Filtered Boolean powers and their automorphism groups

Peter Mayr

February 6, 2024

뎔
Mathematics
UNIVERSITY OF COLORADO BOULDER
Joint work with Nik Ruškuc (University of St Andrews)

Outline

1. varieties generated by simple Mal'cev algebras
2. properties of filtered Boolean powers
3. Varieties

Primal algebras

A finite algebra \mathbf{A} is primal if any $f: A^{k} \rightarrow A$ is a term function of \mathbf{A}.

Example

- Boolean algebra of size 2
- $\left(\mathbb{Z}_{p},+, \cdot, 0,1\right)$ for p prime

Let $V:=V(\mathbf{A})$ be the variety generated by a primal \mathbf{A}.

- $V_{\text {fin }}=\left\{\mathbf{A}^{k} \mid k \in \mathbb{N}\right\}$
- $V=$ Boolean powers $\mathbf{A}^{\mathbf{B}}$ (Foster 1953)
- V is categorically equivalent to the variety of Boolean algebras (Hu 1969)

Functionally complete algebras

A finite algebra \mathbf{A} is functionally complete if any $f: A^{k} \rightarrow A$ is a polynomial function of \mathbf{A}.

Example

- finite simple nonabelian groups
- finite fields

For Mal'cev algebras (having a ternary term $m(x, y, y)=m(y, y, x)=x$, e.g. (quasi)groups, rings, ...)

- functionally complete $=$ simple nonabelian

Let \mathbf{A} be a finite simple nonabelian Mal'cev algebra, $V:=V(\mathbf{A})$, $W:=V($ proper subalgebras of $\mathbf{A})$.

- $V_{\text {fin }}=\left\{\mathbf{A}^{k} \times \mathbf{C} \mid k \in \mathbb{N}, \mathbf{C} \in W_{\text {fin }}\right\}$

Finite direct powers

Lemma (Foster, Pixley, Werner)

Let \mathbf{A} be a finite simple nonabelian Mal'cev algebra, $k, n \in \mathbb{N}$. Then every homomorphism $h: \mathbf{A}^{k} \rightarrow \mathbf{A}^{n}$ is of the form

$$
h\left(x_{1}, \ldots, x_{k}\right)=\left(\alpha_{1}\left(x_{i_{1}}\right), \ldots, \alpha_{n}\left(x_{i_{n}}\right)\right)
$$

for $\alpha_{1}, \ldots, \alpha_{n}$ automorphisms or endomorphisms to a 1-element subalgebra of \mathbf{A}.

Finite direct powers are (essentially) a Fraïssé class

Let \mathbf{A} be a finite simple nonabelian Mal'cev algebra.
$K:=\left\{\mathbf{A}^{k} \mid k \in \mathbb{N}\right\}$ has

- the joint embedding property (JEP),

V

- the amalgamation property (AP),

- the hereditary property (HP) iff all proper subalgebras of \mathbf{A} are trivial.
Note. In general $V(\mathbf{A})_{\text {fin }}$ does not have AP.

Fraïssé limit

$K:=\left\{\mathbf{A}^{k} \mid k \in \mathbb{N}\right\}$ for \mathbf{A} a finite simple nonabelian Mal'cev algebra

Theorem (Fraïssé)
There exists a unique (up to isomorphism) countable algebra
$\mathbf{D}=$: Flim K, the Fraïssé limit of K, such that

1. every finitely generated subalgebra of \mathbf{D} embeds into some element of K,
2. \mathbf{D} is a direct limit of algebras in K,
3. every isomorphism between subalgebras of \mathbf{D} that are in K extends to an automorphism of \mathbf{D} (K-homogeneous).

Moreover, FlimK is ω-categorical.

Question
What is FlimK explicitly?

Filtered Boolean powers (Arens, Kaplansky 1948)

A algebra (with discrete topology),
B Boolean algebra with Stone space X.

$$
\mathbf{A}^{\mathbf{B}}:=\{f: X \rightarrow A \mid f \text { continuous }\} \leq \mathbf{A}^{X}
$$

is a Boolean power.
e is idempotent if $\{e\} \leq \mathbf{A}$.
For distinct $x_{1}, \ldots, x_{n} \in X$ and idempotents e_{1}, \ldots, e_{n} in \mathbf{A},

$$
\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}}:=\left\{f \in \mathbf{A}^{\mathbf{B}} \mid f\left(x_{i}\right)=e_{i} \text { for all } i\right\} \leq \mathbf{A}^{X}
$$

is a filtered Boolean power.

The Fraïssé limit as filtered Boolean power

Theorem (M, Ruškuc 2023)
For a finite simple nonabelian Mal'cev algebra A

$$
\operatorname{Flim}\left(\mathbf{A}^{k} \mid k \in \mathbb{N}\right) \cong\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}}
$$

where

- e_{1}, \ldots, e_{n} is the set of idempotents of \mathbf{A},
- \mathbf{B} is the countable atomless Boolean algebra with distinct x_{1}, \ldots, x_{n} in the Cantor space X.

