Using Prover9 for research on ortholattices and locally integral involutive residuated po-monoids

Peter Jipsen

Chapman University, California, USA

Panglobal Algebra and Logic Seminar University of Colorado Boulder, April 18, 2023

Peter Jipsen

Outline

Part 1: Joint work with **J.B. Nation and Ralph Freese**, U. Hawaii Ortholattice varieties and some equational bases

Part 2: Joint work with **Melissa Sugimoto** (CUNY), José Gil-Férez and Sid Lodhia (Chapman)

Plonka sums of locally integral involutive po-monoids

Peter Jipsen

Ortholattices

An ortholattice $(A, +, \cdot, ', 0, 1)$ is a lattice $(A, +, \cdot)$ with a unary orthocomplement ' that satisfies

$$x'' = x$$
, $(x + y)' = x' \cdot y'$, $x \cdot x' = 0$ and $x + x' = 1$.
Examples: Boolean algebras, $MO_n = a_1 \propto a'_1 \qquad \cdots \qquad a_n \sim a'_n$
Benzene hexagon $H = b \circ a' \circ b' \qquad \text{Not an OL:} \qquad N_5 \circ b'$

Peter Jipsen

How does this look in Prover9 using Colab?

Go to http://colab.research.google.com and paste:

!pip install provers
!git clone https://github.com/jipsen/Prover9.git
from provers import *; execfile("/content/Prover9/Prover9.py")

The first 3 lines take 30 seconds (but only need to run once). p9 calls Mace4 and Prover9 for 100 and 0 seconds respectively. [8] means find all models up to cardinality 8

Prover9/Mace4 output

```
Number of nonisomorphic models of cardinality 2 is 1
No model of cardinality 3
Number of nonisomorphic models of cardinality 4 is 1
No model of cardinality 5
Number of nonisomorphic models of cardinality 6 is 2
No model of cardinality 7
Number of nonisomorphic models of cardinality 8 is 5
Fine spectrum: [1, 1, 0, 1, 0, 2, 0, 5]
```

Mace is short for Models and counterexamples

See https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/

In Colab one can show diagrams of Mace4 output

L = L[2]+L[4]+L[6]+L[8]show(L,"+") show(Con(L)) 0

Peter Jipsen

Varieties of ortholattices

 $OL = Mod\{OL\}$ all ortholattices

 $\mathcal{O} = Mod\{x = y\}$ all **one-element** ortholattices (relative to \mathcal{OL})

$$\mathcal{BA} = Mod\{x(y + z) = xy + xz\}$$
 all Boolean algebras

 $\mathcal{MOL} = Mod\{(xz + y)z = xz + yz\}$ all **modular** ortholattices

 $\mathcal{OML} = Mod\{x+x'(x+y) = x+y\}$ all orthomodular lattices

Peter Jipsen

Some splittings in lattices (of varieties)

For a, b in a lattice L,

(a, b) is a **splitting pair** if $a \notin b$ and $a \leqslant c$ or $c \leqslant b$ for all c

$$\iff \uparrow a \cap \downarrow b = \emptyset \text{ and } \uparrow a \cup \downarrow b = L.$$

E.g. $(\mathbb{V}(2), \mathcal{O})$ is a splitting pair of varieties in $\Lambda_{\mathcal{L}}$ since a lattice has 2 as a sublattice \iff it is nontrivial.

 $(\mathbb{V}(N_5), \mathcal{ML})$ is a splitting pair since a lattice has N_5 as a sublattice \iff it is nonmodular.

Peter Jipsen

The lattice $\Lambda_{\mathcal{L}}$ of varieties of lattices

Figure: Splittings in the lattice $\Lambda_{\mathcal{L}}$ of lattice varieties

More about splittings for varieties (of ortholattices)

For a, b in a **complete** lattice L,

(a, b) is a **splitting pair** \iff *a* is completely join prime \iff *b* is completely meet prime

 $(\mathcal{U}, \mathcal{V})$ is a splitting pair of varieties $\iff \mathcal{U} = \mathbb{V}(A)$ for some countable s.i. algebra A $\iff \mathcal{V} = Mod\{\varepsilon\}$ for some equation

A is called a **splitting algebra** and ε the **conjugate equation** of the **conjugate variety** \mathcal{V} .

 $(\mathbb{V}(H), \mathcal{OML})$ is a splitting pair since an ortholattice has H as a sublattice \iff it is not orthomodular.

