New Old Results

Ralph Freese

http://math.hawaii.edu/~ralph/
http://uacalc.org/
https://github.com/UACalc/
http://math.hawaii.edu/~ralph/Day/

Panglobal Algebra and Logic Seminar

Bjarni Jónsson

Philip Whitman, 1946

- (Whitman, 1946) Every lattice can be represented as a lattice of equivalence relations.

Bjarni Jónsson

Philip Whitman, 1946

- (Whitman, 1946) Every lattice can be represented as a lattice of equivalence relations.
Bjarni Jónsson, 1953
- Every lattice can be represented as a lattice of 4-permuting equivalence relations.

$$
\alpha \vee \beta=\alpha \circ \beta \circ \alpha \circ \beta
$$

Bjarni Jónsson

Philip Whitman, 1946

- (Whitman, 1946) Every lattice can be represented as a lattice of equivalence relations.
Bjarni Jónsson, 1953
- Every lattice can be represented as a lattice of 4-permuting equivalence relations.

$$
\alpha \vee \beta=\alpha \circ \beta \circ \alpha \circ \beta
$$

- Every lattice of 3-permuting equivalence relations is modular and

Bjarni Jónsson

Philip Whitman, 1946

- (Whitman, 1946) Every lattice can be represented as a lattice of equivalence relations.
Bjarni Jónsson, 1953
- Every lattice can be represented as a lattice of 4-permuting equivalence relations.

$$
\alpha \vee \beta=\alpha \circ \beta \circ \alpha \circ \beta
$$

- Every lattice of 3-permuting equivalence relations is modular and
- Conversely, every modular lattice can be represented as a lattice of 3-permuting equivalence relations.

Bjarni Jónsson

Philip Whitman, 1946

- (Whitman, 1946) Every lattice can be represented as a lattice of equivalence relations.
Bjarni Jónsson, 1953
- Every lattice can be represented as a lattice of 4-permuting equivalence relations.

$$
\alpha \vee \beta=\alpha \circ \beta \circ \alpha \circ \beta
$$

- Every lattice of 3-permuting equivalence relations is modular and
- Conversely, every modular lattice can be represented as a lattice of 3-permuting equivalence relations.
What's the story on lattices of permuting (= 2-permuting) equivalence relations??

Bjarni Jónsson

What's the story on lattices of permuting equivalence relations?

- Does every modular lattice have such a representation?

Bjarni Jónsson

What's the story on lattices of permuting equivalence relations?

- Does every modular lattice have such a representation?
- No. In fact
- there is an equation, the arguesian law, separating them:

$$
\begin{aligned}
& \left(a_{0} \vee b_{0}\right) \wedge\left(a_{1} \vee b_{1}\right) \wedge\left(a_{2} \vee b_{2}\right) \leq a_{0} \vee\left(b_{1} \vee\left[c_{2} \wedge\left(c_{0} \vee c_{1}\right)\right]\right) \\
& \text { where } c_{0}=\left(a_{1} \vee a_{2}\right) \wedge\left(b_{1} \vee b_{2}\right) \text { and cyclically. }
\end{aligned}
$$

Bjarni Jónsson

What's the story on lattices of permuting equivalence relations?

- Does every modular lattice have such a representation?
- No. In fact
- there is an equation, the arguesian law, separating them:

$$
\left(a_{0} \vee b_{0}\right) \wedge\left(a_{1} \vee b_{1}\right) \wedge\left(a_{2} \vee b_{2}\right) \leq a_{0} \vee\left(b_{1} \vee\left[c_{2} \wedge\left(c_{0} \vee c_{1}\right)\right]\right)
$$

where $c_{0}=\left(a_{1} \vee a_{2}\right) \wedge\left(b_{1} \vee b_{2}\right)$ and cyclically.

- Bjarni asked if the class of lattices representable by permuting equivalence relation is equational?

Bjarni Jónsson

What's the story on lattices of permuting equivalence relations?

