points.
- ▶ n -periodicity means that this automorphism has order n .

Let \mathbf{L} be an n -periodic ℓ -pregroup. We define the terms

$$\sigma_n(x) := x \wedge x^{\ell\ell} \wedge \dots \wedge x^{\ell^{2n-2}},$$

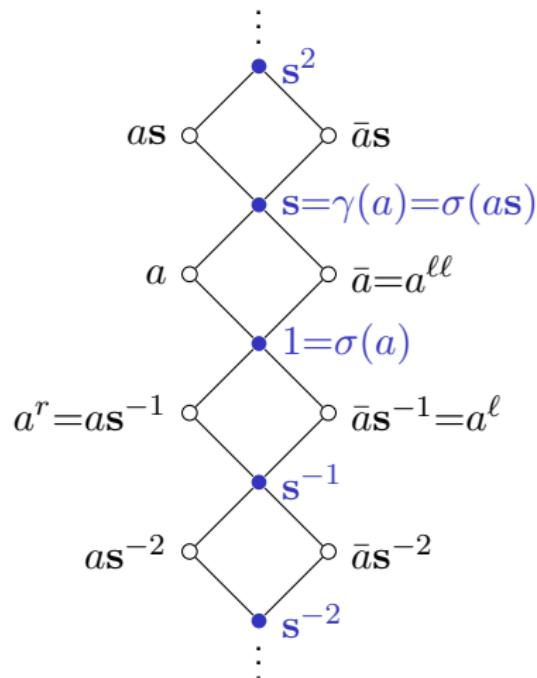
$$\gamma_n(x) := x \vee x^{\ell\ell} \vee \dots \vee x^{\ell^{2n-2}}.$$

Lem. For any n -periodic ℓ -pregroup, $L_g = \sigma[L] = \gamma[L]$. The map $a \mapsto \sigma(a)$ is a conucleus on \mathbf{L} and dually for the map $a \mapsto \gamma(a)$.

Group skeleton of $\mathbf{F}_n(\mathbb{Z})$

- The group skeleton of $\mathbf{F}_n(\mathbb{Z})$ is isomorphic to \mathbb{Z} and is generated by the element s with $s(x) = x + 1$.

$\mathbf{F}_2(\mathbb{Z})$



Groups skeleton and convex subalgebras

For any n -periodic ℓ -pregroup \mathbf{L} and $a \in L$, we set $\|a\| := \sigma(a)^{-1} \vee \gamma(a)$.

For $S \subseteq L$ we denote by $\mathbf{C}_L(S)$ the convex subuniverse of \mathbf{L} generated by S and we denote the lattice of convex subuniverses of \mathbf{L} by $\mathcal{C}(\mathbf{L})$.

Lem. Let \mathbf{L} be an n -periodic ℓ -pregroup and $S \subseteq L$. Then

$$\mathbf{C}_L(S) = \{a \in L : \|a\| \leq \|s_1\| \cdots \|s_k\| \text{ for some } s_1, \dots, s_k \in S\}.$$

Thm. For any n -periodic ℓ -pregroups the lattices $\mathcal{C}(\mathbf{L})$ and $\mathcal{C}(\mathbf{L}_g)$ are isomorphic via the inverse maps $H \mapsto H \cap L_g$ and $K \mapsto \mathbf{C}_L(K)$.

Cor. For any n -periodic ℓ -pregroups, $\mathcal{C}(\mathbf{L})$ is a frame. In particular, it is a distributive lattice.

Convex normal subalgebras

A subset M of an ℓ -pregroup \mathbf{L} is called **normal** if it is closed under conjugations, i.e., for $a \in M$ and $b \in L$, $bab^\ell \wedge 1 \in M$.

- ▶ This is equivalent to the usual definition for residuated lattices.

For an ℓ -pregroup \mathbf{L} , $\mathcal{N}(\mathbf{L})$ is the lattice of its normal convex subuniverses.