The lattice $\Lambda_{\mathcal{OL}}$ of varieties of ortholattices

Figure: Some splittings in the lattice $\Lambda_{\mathcal{OL}}$ of ortholattice varieties

Peter Jipsen

Generating varieties of ortholattices

 $\mathbb{V}(A) = \mathbb{HSP}(A)$ is the smallest variety containing A

Examples: $\mathcal{MO}_n = \mathbb{V}(MO_n)$

 $\mathcal{H} = \mathbb{V}(H)$ the variety generated by the **hexagon benzene ring**.

 $\Lambda_{\mathcal{OL}}$ = the **complete lattice** of all ortholattice varieties

L + M = the **horizontal sum** of (ortho)lattices L, M

 $_{(k)}2^n = k$ glued copies of the finite **BA** with *n* atoms

Peter Jipsen

The lattice $\Lambda_{\mathcal{OL}}$ of varieties of ortholattices

Peter Jipsen

Equational bases for some varieties

Baker [1972] proved that any **congruence distributive variety** that is generated by a finite algebra has a **finite equational basis**.

For bounded lattices L, M the (glued) horizontal sum $L +_h M$ is the disjoint union with the bounds identified. If L, M are ortholattices, so is $L +_h M$, and the orthomodular identity is preserved.

Bruns and Kalmbach [1971] found equational bases for all varieties of orthomodular lattices that are generated by **finite horizontal sums of finite Boolean algebras**.

In particular, \mathcal{MO}_2 has a **3-variable equational basis** c(x, y) + c(x, z) + c(y, z) = 1, where c(x, y) = xy + x'y + xy' + x'y'.

Lattice equational bases for M_n , MO_n

$$M_3 =$$

Jónsson [1968] \mathcal{M}_{ω} has basis $E = \{w(x+yz)(y+z) \leq x+wy+wz\}$ \mathcal{MO}_{ω} has the same **lattice basis** relative to \mathcal{OL} .

$$\mathcal{M}_n$$
 has basis $E_n = E \cup \{w \cdot \prod_{1 \leq i < j \leq n} (x_i + x_j) \leq wx_1 + wx_2 + \dots + wx_n\}$

E.g. \mathcal{M}_3 has basis $w(x_1 + x_2)(x_1 + x_3)(x_2 + x_3) \leq wx_1 + wx_2 + wx_3$ \mathcal{M}_4 has a **5-variable basis**, and \mathcal{MO}_2 has the **same lattice** basis. \mathcal{MO}_n has a 2n+1-**variable lattice basis** E_{2n} .

Peter Jipsen

An equational basis for the hexagon variety \mathcal{H} ?

In Sept 2020 **John Harding** sent me an email about finding an equational basis for \mathcal{H} .

Kirby Baker's finite basis theorem is in principle **constructive**, but in practice not feasible even for very small algebras.

Roberto Giuntini proposed a 3-variable basis $B = \{(x + y)(x + z)(x' + yz) = (x + yz)(x' + yz), (x + y)(x' + y) + xy' = x + y\}$

McKenzie [1972] found a 4-variable basis for the lattice variety N_5

$$M = \{w(x+y)(x+z) \leq w(x+yz) + wy + wz, w(x+y(w+z)) = w(x+wy) + w(wx+yz)$$

We also investigated whether this is a basis for \mathcal{H} , but (at that time) no progress after a few weeks.

When is an OL variety defined by lattice equations?

Joint work with J.B. Nation and Ralph Freese (Jan 2022).

RdK denotes the **lattice reduct** of an ortholattice K.

Let $\Lambda_{\mathcal{L}}$ be the lattice of varieties of lattices and define $\rho : \Lambda_{\mathcal{OL}} \to \Lambda_{\mathcal{L}}$ by $\rho(\mathcal{V}) = \mathbb{V}(\{ \operatorname{Rd} K \mid K \in \mathcal{V} \}).$

(i) Describe the range of ρ .

(ii) When is a variety \mathcal{V} of ortholattices determined by an equational basis of $\rho(\mathcal{V})$?

Note: Varieties in the range of ρ are **self-dual**.

If k is odd then $\mathbb{V}(M_k)$ is **not** in the range of ρ .