- Does every modular lattice have such a representation?
- No. In fact
- there is an equation, the arguesian law, separating them:

$$
\left(a_{0} \vee b_{0}\right) \wedge\left(a_{1} \vee b_{1}\right) \wedge\left(a_{2} \vee b_{2}\right) \leq a_{0} \vee\left(b_{1} \vee\left[c_{2} \wedge\left(c_{0} \vee c_{1}\right)\right]\right)
$$

where $c_{0}=\left(a_{1} \vee a_{2}\right) \wedge\left(b_{1} \vee b_{2}\right)$ and cyclically.

- Bjarni asked if the class of lattices representable by permuting equivalence relation is equational?
- Answer: We still don't know.

Bjarni Jónsson

What's the story on lattices of permuting equivalence relations?

- Does every modular lattice have such a representation?
- No. In fact
- there is an equation, the arguesian law, separating them:

$$
\left(a_{0} \vee b_{0}\right) \wedge\left(a_{1} \vee b_{1}\right) \wedge\left(a_{2} \vee b_{2}\right) \leq a_{0} \vee\left(b_{1} \vee\left[c_{2} \wedge\left(c_{0} \vee c_{1}\right)\right]\right)
$$

where $c_{0}=\left(a_{1} \vee a_{2}\right) \wedge\left(b_{1} \vee b_{2}\right)$ and cyclically.

- Bjarni asked if the class of lattices representable by permuting equivalence relation is equational?
- Answer: We still don't know.
- Is it finitely axiomatizable?

Bjarni Jónsson

What's the story on lattices of permuting equivalence relations?

- Does every modular lattice have such a representation?
- No. In fact
- there is an equation, the arguesian law, separating them:

$$
\left(a_{0} \vee b_{0}\right) \wedge\left(a_{1} \vee b_{1}\right) \wedge\left(a_{2} \vee b_{2}\right) \leq a_{0} \vee\left(b_{1} \vee\left[c_{2} \wedge\left(c_{0} \vee c_{1}\right)\right]\right)
$$

where $c_{0}=\left(a_{1} \vee a_{2}\right) \wedge\left(b_{1} \vee b_{2}\right)$ and cyclically.

- Bjarni asked if the class of lattices representable by permuting equivalence relation is equational?
- Answer: We still don't know.
- Is it finitely axiomatizable?
- No (Mark Haiman)

A Universal Algebra Result

Theorem (B. Jónsson and RF)

If \mathcal{V} is congruence modular then it is congruence arguesian.

A Universal Algebra Result

Theorem (B. Jónsson and RF)

If \mathcal{V} is congruence modular then it is congruence arguesian.
The idea:

- Desagues Law holds in higher dimensional spaces.

A Universal Algebra Result

Theorem (B. Jónsson and RF)

If \mathcal{V} is congruence modular then it is congruence arguesian.
The idea:

- Desagues Law holds in higher dimensional spaces.
- Increase the dimension using \boldsymbol{S} and \boldsymbol{P}.

Higher arguesian identities: Bill Lampe

- A chain of identities of increasing strength:

$$
\bigwedge_{i=0}^{n-1}\left(x_{i} \vee x_{i}^{\prime}\right) \leq x_{0}^{\prime} \vee\left(x_{0} \wedge\left(x_{1} \vee\left[\left(x_{0}^{\prime} \vee x_{1}^{\prime}\right) \wedge \bigvee_{i=1}^{n-1} y_{i}\right]\right)\right) \quad\left(*_{n}\right)
$$

where $y_{i}=\left(x_{i} \vee x_{i+1}\right) \wedge\left(x_{i}^{\prime} \vee x_{i+1}^{\prime}\right)$, $\bmod n$ so
$y_{n-1}=\left(x_{n-1} \vee x_{0}\right) \wedge\left(x_{n-1}^{\prime} \vee x_{0}^{\prime}\right)$.

