Finite supernilpotent semigroups

Peter Mayr

PALS, February 4, 2025

Question

What should

- ▶ abelian,
- nilpotent,
- solvable

mean for semigroups?

The general algebraic answer

Term condition commutator: a language independent commutator $[\alpha, \beta]$ for congruences α, β of any algebra **A**. [M, N] for normal subgroups M, N of a group G.

Guiding idea:

A is abelian if $\{(a, a) : a \in A\}$ is the class of a congruence on $\mathbf{A} \times \mathbf{A}$. A group G is abelian iff $\{(g,g) : g \in G\}$ is normal in $G \times G$.

Then for 1/0 the total/trivial congruence on **A**:

- G' = 1• A is abelian if [1, 1] = 0.
- [G', G'] = 1• A is 2-solvable if [[1, 1], [1, 1]] = 0.
- A is (right) 2-nilpotent if [[1, 1], 1] = 0. [[G, G], G] = 1

• A is 2-supernilpotent if [1, 1, 1] = 0.

What it means for semigroups

	abelian	nilpotent	super- nilpotent	solvable	
general	Warne 1994				
band	rectangular $L imes R$				
inverse	group				
monoid	embeds in group		???	???	M 2019
S with 0	$S^{2} = 0$		<i>S</i> ^{<i>n</i>} = 0		Mudrinski, Radović 2023
Rees matrix semigroup $M(G, I, \Lambda, P)$	$G \times L \times R$	G nilp	otent	G solvable	Mudrinski, Radović 2023
finite	nilpotent extension of $M(G, I, \Lambda, P)$				M 2024

For a group G, sets I, Λ and $P \in G^{\Lambda \times I}$,

 $M(G, I, \Lambda, P) := I \times G \times \Lambda$ with $(i, g, \lambda) * (j, h, \mu) := (i, gP_{\lambda,j}h, \mu).$

▶ *S* is a nilpotent extension of *M* if $S^n \subseteq M$ for some $n \in \mathbb{N}$.

The binary commutator

Binary commutators, term condition

Freese, McKenzie's (1987) generalization from normal subgroups: **A** algebra group G α, β congruences on **A** \equiv_M, \equiv_N for normal subgroups M, N

$$M(\alpha,\beta) := \left\langle \begin{bmatrix} a \\ b \\ b \end{bmatrix}, \begin{bmatrix} c \\ c \\ c \end{bmatrix} : (a \equiv_{\alpha} b), (c \equiv_{\beta} d) \right\rangle \leq \mathbf{A}^{2 \times 2}$$

Definition

The **commutator** $[\alpha, \beta]$ is the smallest congruence δ of **A** such that

$$\forall \begin{bmatrix} \mathsf{u} \ \mathsf{v} \\ \mathsf{w} \ \mathsf{x} \end{bmatrix} \in M(\alpha, \beta) \colon \ \mathbf{u} \equiv_{\delta} \mathsf{v} \Rightarrow \mathbf{w} \equiv_{\delta} \mathsf{x}$$

 $[\equiv_M, \equiv_N]$ is $\equiv_{[M,N]}$

 $\begin{bmatrix} \alpha, \beta \end{bmatrix} \text{ is the smallest } \delta \text{ such that } \forall \begin{bmatrix} u & v \\ w & x \end{bmatrix} \in \left\langle \begin{bmatrix} a & a \\ b & b \end{bmatrix}, \begin{bmatrix} c & d \\ c & d \end{bmatrix} \mid a \equiv_{\alpha} b, c \equiv_{\beta} d \right\rangle:$ $u \equiv_{\delta} v \Rightarrow w \equiv_{\delta} x$

Example

For $(\mathbb{N},+)$ every element of M(1,1) has the form

$$\begin{bmatrix} u & v \\ w & x \end{bmatrix} = \begin{bmatrix} a & a \\ b & b \end{bmatrix} + \begin{bmatrix} c & d \\ c & d \end{bmatrix} \text{ for } a, b, c, d \in \mathbb{N}.$$

Hence $\underbrace{u = v}_{\text{Thus }}$ implies $\underbrace{w = x}_{\text{N}}$.
Thus $[1, 1] = 0.$ $(\mathbb{N}, +)$ is abelian.