Peter Jipsen

An embedding $h: L \hookrightarrow \prod L_i$ is **subdirect** if $(\pi_i \circ h)[L] = L_i$ for all $i \in I$ L is **subdirectly irreducible** if $L \stackrel{sd}{\hookrightarrow} \prod L_i$ implies $L \cong L_i$ for some $i \in I$

Theorem

Let L be a finite s.i. lattice. Then L is a lattice-subdirect factor of an ortholattice if and only if there exists an ortholattice S such that $\operatorname{Rd} S \stackrel{sd}{\hookrightarrow} L \times L^d$, where L^d is the dual of L.

Proof (outline).

Let $K \in \mathcal{OL}$ and θ a lattice congruence with $(\operatorname{Rd} K)/\theta \cong L$. On K define θ' by $x\theta'y \iff x'\theta y'$. Then θ' is a lattice congruence (by De Morgan's law), $(\operatorname{Rd} K)/\theta' \cong L^d$ and $\theta \cap \theta'$ is an ortholattice congruence (since $x\theta \cap \theta'y \iff x'\theta' \cap \theta y'$). So take $S = K/\theta \cap \theta'$, then $\operatorname{Rd} S \stackrel{sd}{\hookrightarrow} \operatorname{Rd} K/\theta \times \operatorname{Rd} K/\theta' \cong L \times L^d$.

Deciding if $\mathbb{V}(L \times L^d)$ is in the range of ρ

For a finite s.i. lattice L, check if there exists a **subdirectly** embedded sublattice S of $L \times L^d$ that supports an orthocomplement.

Example: $\mathbb{V}(N_5 \times N_5^d) = \mathbb{V}(N_5) = \rho(\mathbb{V}(H))$ since $H \stackrel{sd}{\hookrightarrow} N_5 \times N_5^d$.

Peter Jipsen

Any lattice basis for $\mathbb{V}(N_5)$ is a basis for $\mathbb{V}(H)$

Let *K* be an ortholattice such that $\operatorname{Rd} K \in \mathbb{V}(N_5)$.

Then $\operatorname{Rd} K$ has a subdirect embedding into a product of copies of N_5 and 2.

As in the proof of the preceding theorem, every N_5 -congruence $\theta \in \text{Con}(\text{Rd}K)$ is paired with $\theta' = \{(x, y) \mid x'\theta y'\}$, and $\overline{\theta} := \theta \cap \theta'$ is an ortholattice congruence.

Thus we get an embedding of K into a product of $K/\bar{\theta}$ and copies of 2, where θ ranges over all N₅-congruences.

Since $K/\bar{\theta}$ is an orthocomplemented sublattice of $N_5 \times N_5$, it suffices to check that all subdirect sublattices of $N_5 \times N_5$ that admit an orthocomplement are isomorphic to H.

Any lattice basis for $\mathbb{V}(N(L))$ is a basis for $\mathbb{V}(L + L^d)$

This was first checked with a computer calculation for $N_5 \times N_5$.

Later generalized by hand to cover all lattices $N(L) = L +_p \{c\}$ where L is a finite subdirectly irreducible lattice.

(For lattices L, M the (loose) **parallel sum** $L +_p M$ is the disjoint union of L and M with a **new** 0, 1 added.)

Note: $L +_{p} L^{d}$ is orthocomplemented by the map $x \leftrightarrow x^{d}$, $0 \leftrightarrow 1$.

Theorem

For any finite subdirectly irreducible lattice L, the ortholattice variety $\mathbb{V}(L+_p L^d)$ is determined by lattice identities.

 \mathcal{H} is covered by the case when L = 2.

Peter Jipsen

Lattices with several (nonisomorphic) orthocomplements

These two ortholattices cannot be distinguished by lattice identities.

However $2^3 + 2^3$ is orthomodular, whereas *H* is a subalgebra of *K*.

Peter Jipsen

Recall: $\Lambda_{\mathcal{OL}}$ lattice of ortholattice varieties

Peter Jipsen

Peter Jipsen

Nine ortholattices that generate covers of $\mathbb{V}(H)$

 \mathcal{O}_5 shows that a basis for $\mathbb{V}(H)$ requires 3 variables.

Peter Jipsen

O_4 is a splitting ortholattice

Theorem

For a variety \mathcal{V} of ortholattices, $O_4 \notin \mathcal{V} \iff \mathcal{V}$ satisfies (x + x'y')(x + x'(x + y)) = x.