Higher arguesian identities: Bill Lampe

- Diagram showing $\left(*_{n}\right)$ holds in lattices of perm. equiv. rels.

$$
\bigwedge_{i=0}^{n-1}\left(\alpha_{i} \vee \alpha_{i}^{\prime}\right) \leq \alpha_{0}^{\prime} \vee\left(\alpha_{0} \wedge\left(\alpha_{1} \vee\left[\left(\alpha_{0}^{\prime} \vee \alpha_{1}^{\prime}\right) \wedge \bigvee_{i=1}^{n-1} \gamma_{i}\right]\right)\right) \quad\left(*_{n}\right)
$$

where $\gamma_{i}=\left(\alpha_{i} \vee \alpha_{i+1}\right) \wedge\left(\alpha_{i}^{\prime} \vee \alpha_{i+1}^{\prime}\right)$, $\bmod n$ so
$\gamma_{n-1}=\left(\alpha_{n-1} \vee \alpha_{0}\right) \wedge\left(\alpha_{n-1}^{\prime} \vee \alpha_{0}^{\prime}\right)$.
Let $\langle a, b\rangle \in \bigwedge_{i=0}^{n-1}\left(\alpha_{i} \vee \alpha_{i}^{\prime}\right)=\bigwedge_{i=0}^{n-1}\left(\alpha_{i} \circ \alpha_{i}^{\prime}\right)$. Then there exists c_{i} so that

Higher arguesian identities: Bill Lampe

- Diagram showing $\left(*_{n}\right)$ holds in lattices of perm. equiv. rels.

$$
\bigwedge_{i=0}^{n-1}\left(\alpha_{i} \vee \alpha_{i}^{\prime}\right) \leq \alpha_{0}^{\prime} \vee\left(\alpha_{0} \wedge\left(\alpha_{1} \vee\left[\left(\alpha_{0}^{\prime} \vee \alpha_{1}^{\prime}\right) \wedge \bigvee_{i=1}^{n-1} \gamma_{i}\right]\right)\right) \quad\left(*_{n}\right)
$$

Higher arguesian identities: Bill Lampe

- Diagram showing $\left(*_{n}\right)$ holds in lattices of perm. equiv. rels.

$$
\bigwedge_{i=0}^{n-1}\left(\alpha_{i} \vee \alpha_{i}^{\prime}\right) \leq \alpha_{0}^{\prime} \vee\left(\alpha_{0} \wedge\left(\alpha_{1} \vee\left[\left(\alpha_{0}^{\prime} \vee \alpha_{1}^{\prime}\right) \wedge \bigvee_{i=1}^{n-1} \gamma_{i}\right]\right)\right) \quad\left(*_{n}\right)
$$

Higher arguesian identities: Bill Lampe

- Diagram showing $\left(*_{n}\right)$ holds in lattices of perm. equiv. rels.

$$
\bigwedge_{i=0}^{n-1}\left(\alpha_{i} \vee \alpha_{i}^{\prime}\right) \leq \alpha_{0}^{\prime} \vee\left(\alpha_{0} \wedge\left(\alpha_{1} \vee\left[\left(\alpha_{0}^{\prime} \vee \alpha_{1}^{\prime}\right) \wedge \bigvee_{i=1}^{n-1} \gamma_{i}\right]\right)\right) \quad\left(*_{n}\right)
$$

Higher arguesian identities: Bill Lampe

- Diagram showing $\left(*_{n}\right)$ holds in lattices of perm. equiv. rels.

$$
\bigwedge_{i=0}^{n-1}\left(\alpha_{i} \vee \alpha_{i}^{\prime}\right) \leq \alpha_{0}^{\prime} \vee\left(\alpha_{0} \wedge\left(\alpha_{1} \vee\left[\left(\alpha_{0}^{\prime} \vee \alpha_{1}^{\prime}\right) \wedge \bigvee_{i=1}^{n-1} \gamma_{i}\right]\right)\right) \quad\left(*_{n}\right)
$$

Higher arguesian identities: Bill Lampe

$$
\bigwedge_{i=0}^{n-1}\left(\alpha_{i} \vee \alpha_{i}^{\prime}\right) \leq \alpha_{0}^{\prime} \vee\left(\alpha_{0} \wedge\left(\alpha_{1} \vee\left[\left(\alpha_{0}^{\prime} \vee \alpha_{1}^{\prime}\right) \wedge \bigvee_{i=1}^{n-1} \gamma_{i}\right]\right)\right)
$$

Remark: The relation $\left(*_{n}\right)$ holds if α_{i} and α_{i}^{\prime} permute, for each i.

