Filtered Boolean powers and their automorphism groups

Peter Mayr

February 6, 2024

Joint work with Nik Ruškuc (University of St Andrews)

Outline

- $1. \ varieties generated by simple Mal'cev algebras$
- 2. properties of filtered Boolean powers

1. Varieties

Primal algebras

A finite algebra **A** is **primal** if any $f: A^k \to A$ is a term function of **A**. Example

- Boolean algebra of size 2
- $(\mathbb{Z}_p, +, \cdot, 0, 1)$ for *p* prime

Let $V := V(\mathbf{A})$ be the variety generated by a primal \mathbf{A} .

$$\blacktriangleright V_{\mathsf{fin}} = \{\mathbf{A}^k \mid k \in \mathbb{N}\}\$$

► V = Boolean powers **A**^B (Foster 1953)

 V is categorically equivalent to the variety of Boolean algebras (Hu 1969)

Functionally complete algebras

A finite algebra **A** is **functionally complete** if any $f: A^k \to A$ is a polynomial function of **A**.

Example

- finite simple nonabelian groups
- finite fields

For Mal'cev algebras (having a ternary term m(x, y, y) = m(y, y, x) = x, e.g. (quasi)groups, rings, ...)

functionally complete = simple nonabelian

Let **A** be a finite simple nonabelian Mal'cev algebra, $V := V(\mathbf{A})$, $W := V(\text{proper subalgebras of } \mathbf{A})$.

$$\blacktriangleright V_{\mathsf{fin}} = \{ \mathbf{A}^k \times \mathbf{C} \mid k \in \mathbb{N}, \mathbf{C} \in W_{\mathsf{fin}} \}$$

Lemma (Foster, Pixley, Werner)

Let **A** be a finite simple nonabelian Mal'cev algebra, $k, n \in \mathbb{N}$. Then every homomorphism $h: \mathbf{A}^k \to \mathbf{A}^n$ is of the form

$$h(x_1,\ldots,x_k)=(\alpha_1(x_{i_1}),\ldots,\alpha_n(x_{i_n}))$$

for $\alpha_1, \ldots, \alpha_n$ automorphisms or endomorphisms to a 1-element subalgebra of **A**.

Finite direct powers are (essentially) a Fraïssé class

Let **A** be a finite simple nonabelian Mal'cev algebra. $\mathcal{K} := \{\mathbf{A}^k \mid k \in \mathbb{N}\}$ has

the joint embedding property (JEP),

the amalgamation property (AP),

Х

W

Note. In general $V(\mathbf{A})_{\text{fin}}$ does not have AP.

Fraïssé limit

 $\mathcal{K} := \{\mathbf{A}^k \mid k \in \mathbb{N}\}$ for \mathbf{A} a finite simple nonabelian Mal'cev algebra

Theorem (Fraïssé)

There exists a unique (up to isomorphism) countable algebra $\mathbf{D} =: \operatorname{Flim} K$, the **Fraïssé limit** of K, such that

- 1. every finitely generated subalgebra of D embeds into some element of K,
- 2. **D** is a direct limit of algebras in K,
- 3. every isomorphism between subalgebras of **D** that are in K extends to an automorphism of **D** (*K*-homogeneous).

Moreover, $\operatorname{Flim} K$ is ω -categorical.

Question What is Flim*K* explicitly? Filtered Boolean powers (Arens, Kaplansky 1948)

A algebra (with discrete topology),B Boolean algebra with Stone space X.

$$\mathbf{A}^{\mathbf{B}} := \{ f \colon X \to A \mid f \text{ continuous} \} \leq \mathbf{A}^{X}$$

is a Boolean power.

e is **idempotent** if $\{e\} \leq A$.

For distinct $x_1, \ldots, x_n \in X$ and idempotents e_1, \ldots, e_n in **A**,

$$(\mathbf{A}^{\mathbf{B}})_{e_1,\ldots,e_n}^{x_1,\ldots,x_n} := \{ f \in \mathbf{A}^{\mathbf{B}} \mid f(x_i) = e_i \text{ for all } i \} \leq \mathbf{A}^X$$

is a filtered Boolean power.

The Fraïssé limit as filtered Boolean power

Theorem (M, Ruškuc 2023)

For a finite simple nonabelian Mal'cev algebra ${f A}$

$$\operatorname{Flim}(\operatorname{\mathsf{A}}^k\mid k\in\mathbb{N})\cong(\operatorname{\mathsf{A}}^\operatorname{\mathsf{B}})^{x_1,\ldots,x_n}_{e_1,\ldots,e_n}$$

where

• e_1, \ldots, e_n is the set of idempotents of **A**,

▶ **B** is the countable atomless Boolean algebra with distinct *x*₁,..., *x*_n in the Cantor space *X*.

Proof.

Check that $(\mathbf{A}^{\mathbf{B}})_{e_1,\ldots,e_n}^{x_1,\ldots,x_n}$ satisfies the defining properties of the Fraïssé limit.