Equivalently, \mathcal{V} satisfies $x \leq y \implies (x + y')(x + x'y) = x$.

This result was first proved with the help of Prover9.

Other subdirectly irreducible ortholattices

Peter Jipsen

More details of the lattice $\Lambda_{\mathcal{OL}}$ of ortholattice varieties

A full list of covering varieties gives a test for bases

Suppose \mathcal{V} is a variety and \mathcal{C} is a collection of varieties that **strongly cover** \mathcal{V} , i.e. for all varieties \mathcal{W} , $\mathcal{V} \subseteq \mathcal{W}$ implies $\mathcal{U} \subseteq \mathcal{W}$ for some $\mathcal{U} \in \mathcal{C}$.

Then *E* is a basis for \mathcal{V} iff $\mathcal{V} \models E$ and for all $\mathcal{U} \in \mathcal{C}$, $\mathcal{U} \not\models E$.

Jónsson and Rival [1979] $\mathcal{M}_3 \vee \mathcal{N}_5$, $\mathbb{V}(L_1), \ldots, \mathbb{V}(L_{15})$ strongly cover \mathcal{N}_5 . $(L_1, \ldots, L_{15}$ were found by McKenzie [1972].)

 \Rightarrow can easily test lattice identities to see if they are a basis for $\mathcal{N}_5.$

If so, then by the **preceding results** they are also a basis for \mathcal{H} .

But to test ortholattice identities we need a full list of covers of $\mathcal H$

Is $\mathcal{MO}_2 \lor \mathcal{H}, \mathcal{O}_1, ..., \mathcal{O}_9$ a full list of covers of \mathcal{H} ?

So far we have proved the following result.

Theorem

If a finite ortholattice K has an atom a such that $\downarrow a'$ is not a prime ideal, then there exists $x \in K$ such that Sg(a, x) contains MO_2 or O_j for some $j \in \{1, 2, 3, 4, 8\}$.

Now can assume that K is a finite ortholattice in which $\downarrow a'$ is a prime ideal for every atom a. If $K \notin \mathcal{H}$ then show K contains MO_2 or O_j for some $j \in \{4, 5, 6, 7, 9\}$.

Last step would be to remove finiteness of K.

If $\mathcal{MO}_2 \lor \mathcal{H}, \mathcal{O}_1, ..., \mathcal{O}_9$ is a full list of covers of \mathcal{H} then Roberto Giuntini's identities *B* are also a basis for \mathcal{H} .

Some references for Part 1

- K. Baker, Finite equational bases for finite algebras in a congruence-distributive equational class, Advances in Math. 24 (1977), 207–243.
- G. Bruns and G. Kalmbach: Varieties of orthomodular lattices, Canadian J. Math., Vol. XXIII, No. 5, 1971, pp. 802–810
- B. Jónsson: Equational classes of lattices. Math. Scand., 22:187–196, 1968.
- B. Jónsson and I. Rival: Lattice varieties covering the smallest nonmodular variety. Pacific J. Math., 82(2):463–478, 1979.
- R. McKenzie: Equational bases and nonmodular lattice varieties. Trans. Amer. Math. Soc., 174:1–43, 1972.

Peter Jipsen

Joint work with Melissa Sugimoto at CUNY,

José Gil-Férez and Sid Lodhia at Chapman

Plonka sums of integral involutive partially ordered monoids

Peter Jipsen

Involutive residuated lattices and posets

A pointed residuated lattice $\mathbf{A} = (A, \land, \lor, \cdot, 1, \backslash, /, 0)$ is a lattice (A, \land, \lor) and a monoid $(A, \cdot, 1)$ with a constant 0 such that

$$xy \leqslant z \iff x \leqslant z/y \iff y \leqslant x \backslash z.$$

It is **involutive** if $-\sim x = x = \sim -x$ where -x = 0/x, $\sim x = x \setminus 0$.

In this case $x/y = -(y \cdot \sim x)$ and $x \setminus y = -(-y \cdot x)$, so the residuals become term-definable.

Examples: **Boolean algebras** $(xy = x \land y)$ and **MV-algebras**

$$\mathcal{MV} = \mathbb{V}\{([0, 1], \min, \max, \odot, 1, \sim)\} \text{ where } [0, 1] \subseteq \mathbb{R}, x \odot y = \max(x + y - 1, 0) \text{ and } -x = \sim x = 1 - x$$

Involutive residuated posets = **ipo-monoids** generalize involutive residuated lattices by replacing (A, \land, \lor) with (A, \leqslant)

Structural results about involutive residuated lattices?