Haiman's Lattices

Are the equations $\left(*_{n}\right)$ properly increasing in strength? Haiman constructs lattices $\mathbf{H}_{n}(\mathbf{F}), n \geq 3$ and \mathbf{F} a field with
$|\mathbf{F}|>2$, such that

- ($*_{n}$) fails in $\mathbf{H}_{n}(\mathbf{F})$.
- Every $n-1$ generated sublattice is proper.
- Every proper sublattice is embeddable into the lattice of subspaces of a vector space over \mathbf{F}.

Theorem (Haiman)

The class of lattices of permuting equivalence relations is not finitely axiomatizable.

- Notation: $\operatorname{Con}(\mathcal{V}):=\{\operatorname{Con}(\mathbf{A}): \mathbf{A} \in \mathcal{V}\}$.
- For \mathcal{V} a variety define the
- congruence prevariety: $\boldsymbol{S P C o n}(\mathcal{V})=\boldsymbol{S C o n}(\mathcal{V})$
- congruence variety: $\boldsymbol{H S P C o n}(\mathcal{V})=\boldsymbol{H S C o n}(\mathcal{V})$
- Notation: $\operatorname{Con}(\mathcal{V}):=\{\operatorname{Con}(\mathbf{A}): \mathbf{A} \in \mathcal{V}\}$.
- For \mathcal{V} a variety define the
- congruence prevariety: $\boldsymbol{\operatorname { S P } \boldsymbol { C o n } (\mathcal { V }) = \boldsymbol { S C o n } (\mathcal { V }) , ~ (V) .}$
- congruence variety: $\boldsymbol{H S P C o n}(\mathcal{V})=\boldsymbol{H S C o n}(\mathcal{V})$

Theorem (RF, 1994)

If a modular congruence variety is finitely based, then it is distributive.

- Notation: $\operatorname{Con}(\mathcal{V}):=\{\operatorname{Con}(\mathbf{A}): \mathbf{A} \in \mathcal{V}\}$.
- For \mathcal{V} a variety define the
- congruence prevariety: $\operatorname{SPCon}(\mathcal{V})=\operatorname{SCon}(\mathcal{V})$
- congruence variety: $\boldsymbol{H S P} \operatorname{Con}(\mathcal{V})=\boldsymbol{H S} \operatorname{Con}(\mathcal{V})$

Theorem (RF, 1994)

If a modular congruence variety is finitely based, then it is distributive.

Theorem (P. Lipparini \& RF, real soon)

If a proper congruence variety is finitely based, then it is join semidistributive.

Elements of the Proof

- None of the lattices $\mathbf{H}_{n}(\mathbf{F})$ lie in any proper congruence variety.

Elements of the Proof

- None of the lattices $\mathbf{H}_{n}(\mathbf{F})$ lie in any proper congruence variety. The proof uses the remark above and
- \mathbf{M}_{3} is projective for proper congruence varieties.

Elements of the Proof

- None of the lattices $\mathbf{H}_{n}(\mathbf{F})$ lie in any proper congruence variety. The proof uses the remark above and
- \mathbf{M}_{3} is projective for proper congruence varieties.
- The lattice of subspaces of a nondesarguesian plane cannot be embedded into a proper congruence variety.