Proof.
Check that $\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}}$ satisfies the defining properties of the Fraïssé limit.

Free algebras of countable rank in $V(\mathbf{A})$

Theorem (M, Ruškuc 2023; for groups Bryant, Groves 1991)
Let \mathbf{A} be a finite simple nonabelian Mal'cev algebra, $V:=V(\mathbf{A})$, θ minimal such that $\mathbf{F}_{V}(\omega) / \theta$ is in $W:=V$ (proper subalgebras of $\left.\mathbf{A}\right)$.
Then each θ-class, which is a subalgebra of $\mathbf{F}_{V}(\omega)$, is isomorphic to

$$
\operatorname{Flim}\left(\mathbf{A}^{k} \mid k \in \mathbb{N}\right) \cong\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}} .
$$

Proof.
Consider $\mathbf{F}_{V}(\omega) \leq \mathbf{A}^{\mathbb{A}^{\mathbb{N}}}$.

Corollary (M, Ruškuc 2023)
For \mathbf{A} a finite simple nonabelian group, loop, ring,

$$
\mathbf{F}_{V}(\omega) \cong\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}}^{x_{1}} \rtimes \mathbf{F}_{W}(\omega) .
$$

2. Automorphisms of filtered Boolean powers

Largeness in permutation groups

Let M be a countable infinite structure, $G:=$ Aut M.

- G is a topological (Polish) group under pointwise convergence: basic open sets are cosets of stabilizers of finite tuples over M

$$
G_{m_{1}, \ldots, m_{k}}:=\left\{g \in G \mid g\left(m_{i}\right)=m_{i} \text { for all } i \leq k\right\}
$$

- M has the small index property (SIP) if each $H \leq G$ of index $<2^{\aleph_{0}}$ is open.
- G has uncountable cofinality if it is not a countable union of a chain of proper subgroups.
- G has the Bergman property if for each generating set $1 \in E=E^{-1}$ of G there exists $k \in \mathbb{N}$ such that $G=E^{k}$.
- G has ample generics if for each $n \in \mathbb{N}$ the conjugacy action of G on G^{n} has a comeager orbit (i.e. one containing the intersection of countably many dense open subsets of G^{n}).

Theorem (Kechris, Rosendal 2007)

1. Ample generics imply SIP and uniqueness of the Polish topology on AutM.
2. For ω-categorical M, ample generics imply uncountable cofinality and the Bergman property for Aut M.

	SIP	uncountable cofinality	Bergman	ample generics
\mathbb{N}	Dixon Neumann Thomas '86	Macpherson Neumann '86	Bergman '06	Kechris Rosendal '07
random graph	Hodges Hodkinson Lascar Shelah '93	Hodges Hodkinson Lascar Shelah '93	Kechris Rosendal '07	Hrushovsky '92
(\mathbb{Q}, \leq)	Truss '89	Gourion '92	Droste Holland '05	no, Hodkinson
free group of rank ω	Bryant Evans '97	Bryant Evans '97	Tolstykh '07	Bryant Evans '97
Cantor space	Truss '87	Droste Göbel '05	Droste Göbel '05	Kwiatkowska '12
$\left(\mathbf{A}^{\mathbf{B})_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}}}\right.$	M Ruškuc '23 Rask	M Ruškuc '23	M Ruškuc '23	???

ω-categorical filtered Boolean powers

A countable structure M is ω-categorical if its theory has a unique countable model (up to isomorphism).

Theorem
Let \mathbf{A} be a finite simple nonabelian Mal'cev algebra,
B the countable atomless Boolean algebra.
Then any filtered Boolean power $\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}}$ is ω-categorical.
Proof.
By Macintyre, Rosenstein 1976

- the augmented Boolean algebra $\left(\mathbf{B}, x_{1}, \ldots, x_{n}\right)$ is ω-categorical
- and hence $\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}}$ is.

Congruences

Congruences of a Boolean algebra B are determined by filters (the classes of 1).

The equalizer of $f, g \in \mathbf{A}^{\mathbf{B}}$ is

$$
[[f=g]]:=\{x \in X \mid f(x)=g(x)\} .
$$

For a filter F on \mathbf{B},

$$
\theta_{F}:=\left\{(f, g) \in \mathbf{A}^{\mathbf{B}} \mid[[f=g]] \in F\right\}
$$

is a congruence of $\mathbf{A}^{\mathbf{B}}$.
Lemma (cf. Burris 1975)
Let \mathbf{A} be a finite simple non-abelian Mal'cev algebra,
B a Boolean algebra. Then
$\operatorname{Con}\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}}=\left\{\theta_{F} \mid F\right.$ is a filter contained in $\left.\bigcap_{i=1}^{n} x_{i}\right\}$.