 $\begin{bmatrix} \alpha, \beta \end{bmatrix} \text{ is the smallest } \delta \text{ such that } \forall \begin{bmatrix} u & v \\ w & x \end{bmatrix} \in \left\langle \begin{bmatrix} a & a \\ b & b \end{bmatrix}, \begin{bmatrix} c & d \\ c & d \end{bmatrix} \mid a \equiv_{\alpha} b, c \equiv_{\beta} d \right\rangle : \\ u \equiv_{\delta} v \Rightarrow w \equiv_{\delta} x$

Example

For the semilattice $\mathbf{S} := (\{0,1\}, \cdot)$

$$M(1_{\mathsf{S}},1_{\mathsf{S}}) \ni \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

 $Equality in row 1 \Rightarrow row 2 is in the commutator. \\ 0 = 0 \text{ implies } 0 \equiv_{[1_{\textbf{S}}, 1_{\textbf{S}}]} 1. \\ Thus [1_{\textbf{S}}, 1_{\textbf{S}}] = 1_{\textbf{S}}. \\ \textbf{S} \text{ is commutative but not abelian.}$

Lemma

In semilattices, $[\alpha, \beta] = \alpha \wedge \beta$.

Just like in groups

For any algebra **A**

- 1. [., .] is monotone in both arguments
- 2. $[\alpha, \beta] \le \alpha \land \beta$ $[M, N] \le M \cap N$
- 3. $[\alpha|_B, \beta|_B] \leq [\alpha, \beta]|_B$ for any subalgebra B of **A** $[M \cap H, N \cap H] \leq [M, N] \cap H$
- By 3. subalgebras of abelian algebras ([1,1]=0) are abelian.

Corollary

Solvable semigroups cannot contain non-trivial subsemilattices.

All is not well

In congruence modular varieties (groups, rings, loops, lattices,...)

- 4. $[\alpha, \beta] = [\beta, \alpha]$ 5. $[\alpha, \beta \lor \gamma] = [\alpha, \beta] \lor [\alpha, \gamma]$ 6. $[\alpha, (\alpha, \beta) \lor (\alpha)] = [\alpha, \beta] \lor [\alpha, \gamma]$ 7. [M, NL] = [M, N][M, L]7. [M, NL] = [M, N][M, L]
- 6. $[\alpha/\gamma, \beta/\gamma] = [\alpha, \beta]/\gamma$ [M/L, N/L] = [M, N]/L

Warning: All of these may fail for semigroups.

Counter example for 6. $(\mathbb{N}, +)$ is abelian. For the ideal $I := \mathbb{N} \setminus \{0\}$, the Rees quotient $\mathbb{N} / I \cong (\{0, 1\}, \cdot)$ is not abelian.

Quotients of abelian algebras ([1,1]=0) may not be abelian.

Nilpotence

Nilpotence

If commutators are not symmetric, there are 2 lower central series:

For any algebra **A** abelian = right 1-nilpotent = left 1-nilpotent abelian \Rightarrow *n*-nilpotent \Rightarrow *n*-solvable

Nilpotent monoids

Theorem (M 2019)

For a monoid **S** and $n \in \mathbb{N}$ TFAE:

- 1. **S** is left and right *n*-nilpotent.
- 2. **S** is cancellative and right *n*-nilpotent.
- 3. **S** is cancellative and satisfies $q_n(x, y, \overline{z}) = q_n(y, x, \overline{z})$.

4. S embeds into an *n*-nilpotent group.

 $3 \Leftrightarrow 4$. by Mal'cev (1953), Neumann, Taylor (1963)

$$q_1(x, y, \overline{z}) := xy$$

$$q_{n+1}(x, y, \overline{z}) := q_n(x, y, \overline{z}) z_n q_n(y, x, \overline{z})$$

Higher commutators

Higher commutators (Bulatov 2002)

For congruences $\alpha_1, \alpha_2, \alpha_3$ of **A**, let $M(\alpha_1, \alpha_2, \alpha_3) \leq \mathbf{A}^{2^3}$ be generated by all cubes

Blue edges denote $(a_1, b_1) \in \alpha_1$, green $(a_2, b_2) \in \alpha_2$, orange $(a_3, b_3) \in \alpha_3$.

Definition

The ternary **higher commutator** $[\alpha_1, \alpha_2, \alpha_3]$ is the smallest congruence δ such that any element in $M(\alpha_1, \alpha_2, \alpha_3)$ satisfies the term condition

If the $2^2 - 1$ red edges on the left are in δ , then all are.

Basic properties of higher commutators

Let $k \in \mathbb{N}$.

- $[\alpha_1, \ldots, \alpha_k]$ is defined similarly via hypercubes in \mathbf{A}^{2^k} .
- In general [α₁,...,α_k] is not an iterated binary commutator. But for groups [N₁,...,N_k] = ∏_{π∈S_k}[..[N_{π(1)}, N_{π(2)}],...,N_{π(k)}].