Free algebras of countable rank in $V(\mathbf{A})$

Theorem (M, Ruškuc 2023; for groups Bryant, Groves 1991) Let **A** be a finite simple nonabelian Mal'cev algebra, $V := V(\mathbf{A})$, θ minimal such that $\mathbf{F}_V(\omega)/\theta$ is in W := V(proper subalgebras of **A**). Then each θ -class, which is a subalgebra of $\mathbf{F}_V(\omega)$, is isomorphic to

$$\operatorname{Flim}(\mathbf{A}^k \mid k \in \mathbb{N}) \cong (\mathbf{A}^{\mathbf{B}})_{e_1,\ldots,e_n}^{x_1,\ldots,x_n}.$$

Proof. Consider $\mathbf{F}_V(\omega) \leq \mathbf{A}^{\mathcal{A}^{\mathbb{N}}}$.

Corollary (M, Ruškuc 2023) For A a finite simple nonabelian group, loop, ring,

$$\mathbf{F}_{V}(\omega) \cong (\mathbf{A}^{\mathbf{B}})_{e_{1}}^{x_{1}} \rtimes \mathbf{F}_{W}(\omega).$$

2. Automorphisms of filtered Boolean powers

Largeness in permutation groups

Let *M* be a countable infinite structure, G := AutM.

G is a topological (Polish) group under pointwise convergence: basic open sets are cosets of stabilizers of finite tuples over M

$$G_{m_1,\ldots,m_k} := \{g \in G \mid g(m_i) = m_i \text{ for all } i \leq k\}.$$

- M has the small index property (SIP) if each H ≤ G of index < 2^{ℵ0} is open.
- G has uncountable cofinality if it is not a countable union of a chain of proper subgroups.
- *G* has the **Bergman property** if for each generating set $1 \in E = E^{-1}$ of *G* there exists $k \in \mathbb{N}$ such that $G = E^k$.
- G has ample generics if for each n ∈ N the conjugacy action of G on Gⁿ has a comeager orbit (i.e. one containing the intersection of countably many dense open subsets of Gⁿ).

Theorem (Kechris, Rosendal 2007)

- 1. Ample generics imply SIP and uniqueness of the Polish topology on Aut*M*.
- 2. For ω -categorical M, ample generics imply uncountable cofinality and the Bergman property for AutM.

	SIP	uncountable cofinality	Bergman	ample generics
N	Dixon Neumann Thomas '86	Macpherson Neumann '86	Bergman '06	Kechris Rosendal '07
random graph	Hodges Hodkinson Lascar Shelah '93	Hodges Hodkinson Lascar Shelah '93	Kechris Rosendal '07	Hrushovsky '92
(\mathbb{Q},\leq)	Truss '89	Gourion '92	Droste Holland '05	no, Hodkinson
free group of rank ω	Bryant Evans '97	Bryant Evans '97	Tolstykh '07	Bryant Evans '97
Cantor space	Truss '87	Droste Göbel '05	Droste Göbel '05	Kwiatkowska '12
$(\mathbf{A}^{\mathbf{B}})_{e_1,\ldots,e_n}^{x_1,\ldots,x_n}$	M Ruškuc '23	M Ruškuc '23	M Ruškuc '23	???

$\omega\text{-}categorical filtered Boolean powers$

A countable structure M is ω -categorical if its theory has a unique countable model (up to isomorphism).

Theorem

Let **A** be a finite simple nonabelian Mal'cev algebra, **B** the countable atomless Boolean algebra.

Then any filtered Boolean power $(\mathbf{A}^{\mathbf{B}})_{e_1,...,e_n}^{x_1,...,x_n}$ is ω -categorical.

Proof.

By Macintyre, Rosenstein 1976

- ▶ the augmented Boolean algebra $(\mathbf{B}, x_1, \dots, x_n)$ is ω -categorical
- ▶ and hence $(\mathbf{A}^{\mathbf{B}})_{e_1,...,e_n}^{x_1,...,x_n}$ is.

Congruences

Congruences of a Boolean algebra B are determined by **filters** (the classes of 1).

The equalizer of $f, g \in \mathbf{A}^{\mathbf{B}}$ is

$$[[f = g]] := \{x \in X \mid f(x) = g(x)\}.$$

For a filter F on \mathbf{B} ,

$$\theta_{\mathsf{F}} := \{(f,g) \in \mathbf{A}^{\mathsf{B}} \mid [[f=g]] \in \mathsf{F}\}$$

is a congruence of $\mathbf{A}^{\mathbf{B}}$.

Lemma (cf. Burris 1975)

Let **A** be a finite simple non-abelian Mal'cev algebra, **B** a Boolean algebra. Then

$$\operatorname{Con}(\mathbf{A}^{\mathbf{B}})_{e_1,\ldots,e_n}^{x_1,\ldots,x_n} = \{\theta_F \mid F \text{ is a filter contained in } \bigcap_{i=1}^n x_i\}.$$

Automorphism groups of filtered Boolean powers

Automorphisms of a Boolean algebra **B** correspond to **homeomorphisms** (continuous bijections) of its Stone space X,

Aut $\mathbf{B} \cong \operatorname{Homeo} X$.

