Generic automorphisms of Boolean powers

Peter Mayr

September 23, 2025

Joint work with Nik Ruškuc (University of St Andrews)
Supported by the EPSRC and NSF

Finite direct powers

Let A be a finite simple Mal'cev algebra

- simple:
 - the total congruence and = are the only congruences of A
- ► Mal'cev:
 - **A** has a term m satisfying m(x, y, y) = x = m(y, y, x)
- abelian: operations of A are affine on a module

Examples

abelian

- simple modules
- •

non-abelian

- ▶ simple non-abelian (quasi)groups
- ► full matrix rings over finite fields

$$F^{n\times n}$$
-module F^n

$$(\mathbb{Z}_p, x-y+z, x+1)$$

$$(A_5,\cdot)$$

$$(F^{n\times n},+,\cdot)$$

Homomorphisms between finite direct powers

Lemma

Let **A** be a finite simple Mal'cev algebra, $k, n \in \mathbb{N}$, and $h \colon \mathbf{A}^k \to \mathbf{A}^n$ a homomorphism.

1. If A is abelian, then

$$h(x_1,\ldots,x_k)=(x_1,\ldots,x_k)\cdot B+c$$

for some field F, $B \in F^{k \times n}$ and $c \in A^n$.

2. (Foster, Pixley) If A is non-abelian, then

$$h(x_1,\ldots,x_k)=(\alpha_1(x_{i_1}),\ldots,\alpha_n(x_{i_n}))$$

for $\alpha_1, \ldots, \alpha_n$ automorphisms or endomorphisms to a trivial subalgebra of **A**.

A little bit of Fraïssé

Let **A** be a finite simple Mal'cev algebra.

$$K := \{ \mathbf{A}^k \mid k \in \mathbb{N} \} \text{ has }$$

the joint embedding property (JEP),

the amalgamation property (AP) iff A is non-abelian or has a trivial subalgebra,

the hereditary property (HP) iff all proper subalgebras of A are trivial.

(Generalized) Fraïssé limit

Theorem (cf. Fraïssé)

Let K be a countable class of finite structures with JEP and AP. There exists a unique (up to isomorphism) countable structure $\mathbf{D} =: \operatorname{Flim} K$, the generalized **Fraïssé limit** of K, such that

- 1. every finitely generated substructure of \mathbf{D} embeds into some element of K,
- 2. **D** is a direct limit of structures in K,
- every isomorphism between substructures of D that are in K
 extends to an automorphism of D (D is K-homogeneous).

Question

What is $\operatorname{Flim}\{\mathbf{A}^k \mid k \in \mathbb{N}\}$ for a finite simple Mal'cev algebra **A**?

A little bit of Ramsey

Theorem (M, Ruškuc 2025)

Let **A** be a finite simple non-abelian Mal'cev algebra. Then

$$K := \{ \mathbf{A}^m \mid m \in \mathbb{N} \}$$

is Ramsey,

i.e. for all $k, m, n \in \mathbb{N}$ there exists $r \in \mathbb{N}$ such that for every k-coloring of copies of \mathbf{A}^m in \mathbf{A}^r there is a monochromatic copy of \mathbf{A}^n in \mathbf{A}^r .

Proof.

Follows from the Foster-Pixley Theorem and the Graham-Rothschild Theorem.

Hence the automorphism group of $\operatorname{Flim} K$ with a natural order is **extremely amenable** (Kechris, Pestov, Todorcevic 2005).

Question

What is $F\lim K$?

Filtered Boolean powers (Arens, Kaplansky 1948)

A finite algebra (with discrete topology),

B Boolean algebra with Stone space X.

$$\mathbf{A}^{\mathbf{B}} := \{ f : X \to A \mid f \text{ continuous} \} \leq \mathbf{A}^{X}$$

is a Boolean power.

e is **idempotent** if $\{e\} \leq A$.

For distinct $x_1, \ldots, x_n \in X$ and idempotents e_1, \ldots, e_n in **A**,

$$(\mathbf{A}^{\mathbf{B}})_{e_{1},...,e_{n}}^{x_{1},...,x_{n}} := \{ f \in \mathbf{A}^{\mathbf{B}} \mid f(x_{i}) = e_{i} \text{ for all } i \} \leq \mathbf{A}^{X}$$

is a filtered Boolean power.