Elements of the Proof

- None of the lattices $\mathbf{H}_{n}(\mathbf{F})$ lie in any proper congruence variety. The proof uses the remark above and
- \mathbf{M}_{3} is projective for proper congruence varieties.
- The lattice of subspaces of a nondesarguesian plane cannot be embedded into a proper congruence variety.
- A nonprincipal ultraproduct of the $\mathbf{H}_{n}(\mathbf{F})$'s (\mathbf{F} fixed) lies in a lattice of subspaces of a vector space over \mathbf{F}.

Elements of the Proof

- None of the lattices $\mathbf{H}_{n}(\mathbf{F})$ lie in any proper congruence variety. The proof uses the remark above and
- \mathbf{M}_{3} is projective for proper congruence varieties.
- The lattice of subspaces of a nondesarguesian plane cannot be embedded into a proper congruence variety.
- A nonprincipal ultraproduct of the $\mathbf{H}_{n}(\mathbf{F})$'s (\mathbf{F} fixed) lies in a lattice of subspaces of a vector space over \mathbf{F}.
- If \mathcal{V} is not congruence join semidistribuitve then its congruence variety $V \operatorname{Con}(\mathcal{V})$ contains $V \operatorname{Con}\left(\mathcal{M}_{p}\right)$ for some p, a prime or 0 .

Elements of the Proof

- Let

$$
\mathcal{C}_{\infty}=\bigcap_{p \text { a prime or } 0} \operatorname{SCon}\left(\mathcal{M}_{p}^{\mathrm{fd}}\right)
$$

be the class of all modular lattices that can be embedded into the lattice of subspaces of a finite dimensional vector space over a prime field.

Elements of the Proof

- Let

$$
\mathcal{C}_{\infty}=\bigcap \operatorname{SCon}\left(\mathcal{M}_{p}^{\text {fd }}\right) .
$$

be the class of all modular lattices that can be embedded into the lattice of subspaces of a finite dimensional vector space over a prime field.

Corollary

If \mathcal{v} is a variety with a weak difference term but which is not congruence meet semidistributive, then $\mathrm{C}_{\infty} \subseteq \boldsymbol{S C o n}(\mathcal{V})$.

Elements of the Proof

Figure: Two members of \mathcal{C}_{∞}

Mal'tsev Conditions and the Commutator

Related Mal'tsev conditions:

- Congruence modularity.
- Having a Hobby-McKenzie term.
- Having a weak difference term.
- Having a Taylor term.

Mal'tsev Conditions and the Commutator

Related Mal'tsev conditions:

- Congruence modularity.
- Having a Hobby-McKenzie term.
- Having a weak difference term.
- Having a Taylor term.

From the previous slide:

- If \mathcal{V} has a Hobby-McKenzie term then its congruence variety does not contain $\mathbf{H}_{n}(\mathbf{F})$.

Mal'tsev Conditions and the Commutator

Related Mal'tsev conditions:

- Congruence modularity.
- Having a Hobby-McKenzie term.
- Having a weak difference term.
- Having a Taylor term.

From the previous slide:

- If \mathcal{V} has a Hobby-McKenzie term then its congruence variety does not contain $\mathbf{H}_{n}(\mathbf{F})$. But also
- If \mathcal{V} has a weak difference term then its congruence prevariety does not contain $\mathbf{H}_{n}(\mathbf{F})$.

Part III: Alan Day

Part III: Alan Day

Let

- \mathfrak{L} be the lattice of all lattice varieties,
- \mathfrak{K} be all congruence varieties.
- Is \mathfrak{K} a lattice?

Part III: Alan Day

Let

- \mathfrak{L} be the lattice of all lattice varieties,
- \mathfrak{K} be all congruence varieties.
- Is \mathfrak{K} a lattice? Don't know.

Part III: Alan Day

Let

- \mathfrak{L} be the lattice of all lattice varieties,
- \mathfrak{K} be all congruence varieties.
- Is \mathfrak{K} a lattice? Don't know.

We do know

- \mathfrak{K} is a join subsemilattice of \mathfrak{L} (for finite joins).
- Infinite joins can differ.