- ▶ $\mathcal{N}(\mathbf{L})$ is isomorphic to $\mathbf{Con}(\mathbf{L})$ (residuated lattice theory).

Lem. For any n -periodic ℓ -pregroup \mathbf{L} , $\mathcal{N}(\mathbf{L})$ embeds into $\mathcal{N}(\mathbf{L}_g)$ as a bounded infinitary meet-semilattice via the map $H \mapsto H \cap L_g$.

↪ If \mathbf{L}_g is (finitely) subdirectly irreducible or simple, then \mathbf{L} is (finitely) subdirectly irreducible or simple.

Convex normal subalgebras continued

We can do better for algebras $\mathbf{L} \in \mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ because $\mathbf{F}_n(\mathbb{Z})$ satisfies $\sigma_n(x)^n y \approx y \sigma_n(x)^n$:

- ▶ For each $g \in L_g$ with $g \leq 1$ and $a \in L$, we have $g^n \leq aga^\ell \wedge 1$.

Lem. If \mathbf{L} is an n -periodic ℓ -pregroup with $\mathbf{L} \models \sigma_n(x)^n y \approx y \sigma_n(x)^n$, then the lattices $\mathcal{N}(\mathbf{L})$ and $\mathcal{N}(\mathbf{L}_g)$ are isomorphic via the maps $H \mapsto H \cap L_g$ and $K \mapsto \text{C}_L(K)$.

Fact (Darnel et al. 2016). An ℓ -group that satisfies $x^n y \approx y x^n$ is abelian.

Prop. Any n -periodic ℓ -pregroup \mathbf{L} with $\mathbf{L} \models \sigma_n(x)^n y \approx y \sigma_n(x)^n$ is finitely subdirectly irreducible iff \mathbf{L}_g is a totally ordered abelian ℓ -group.

Main result and strategy

Main Thm. The variety $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ is axiomatized by $\sigma_n(x)^n y \approx y \sigma_n(x)^n$ and its FSIs are exactly the n -periodic ℓ -pregroups \mathbf{L} with \mathbf{L}_g a totally ordered abelian ℓ -group.

The proof of the main result can be split into three steps:

- ▶ Show that $\mathbf{F}_n(\mathbb{Z}) \models \sigma_n(x)^n y \approx y \sigma_n(x)^n$ and the FSIs of $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ have a totally ordered abelian group skeleton (already discussed).
- ▶ Show that $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ is closed under lexicographic products with totally ordered abelian ℓ -groups.
- ▶ Show that every finitely generated **proper** n -periodic ℓ -pregroup with a totally ordered abelian group skeleton is of the form $\mathbf{H} \overrightarrow{\times} \mathbf{F}_k(\mathbb{Z})$ with $k \mid n$ and \mathbf{H} a finitely generated totally ordered abelian ℓ -group.

Lexicographic products

Fact. For a totally ordered group \mathbf{G} and an (n -periodic) ℓ -pregroup \mathbf{L} their lexicographic product $\mathbf{G} \xrightarrow{\rightarrow} \mathbf{L}$ is again an (n -periodic) ℓ -pregroup.

An element g of an ℓ -pregroup \mathbf{L} is called a **strong order unit** if for each $a \in L$, there exists $n \in \mathbb{Z}^+$ such that $a \leq g^n$.

Lem. If an ℓ -pregroup \mathbf{L} contains a central invertible strong order unit g , then $\mathbb{V}(\mathbf{L})$ is closed under lexicographic products with totally ordered abelian groups.

Sketch. Embed $\mathbb{Z} \xrightarrow{\rightarrow} \mathbf{L}$ into an ultrapower $\mathbf{L}^{\mathbb{N}}/U$ via $(1, 0) \mapsto [(g, g^2, \dots)]$ and $(0, a) \mapsto [(a, a, \dots)]$ and check that this implies the closure under lex-products.

Cor. $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ is closed under lexicographic products with totally ordered abelian group.

Proof. Consider $\mathbf{s}^n \in \mathbf{F}_n(\mathbb{Z})$, where $\mathbf{s}(x) = x + 1$.