The Fraïssé limit as filtered Boolean power

Theorem (M, Ruškuc 2023)

For a finite simple Mal'cev algebra **A**, non-abelian or with trivial subalgebra,

$$\operatorname{Flim}\{\mathbf{A}^k \mid k \in \mathbb{N}\} \cong (\mathbf{A}^{\mathbf{B}})_{e_1,\dots,e_n}^{x_1,\dots,x_n}$$

where

- $ightharpoonup e_1, \ldots, e_n$ is the set of all idempotents of **A**,
- **B** is the countable atomless Boolean algebra with distinct x_1, \ldots, x_n in its Stone space 2^{ω} (the Cantor space).

Proof.

 $(\mathbf{A}^{\mathbf{B}})_{e_1,\dots,e_n}^{\chi_1,\dots,\chi_n}$ satisfies the defining properties of the Fraïssé limit.

ω -categorical filtered Boolean powers

A countable structure M is ω -categorical if its theory has a unique countable model (up to isomorphism).

Theorem (cf. Macintyre, Rosenstein 1976)

Let ${\bf A}$ be a finite algebra, ${\bf B}$ the countable atomless Boolean algebra.

Then any filtered Boolean power $(\mathbf{A}^{\mathbf{B}})_{e_1,\dots,e_n}^{\mathsf{x}_1,\dots,\mathsf{x}_n}$ is ω -categorical.

Largeness in permutation groups

Let M be a countable infinite structure, $G := \operatorname{Aut} M$.

► *G* is a topological (Polish) group under **pointwise convergence**: basic open sets are cosets of stabilizers of finite tuples over *M*

$$G_{m_1,\ldots,m_k}:=\{g\in G\mid g(m_i)=m_i \text{ for all } i\leq k\}.$$

▶ $(h_1, ..., h_n) \in G^n$ is **generic** if its orbit under the diagonal conjugation action of G,

$$\{(h_1^g,\ldots,h_n^g)\,|\,g\in G\},$$

is **comeager**, i.e., contains the intersection of countably many dense open subsets of G^n .

▶ *G* has **ample generics** if it has generic *n*-tuples for each $n \in \mathbb{N}$.

Theorem (Kechris, Rosendal 2007)

Assume $G = \operatorname{Aut} M$ has ample generics.

- 1. Then G has the **small index property (SIP)** i.e., each $H \leq G$ of index $\leq 2^{\aleph_0}$ is open:
- 2. If M is also ω -categorical, then G has
 - a. uncountable cofinality,
 - uncountable connailty,
 - i.e., G is not a countable union of a chain of proper subgroups, b. the **Bergman property**,
 - i.e., for each generating set $1 \in E = E^{-1}$ of G there exists $k \in \mathbb{N}$ such that $G = E^k$.

Overview

countably infinite <i>M</i>	SIP	uncountable cofinality	Bergman	ample generics
set N	Dixon Neumann Thomas '86	Macpherson Neumann '86	Bergman '06	Kechris Rosendal '07
random graph	Hodges Hodkinson Lascar Shelah '93	Hodges Hodkinson Lascar Shelah '93	Kechris Rosendal '07	Hrushovsky '92
(\mathbb{Q},\leq)	Truss '89	Gourion '92	Droste Holland '05	no, Hodkinson
vector space over fin field	Evans '86	Thomas '96	Tolstykh '06	???
2^{ω} , atomless Boolean B	Truss '87	Droste Göbel '05	Droste Göbel '05	Kwiatkowska '12
$(\mathbf{A}^{\mathbf{B}})_{e_1,\ldots,e_n}^{x_1,\ldots,x_n}$	M Ruškuc '23	M Ruškuc '23	M Ruškuc '23	M Ruškuc '25

Automorphism groups of filtered Boolean powers

Automorphisms of a Boolean algebra ${\bf B}$ correspond to **homeomorphisms** (continuous bijections) of its Stone space X,

Aut $\mathbf{B} \cong \operatorname{Homeo} X$.