Alan Day: Higher Polin Varieties

: Alan Day.
Polin's Non-Modular Congruence Variety.
14 pages, 1977.
math.hawaii.edu/~ralph/Day/
围 Alan Day.
Polin's Non-Modular Congruence Variety-Corrigendum.
5 pages, 1977.
math.hawaii.edu/~ralph/Day/
R Alan Day, Ralph Freese.
A characterization of identities implying congruence modularity, I. Canad. J. Math., 32:1140-1167, 1980.

Alan Day：Higher Polin Varieties

：Alan Day．
Polin＇s Non－Modular Congruence Variety．
14 pages， 1977.
math．hawaii．edu／～ralph／Day／
围 Alan Day．
Polin＇s Non－Modular Congruence Variety－Corrigendum．
5 pages， 1977.
math．hawaii．edu／～ralph／Day／
回 Alan Day，Ralph Freese．
A characterization of identities implying congruence modularity，I．Canad．J．Math．，32：1140－1167， 1980.
圄 Alan Day，Ralph Freese，J．B．Nation． Higher Polin Varieties．
Coming soon．

Higher Polin Varieties

Alan Day Ralph Freese and J. B. Nation

Abstract

A chain of varieties based on Polin's variety are introduced and studied. It is shown that the collection of all congruence varieties has finite joins and that this join agrees with the join in the lattice of all lattice varieties. Using the higher Polin varieties it is shown that infinite joins may di er from the join in the lattice of all varieties. Other properties of higher Polin varieties are explored.

Mathematics Subject Classi cation. 06B20, 08A30, 08B05, 08B15.
Keywords. congruence lattice, congruence variety, congruence semidistributivity, -permutability.

Let \mathcal{V} be a variety of algebras and let

$$
\operatorname{Con}(\mathcal{V})=\{\operatorname{Con}(\mathbf{A}): \mathbf{A} \in \mathcal{V}\} .
$$

The variety of lattices $V \operatorname{Con}(\mathcal{V})=\boldsymbol{S P C o n}(\mathcal{V})$ generated by the congruence lattices of the members of \mathcal{V}, is called the congruence variety associated with \mathcal{V}. Early in our careers the three of us studied congruence varieties. The subject began with the third author's thesis [16] which showed, among other things, that the lattice variety generated by \mathbf{N}_{5} (the 5 element nonmodular lattice) is not a congruence variety; see [7, Theorem 6.99]. This led to several papers, which generalized Nations's result, by us and others, $[1,4,9,10]$. The major open problem of the time was known alternately as the McKenzie conjecture, the Burris-McKenzie conjecture and Jónsson's question. It asked if there is a nonmodular congruence variety other than the variety of all lattices. This was resolved by S. V. Polin [17] who constructed a variety \mathcal{P} which is not congruence modular but does satisfy a nontrivial lattice equation as a congruence identity.

Communication between Russia and the west was not ideal in those days and preprints of Polin's paper were not available. Pavel Goralčík was able to obtain the details from Polin and communicated a sketch to the rst author in Prague. In 1977 the rst author lectured on the result at Vanderbilt and wrote up notes, $[2,3]$. Studying these notes carefully led to the paper [4] by the rst two authors. It shows that any nonmodular congruence variety

Corresponding author.

Alan Day: Higher Polin Varieties

- \mathcal{B} is the variety of Boolean algebras, signature $\left\{\wedge, 1,{ }^{\prime}\right\}$
- 2 a variety of meet semilattices with constant 1 and some unary operations u_{i}.
- Let $\mathbf{A} \in \mathcal{B}$ and \mathbf{S} a functor from \mathbf{A} to Q. So for $a \geq b \in A$
- $\mathbf{S}(a) \in Q$ and
- $\xi_{b}^{a}: \mathbf{S}(a) \rightarrow \mathbf{S}(b)$ are compatible homomorphisms.
- Let $Q[\mathcal{B}]$ have members:

$$
\begin{aligned}
& \mathbf{P}(\mathbf{S}, \mathbf{A})=\bigcup_{a \in A}\{a\} \times \mathbf{S}(a) \quad \text { with } \\
&\langle a, s\rangle \wedge\langle b, t\rangle=\left\langle a \wedge b, \xi_{a \wedge b}^{a}(s) \wedge \xi_{a \wedge b}^{b}(t)\right\rangle \\
& 1=\langle 1,1\rangle \\
& f^{\mathbf{P}}(\langle a, s\rangle)=\left\langle a, f^{\mathbf{S}(a)}(s)\right\rangle, \quad f \text { unary in the signature of } Q \\
&\langle a, s\rangle^{+}=\left\langle a^{\prime}, 1\right\rangle \quad \text { (external complement) }
\end{aligned}
$$

Alan Day: Higher Polin Varieties

- $Q[\mathcal{B}]$ is a variety.

Alan Day: Higher Polin Varieties

- $\mathcal{Q}[\mathcal{B}]$ is a variety.
- Let \mathcal{P}_{0} be the trivial variety of signature $\{\wedge, 1\}$ and define
- $\mathcal{P}_{n+1}=\mathcal{P}_{n}[\mathcal{B}]$.

Alan Day: Higher Polin Varieties

- $\mathcal{Q}[\mathcal{B}]$ is a variety.
- Let \mathcal{P}_{0} be the trivial variety of signature $\{\wedge, 1\}$ and define
- $\mathcal{P}_{n+1}=\mathcal{P}_{n}[\mathcal{B}]$.
- \mathcal{P}_{1} is Boolean algebras and \mathcal{P}_{2} is Polin's variety.

Alan Day: Higher Polin Varieties

- $2[B]$ is a variety.
- Let \mathcal{P}_{0} be the trivial variety of signature $\{\wedge, 1\}$ and define
- $\mathcal{P}_{n+1}=\mathcal{P}_{n}[\mathcal{B}]$.
- \mathcal{P}_{1} is Boolean algebras and \mathcal{P}_{2} is Polin's variety.
- $\mathbf{N}_{5}, \mathbf{N}_{6}$, etc. be McKenzie lattices:

Alan Day: Higher Polin Varieties

Theorem

For $k \geq 2, \mathbf{N}_{k+3} \in \operatorname{SCon}\left(\mathcal{P}_{k}\right)$ but $\mathbf{N}_{k+4} \notin \boldsymbol{V C o n}\left(\mathcal{P}_{k}\right)$. The containments

$$
V \operatorname{Con}\left(\mathcal{P}_{1}\right) \subset V \operatorname{Con}\left(\mathcal{P}_{2}\right) \subset V \operatorname{Con}\left(\mathcal{P}_{3}\right) \subset \cdots
$$

form a strictly increasing chain of congruence varieties whose set union, which is the join in the lattice \mathfrak{L} of lattice varieties, is not a congruence variety.

Alan Day: Higher Polin Varieties

Theorem

If Q is k-permutable, then $Q[\mathcal{B}]$ is $(k+2)$-permutable.

Corollary

\mathcal{P}_{n} is $2 n$-permutable.

Alan Day: Higher Polin Varieties

Theorem

If Q is k-permutable, then $Q[\mathcal{B}]$ is $(k+2)$-permutable.

Corollary

\mathcal{P}_{n} is $2 n$-permutable.

Theorem

The congruence variety of \mathcal{P}_{n} is semidistributive (both kinds).

Alan Day: Higher Polin Varieties

Theorem

If Q is k-permutable, then $Q[\mathcal{B}]$ is $(k+2)$-permutable.

Corollary

\mathcal{P}_{n} is $2 n$-permutable.

Theorem

The congruence variety of \mathcal{P}_{n} is semidistributive (both kinds).

Theorem (using Kearnes-Nation 2008)

If \mathcal{V} is congruence meet semidistributive and n-permutable then its whole congruence variety is semidistributive (both kinds).