Main result and strategy

Main Thm. The variety $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ is axiomatized by $\sigma_n(x)^n y \approx y \sigma_n(x)^n$ and its FSIs are exactly the n -periodic ℓ -pregroups \mathbf{L} with \mathbf{L}_g a totally ordered abelian ℓ -group.

The proof of the main result can be split into three steps:

- ▷ Show that $\mathbf{F}_n(\mathbb{Z}) \models \sigma_n(x)^n y \approx y \sigma_n(x)^n$ and the FSIs of $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ have a totally ordered abelian group skeleton (already discussed).
- ▷ Show that $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ is closed under lexicographic products with totally ordered abelian ℓ -groups.
- ▶ Show that every finitely generated proper n -periodic ℓ -pregroup with a totally ordered abelian group skeleton is of the form $\mathbf{H} \xrightarrow{\sim} \mathbf{F}_k(\mathbb{Z})$ with $k \mid n$ and \mathbf{H} a finitely generated totally ordered abelian ℓ -group.

Wreath products

Let \mathbf{J} be a chain and \mathbf{L} be an ℓ -pregroup. The **wreath product** is defined as

$$\mathbf{Aut}(\mathbf{J}) \wr \mathbf{L} = (\mathbf{Aut}(\mathbf{J}) \times L^J, \wedge, \vee, \cdot, (id, \bar{1}), {}^\ell, {}^r),$$

where $\bar{1} = (1)_{i \in J}$, and for $(\tilde{f}, \bar{f}), (\tilde{g}, \bar{g}) \in \mathbf{Aut}(\mathbf{J}) \times L^J$,

$$(\tilde{f}, \bar{f}) \cdot (\tilde{g}, \bar{g}) = (\tilde{f} \circ \tilde{g}, (\bar{f} \otimes \tilde{g}) \cdot \bar{g}),$$

$$(\tilde{f}, \bar{f})^\ell = (\tilde{f}^{-1}, \bar{f}^\ell \otimes \tilde{f}^{-1}) \text{ and } (\tilde{f}, \bar{f})^r = (\tilde{f}^{-1}, \bar{f}^r \otimes \tilde{f}^{-1}),$$

where for $h \in \mathbf{Aut}(\mathbf{J})$ and $a \in L^J$, $(a \otimes h)_i = a_{h(i)}$;

the order of $\mathbf{Aut}(\mathbf{J}) \wr \mathbf{L}$ is defined by

$$(\tilde{f}, \bar{f}) \leq (\tilde{g}, \bar{g}) \iff \tilde{f} \leq \tilde{g} \text{ and } (\tilde{f}(i) = \tilde{g}(i) \implies \bar{f}_i \leq \bar{g}_i, \text{ for all } i \in J).$$

- If \mathbf{L} is an n -periodic ℓ -pregroup, then $\mathbf{Aut}(\mathbf{J}) \wr \mathbf{L}$ is an n -periodic ℓ -pregroup.

Local subalgebra

- ▶ Every n -periodic ℓ -pregroup embeds into $\mathbf{F}_n(\mathbf{J} \times \mathbb{Z}) \cong \mathbf{Aut}(\mathbf{J}) \wr \mathbf{F}_n(\mathbb{Z})$ for some chain \mathbf{J} (Galatos-Gallardo 2025).

Fact. For $\mathbf{L} \leq \mathbf{Aut}(\mathbf{J}) \wr \mathbf{F}_n(\mathbb{Z})$ the set $L_{\text{loc}} = \{(\tilde{f}, \bar{f}) \in L : \tilde{f} = id\}$ forms a subalgebra, which we call the **local subalgebra** of \mathbf{L} .

- ▶ The local subalgebra depends on the representation.

Lem. Let $\mathbf{L} \leq \mathbf{Aut}(\mathbf{J}) \wr \mathbf{F}_n(\mathbb{Z})$.