Theorem (M, Ruškuc 2023; for groups cf. Apps 1981)

Let ${\bf A}$ be a finite simple non-abelian Mal'cev algebra with idempotents e_1,\ldots,e_n in distinct ${\rm Aut}\ {\bf A}$ -orbits,

B the countable atomless Boolean algebra,

 2^{ω} the Cantor space with distinct $x_1, \ldots, x_n \in 2^{\omega}$. Then

$$\operatorname{Aut}\left((\boldsymbol{A}^{\boldsymbol{B}})_{e_{1},\ldots,e_{n}}^{x_{1},\ldots,x_{n}}\right)\cong N\rtimes\left(\operatorname{Homeo}2^{\omega}\right)_{x_{1},\ldots,x_{n}}$$

where *N* is isomorphic to the closure of $((\operatorname{Aut} \mathbf{A})^{\mathbf{B}})_{1,\dots,1}^{x_1,\dots,x_n}$.

Ample generics for pointwise stabilizers in $Homeo 2^{\omega}$

Theorem (M, Ruškuc 2025; for n=0 Kwiatkowska 2012) $H:=(\operatorname{Homeo} 2^{\omega})_{x_1,\dots,x_n}$ for $x_1,\dots,x_n\in 2^{\omega}$ has ample generics.

Proof idea

 (h_1, \ldots, h_m) is a generic *m*-tuple in H^m iff

$$(2^{\omega}, h_1, \ldots, h_m, x_1, \ldots, x_n)$$

is a **projective Fraïssé limit** (Irwin, Solecki 2006) of finite topological structures

$$(A, s_1, \ldots, s_m, p_1, \ldots, p_n)$$

for certain binary relations s_1, \ldots, s_m and constants p_1, \ldots, p_n .

Ample generics for filtered Boolean powers

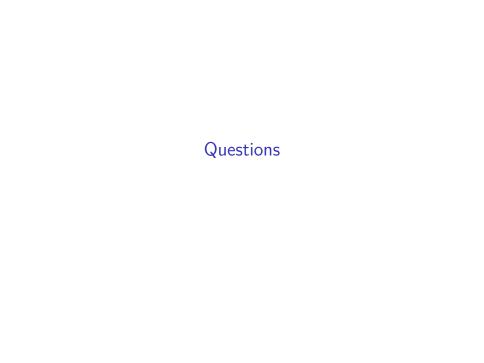
Theorem (M, Ruškuc 2025)

Let **A** be a finite simple nonabelian Mal'cev algebra, **B** the countable atomless Boolean algebra.

Then
$$G := \operatorname{Aut}\left((\mathbf{A}^{\mathbf{B}})_{e_1,\dots,e_n}^{x_1,\dots,x_n}\right)$$
 has ample generics.

Proof.

- ▶ Recall $G = N \rtimes H$ for N isomorphic to the closure of $((\operatorname{Aut} \mathbf{A})^{\mathbf{B}})_{1,\dots,1}^{x_1,\dots,x_n}$ and $H \cong (\operatorname{Homeo} X)_{x_1,\dots,x_n}$.
- Let **h** be a generic m-tuple in H^m .
- ▶ For every $\mathbf{a} \in N^m$ there exists $c \in N$ such that $\mathbf{ah} = \mathbf{h}^c$.
- ► Then $\mathbf{h}^G = N^m \mathbf{h}^H$ is dense and the intersection of countably many open subsets of G.
- ▶ Hence **h** is a generic m-tuple in G^m .



Open

Let **A** be a finite simple non-abelian group (Mal'cev algebra).

Question

Is every **C** in the variety HSP(**A**) generated by **A** an extension of a filtered Boolean power of **A** by a group in HSP(proper subgroups of **A**)? True for countable **C**.

True for countable C

Question (Bryant, Evans 1997)

Does the automorphism group of the free group of countable rank in $\mathsf{HSP}(\mathbf{A})$ have the small index property?

Let ${\bf A}$ be a finite 1-dim vector space (abelian Mal'cev algebra), ${\bf B}$ the countable atomless Boolean algebra.

Then $\mathbf{V} := \mathbf{A}^{\mathbf{B}} = \operatorname{Flim} \{ \mathbf{A}^k \mid k \in \mathbb{N} \}$ is the vector space of countable dimension.

Question

Does $\operatorname{Aut} \mathbf{A}^{\mathbf{B}} = \operatorname{GL} \mathbf{V}$ have ample generics?

Known that $\operatorname{GL} \mathbf{V}$ has SIP, uncountable cofinality, Bergman property, $\mathcal{B}(\mathbf{V})$ -generics (Hodges, Hodkinson, Lascar, Shelah 1993).