Automorphism groups of filtered Boolean powers

Automorphisms of a Boolean algebra B correspond to homeomorphisms (continuous bijections) of its Stone space X,

$$
\text { Aut } \mathbf{B} \cong \text { Homeo } X
$$

Theorem (M, Ruškuc 2023; for groups cf. Apps 1981)
Let \mathbf{A} be a finite simple non-abelian Mal'cev algebra with idempotents e_{1}, \ldots, e_{n} in distinct Aut A-orbits,
B the countable atomless Boolean algebra, X the Cantor space with distinct $x_{1}, \ldots, x_{n} \in X$. Then

$$
\operatorname{Aut}\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}} \cong N \rtimes(\text { Homeo } X)_{x_{1}, \ldots, x_{n}}
$$

where N is isomorphic to the closure of $\left((\operatorname{Aut} \mathbf{A})^{\mathbf{B}}\right)_{1, \ldots, 1}^{x_{1}, \ldots, x_{n}}$.

SIP for expanded Boolean algebras

Theorem (M, Ruškuc 2023; for $n=0$ Truss 1987)
Let $G:=(\text { Homeo } X)_{x_{1}, \ldots, x_{n}}$ for x_{1}, \ldots, x_{n} in the Cantor space X, let $H \leq G$ such that $|G: H|<2^{\aleph_{0}}$.
Then there exist clopens b_{1}, \ldots, b_{m} partitioning X such that $G_{b_{1}, \ldots, b_{m}} \leq H$.

Proof.
Uses piecewise patching of homeomorphisms on clopens in $X \backslash\left\{x_{1}, \ldots, x_{n}\right\}$.

SIP for filtered Boolean powers

Theorem (M, Ruškuc 2023, for groups Bryant, Evans 1997)
Let \mathbf{A} be a finite simple nonabelian Mal'cev algebra,
B the countable atomless Boolean algebra.
Then any filtered Boolean power $\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, \chi_{n}}$ has SIP.
Proof.

- $\operatorname{Aut}\left(\mathbf{A}^{\mathrm{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}} \cong N \rtimes C$ for $C:=(\text { Homeo } X)_{x_{1}, \ldots, \chi_{n}}$.
- Let $H \leq \operatorname{Aut}\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}}$ have small index.
- Then $C \cap H$ has small index in C and contains $C_{b_{1}, \ldots, b_{m}}$ for clopens b_{1}, \ldots, b_{m} partitioning X.
- $N \cap H$ has small index in N and is invariant under $C_{b_{1}, \ldots, b_{m}}$.
- H contains the stabilizer of the finitely many functions that are constant on b_{1}, \ldots, b_{m}.

Uncountable strong cofinality for expanded Boolean algebras

G has uncountable strong cofinality if G is not a countable union of proper subsets $U_{1} \subseteq U_{2} \subseteq \ldots$ with $U_{i}=U_{i}^{-1}$ and $U_{i}^{2} \subseteq U_{i+1}$ for all $i \in \mathbb{N}$.
Lemma (Droste, Göbel 2005)
uncountable strong cofinality
\Leftrightarrow uncountable cofinality and Bergman property

Theorem (M, Ruškuc 2023; for $n=0$ Droste, Göbel 2005)
Let X be the Cantor space, $x_{1}, \ldots, x_{n} \in X$.
Then (Homeo $X)_{x_{1}, \ldots, x_{n}}$ has uncountable strong cofinality.
Proof.
Uses piecewise patching of homeomorphisms on clopens in $X \backslash\left\{x_{1}, \ldots, x_{n}\right\}$.

Uncountable strong cofinality for filtered Boolean powers

Theorem (M, Ruškuc 2023)
Let \mathbf{A} be a finite simple nonabelian Mal'cev algebra,
B the countable atomless Boolean algebra.
Then for any filtered Boolean power $\operatorname{Aut}\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}}$ has uncountable strong cofinality.

Proof.
Uses the semidirect decomposition of $\operatorname{Aut}\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}, \ldots, e_{n}}^{x_{1}, \ldots, x_{n}}$ and the result on (Homeo $X)_{x_{1}, \ldots, \chi_{n}}$.

Questions

Open

Let \mathbf{A} be a finite simple nonabelian group (Mal'cev algebra).
Question
Is every \mathbf{C} in $V(\mathbf{A})$ an extension of a filtered Boolean power of \mathbf{A} by a group in V (proper subgroups of $\mathbf{A})$?
True for countable C.

Question (Bryant, Evans 1997)
Does the free group of countable rank in $V(\mathbf{A})$ have SIP (uncountable cofinality, Bergman property)?

Question

For \mathbf{B} the countable atomless Boolean algebra, does $\operatorname{Aut}\left(\mathbf{A}^{\mathbf{B}}\right)_{e_{1}}^{x_{1}}$ have ample generics?