- (1) \mathbf{L}_{loc} is a convex normal subalgebra of \mathbf{L} .
- (2) $(\mathbf{L}_g)_{\text{loc}} = (\mathbf{L}_{\text{loc}})_g$ is a convex normal subalgebra of \mathbf{L}_g .
- (3) $\mathbf{L}/\mathbf{L}_{\text{loc}} \cong \mathbf{L}_g/(\mathbf{L}_{\text{loc}})_g$.
- (4) If $\mathbf{L}_g \neq \mathbf{L}$ is totally ordered, then $\mathbf{L}_{\text{loc}} \cong \mathbf{F}_k(\mathbb{Z})$ for $k \mid n$ and $(\mathbf{L}_g)_{\text{loc}} \cong \mathbb{Z}$.

- ▶ Item (4) relies on the result that $\mathbf{F}_n(\mathbb{Z})$ is generated by any of its elements of periodicity n . (sizable part of our paper!)

Characterization of finitely generated FSIs

Lem. If \mathbf{G} is a finitely generated totally ordered abelian group with convex subgroup \mathbb{Z} , then $\mathbf{G} \cong \mathbf{G}(\mathbb{Z}) \xrightarrow{\rightarrow} \mathbb{Z}$.

Lem. If $\mathbf{L} \leq \mathbf{Aut}(\mathbf{J}) \wr \mathbf{F}_n(\mathbb{Z})$ is a finitely generated n -periodic ℓ -pregroup with $\mathbf{L}_g \neq \mathbf{L}$ totally ordered and abelian, then \mathbf{L}_g is finitely generated and $\mathbf{L}_g \cong \mathbf{L}_g / (\mathbf{L}_g)_{\text{loc}} \xrightarrow{\rightarrow} \mathbb{Z}$.

Thm. If $\mathbf{L} \leq \mathbf{Aut}(\mathbf{J}) \wr \mathbf{F}_n(\mathbb{Z})$ is a finitely generated n -periodic ℓ -pregroup with $\mathbf{L}_g \neq \mathbf{L}$ totally ordered and abelian, then $\mathbf{L} \cong \mathbf{H} \xrightarrow{\rightarrow} \mathbf{F}_k(\mathbb{Z})$ with $k \mid n$ and \mathbf{H} a finitely generated totally ordered abelian ℓ -group.

Proof idea. We know $\mathbf{L}_g \cong \mathbf{G} \xrightarrow{\rightarrow} \mathbb{Z}$ and $(\mathbf{L}_{\text{loc}})_g \stackrel{?}{=} \mathbb{Z}$.

- ▷ Find an isomorphic copy \mathbf{H} of \mathbf{G} in \mathbf{L}_g such that its elements commute with the elements of \mathbf{L}_{loc} .
- ▷ Show that $\mathbf{L} \cong \mathbf{H} \xrightarrow{\rightarrow} \mathbf{L}_{\text{loc}}$.

Conclusion

We showed:

- ▶ $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ is axiomatized relative to LP_n by $\sigma_n(x)^n y \approx y \sigma_n(x)^n$.
- ▶ The FSIs of $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ are exactly the n -periodic ℓ -pregroups with a totally ordered abelian group skeleton.
- ▶ The finitely generated FSIs of $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ are of the form $\mathbf{H} \overrightarrow{\times} \mathbf{F}_k(\mathbb{Z})$ with $k \mid n$ and \mathbf{H} a finitely generated totally ordered abelian ℓ -group.

We further obtain:

- ▶ Explicit finite axiomatizations for (finite) joins of varieties of the form $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ and explicit descriptions of their subvariety lattices.
- ▶ $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ has only finitely many subvarieties. So it is ‘small’ in the subvariety lattice of LP_n .

Work in progress: Every proper subvariety of DLP is periodic.

Thank you!

Thank you!

For more details see:

N. Galatos and S. Santschi
Axiomatizing small varieties of periodic ℓ -pregroups.
J. Algebra 688 (2025) 755–802
doi:10.1016/j.jalgebra.2025.10.012