Theorem (M, Ruškuc 2023; for groups cf. Apps 1981) Let **A** be a finite simple non-abelian Mal'cev algebra with idempotents e_1, \ldots, e_n in distinct Aut **A**-orbits, **B** the countable atomless Boolean algebra, X the Cantor space with distinct $x_1, \ldots, x_n \in X$. Then

$$\operatorname{Aut}(\mathbf{A}^{\mathbf{B}})_{e_{1},\ldots,e_{n}}^{x_{1},\ldots,x_{n}} \cong N \rtimes (\operatorname{Homeo} X)_{x_{1},\ldots,x_{n}}$$

where N is isomorphic to the closure of $((Aut A)^B)_{1,...,1}^{x_1,...,x_n}$.

SIP for expanded Boolean algebras

Theorem (M, Ruškuc 2023; for n = 0 Truss 1987) Let $G := (\text{Homeo}X)_{x_1,...,x_n}$ for $x_1, ..., x_n$ in the Cantor space X, let $H \leq G$ such that $|G : H| < 2^{\aleph_0}$. Then there exist clopens $b_1, ..., b_m$ partitioning X such that $G_{b_1,...,b_m} \leq H$.

Proof.

Uses piecewise patching of homeomorphisms on clopens in $X \setminus \{x_1, \ldots, x_n\}.$

SIP for filtered Boolean powers

Theorem (M, Ruškuc 2023, for groups Bryant, Evans 1997)

Let **A** be a finite simple nonabelian Mal'cev algebra, **B** the countable atomless Boolean algebra. Then any filtered Boolean power $(\mathbf{A}^{\mathbf{B}})_{e_1,\ldots,e_n}^{x_1,\ldots,x_n}$ has SIP.

Proof.

- ▶ $\operatorname{Aut}(\mathbf{A}^{\mathbf{B}})_{e_1,...,e_n}^{x_1,...,x_n} \cong N \rtimes C$ for $C := (\operatorname{Homeo} X)_{x_1,...,x_n}$.
- ▶ Let $H \leq \operatorname{Aut}(\mathbf{A}^{\mathbf{B}})_{e_1,\ldots,e_n}^{x_1,\ldots,x_n}$ have small index.
- ▶ Then $C \cap H$ has small index in C and contains $C_{b_1,...,b_m}$ for clopens $b_1, ..., b_m$ partitioning X.
- ▶ $N \cap H$ has small index in N and is invariant under $C_{b_1,...,b_m}$.
- H contains the stabilizer of the finitely many functions that are constant on b₁,..., b_m.

Uncountable strong cofinality for expanded Boolean algebras

G has **uncountable strong cofinality** if *G* is not a countable union of proper subsets $U_1 \subseteq U_2 \subseteq \ldots$ with $U_i = U_i^{-1}$ and $U_i^2 \subseteq U_{i+1}$ for all $i \in \mathbb{N}$.

Lemma (Droste, Göbel 2005)

uncountable strong cofinality ⇔ uncountable cofinality and Bergman property

Theorem (M, Ruškuc 2023; for n = 0 Droste, Göbel 2005) Let X be the Cantor space, $x_1, \ldots, x_n \in X$. Then $(\text{Homeo}X)_{x_1,\ldots,x_n}$ has uncountable strong cofinality.

Proof.

Uses piecewise patching of homeomorphisms on clopens in $X \setminus \{x_1, \ldots, x_n\}.$

Uncountable strong cofinality for filtered Boolean powers

Theorem (M, Ruškuc 2023)

Let **A** be a finite simple nonabelian Mal'cev algebra, **B** the countable atomless Boolean algebra. Then for any filtered Boolean power $\operatorname{Aut}(\mathbf{A}^{\mathbf{B}})_{e_1,\ldots,e_n}^{x_1,\ldots,x_n}$ has uncountable strong cofinality.

Proof.

Uses the semidirect decomposition of ${\rm Aut}({\pmb{A}}^B)_{e_1,\ldots,e_n}^{x_1,\ldots,x_n}$ and the result on $({\rm Homeo}X)_{x_1,\ldots,x_n}.$

Questions

Open

Let \mathbf{A} be a finite simple nonabelian group (Mal'cev algebra).

Question

Is every **C** in $V(\mathbf{A})$ an extension of a filtered Boolean power of **A** by a group in V(proper subgroups of **A**)? True for countable **C**.

Question (Bryant, Evans 1997)

Does the free group of countable rank in $V(\mathbf{A})$ have SIP (uncountable cofinality, Bergman property)?

Question

For \bm{B} the countable atomless Boolean algebra, does ${\rm Aut}(\bm{A}^B)_{e_1}^{x_1}$ have ample generics?