For any algebra A

1. the higher commutator $[\ldots]$ is monotone in each argument

2.
$$[\alpha_1,\ldots,\alpha_k] \leq \alpha_1 \wedge \cdots \wedge \alpha_k$$

- 3. $[\alpha_1|_B, \ldots, \alpha_k|_B] \leq [\alpha_1, \ldots, \alpha_k]|_B$ for any subalgebra B of **A**
- 4. $[\alpha_1,\ldots,\alpha_k] \leq [\alpha_2,\ldots,\alpha_k]$

Supernilpotence

For any algebra **A** [1,1] \ge [1,1,1] \ge [1,1,1,1] \ge ... **A** is *n*-supernilpotent if [1,...,1] = 0.

- ▶ For groups, *n*-supernilpotent = *n*-nilpotent.
- In congruence modular varieties, a finite algebra is supernilpotent iff it is a direct product of nilpotent algebras of prime power order (Kearnes 1998).
- ► For finite algebras, supernilpotent ⇒ (left and right) nilpotent (Kearnes, Szendrei 2020).
- In Taylor varieties, supernilpotent ⇒ left nilpotent (Moorhead 2019) but not in general (Moore, Moorhead 2019)

Supernilpotent semigroups

Finite nilpotent semigroups are supernilpotent

Theorem (M 2024)

For a finite semigroup $\boldsymbol{\mathsf{S}}$ TFAE:

- 1. S is left nilpotent.
- 2. **S** is right nilpotent.
- 3. **S** is supernilpotent.
- 4. **S** is a nilpotent extension of a Rees matrix semigroup $M(G, I, \Lambda, P)$ with nilpotent group G.

• Recall for a group G, sets I, Λ and $P \in G^{\Lambda \times I}$,

 $M(G, I, \Lambda, P) := I \times G \times \Lambda$ with $(i, g, \lambda) * (j, h, \mu) := (i, gP_{\lambda,j}h, \mu)$.

▶ *S* is a nilpotent extension of *M* if $S^n \subseteq M$ for some $n \in \mathbb{N}$.

1., 2., 3. \Rightarrow 4. follow from

subalgebras of (super)nilpotent algebras are (super)nilpotent,

facts on idempotents in finite semigroups.

The converse follow from

Theorem (M 2024)

Let **S** be a semigroup such that $S^d \cong M(G, I, \Lambda, P)$ and G is *e*-nilpotent. Then

- 1. **S** is (2d + e)-nilpotent,
- 2. **S** is 2*de*-supernilpotent.

Proof 2: Let
$$S^{d} = M(G, I, \Lambda, P) =: R$$
 with G e-nilpotent
1. To show $[1, ..., 1] = 0$, consider $M(1, ..., 1) \leq S^{2^{2de+1}}$ with
generators constant on cosets of a hyperplane in 2^{2ed+1} . (higher)
2. $M(1, ..., 1) = \underbrace{\left\{\begin{array}{c} \text{products of} \\ \geq d \text{ generators} \end{array}\right\}}_{=:U \leq R^{2^{2de+1}}} \cup \begin{cases} \text{elements satisfying} \\ \text{TC with} = \end{cases}$
3. $U = \left\langle \begin{array}{c} \text{products of} \\ d \text{ generators} \end{array}\right\rangle \leq \left\langle u \in R^{2^{2de+1}} : u \text{ is constant on cosets of the} \\ \text{intersection of } d \text{ hyperplanes} \end{matrix}\right\rangle$
4. Multiplying 2 generators of U inserts a sandwich matrix over G that is constant on cosets of the intersection of $2d$ hyperplanes.
5. So the projection of U on its G -component is a subgroup of $V := \left\langle v \in G^{2^{2de+1}} : v \text{ is constant on cosets of the} \\ \text{intersection of } 2d \text{ hyperplanes} \end{matrix}\right)$

- 6. By group commutator calculus, V satisfies TC with =.
- 7. Hence $M(1, \ldots, 1)$ satisfies TC and $[1, \ldots, 1] = 0$.

2de+1

Open problems

Questions

- 1. Characterize nilpotent/solvable semigroups.
 - M 2019: Free monoids satisfy [1, [1, 1]] = 0, hence are 2-solvable (but in general not right nilpotent)..
- 2. Determine central congruences $[\alpha, 1] = 0$, commutators $[\alpha, \beta]$
 - Kinyon, Stanovsky 2023: inverse semigroups
- 3. Is nilpotent = supernilpotent for semigroups?
 - ▶ M 2019: For monoids, 2-nilpotent = 2-supernilpotent.
 - There are finite examples with distinct nilpotency and supernilpotency degrees.