The structure of (finite) Boolean algebras is well understood.

Similarly for MV-algebras, they are products of MV-chains \mathbf{MV}_n

Can we build on these results to describe larger classes of involutive residuated lattices?

Boolean algebras are idempotent xx = x, so study these involutive RLs.

Full description for the finite commutative ones by [J., Tuyt & Valota 2020]

Used Mace4 to look at finite models up to size 16.

Idempotent ipo-monoids are Plonka sums of BAs

Let $\{\varphi_{ij} \colon \mathbf{A}_i \to \mathbf{A}_j \colon i \leq j\}$ be a family of homomorphisms indexed by a join-semilattice (I, \lor, \bot) and **compatible**, i.e., $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$, if $i \leq j \leq k$, and φ_{ii} is the identity on \mathbf{A}_i .

Its **Płonka sum** is the algebra **S** with universe $\biguplus_{i \in I} A_i$ and

$$a \cdot {}^{\mathbf{S}} b = \varphi_{ik}(a) \cdot {}^{\mathbf{A}_k} \varphi_{jk}(b)$$
 where $a \in A_i, b \in A_j, k = i \lor j$
 $\sim {}^{\mathbf{S}} a = \sim {}^{\mathbf{A}_i} a, -{}^{\mathbf{S}} a = -{}^{\mathbf{A}_i} a$ and $1^{\mathbf{S}} = 1^{\mathbf{A}_{\perp}}$.

Lemma (J., Sugimoto)

The \cdot of every finite commutative idempotent ipo-monoid **A** is a Płonka sum of generalized BA homomorphisms $\varphi_{pq}(x) = xq$ indexed by $I = \{p \in A : p \ge 1\}$ where $\mathbf{A}_p = \{x \in A : x/x = p\}$.

Mace4 produced the following diagrams for the **monoidal order** $x \sqsubseteq y \iff x \cdot y = x$ of all **commutative idempotent ipo-semigroups** (bold lines show Boolean components)

Peter Jipsen

How does this look in Prover9 using Colab?

Go to http://colab.research.google.com and paste:

```
!pip install provers
!git clone https://github.com/jipsen/Prover9.git
from provers import *; execfile("/content/Prover9/Prover9.py")
```

```
iposg=[
"x<=x", "x<=y & y<=x -> x=y", "x<=y & y<=z -> x<=z",
"x*y <= z <-> x<=-(y*~z)", "x*y <= z <-> y<=~(-z*x)",
"x<=y -> -y<=-x", "x<=y -> ~y<=~x", "-~x = x", "~-x = x",
"(x*y)*z = x*(y*z)"]
b=p9(iposg+["x*x=x","0*x=0"],[],100,100,[9])
show(b[6])</pre>
```

Peter Jipsen

Commutative idempotent ipo-semigroups of size 6

Peter Jipsen

However the previous result did **not** explain how to reconstruct the partial order \leq of the ipo-monoid **A** and did **not** characterize the families of homomorphisms.

With Sid Lodhia we investigated weaker axioms than assuming commutativity and idempotence.

The components \mathbf{A}_p have top element $\mathbf{1}_p = p = -(x \cdot \sim x)$, hence they are **integral** and have bottom $\mathbf{0}_p = x \cdot \sim x$.

Prover9 was helpful in showing the following axioms suffice:

An ipo-monoid is locally integral if it satisfies

(i)
$$x \cdot \sim x = -x \cdot x$$
, (ii) $xx \leq x$ and (iii) $x \leq 0 \Rightarrow xx = x$

Every integral (i.e., $x \leq 1$) ipo-monoid is locally integral.

Locally integral ipo-monoids

An **ipo-monoid** $(A, \leq, \cdot, 1, \sim, -)$ is a poset (A, \leq) and a monoid $(A, \cdot, 1)$ with $0 = \sim 1 = -1$ such that

$$x \leqslant y \iff x \cdot \sim y \leqslant 0 \iff -y \cdot x \leqslant 0$$

It follows that $\sim -x = x = -\sim x$ and $x \leq \sim y \iff y \leq -x$.

The class of ipo-monoids includes **all groups** (if \leq is =) and

all partially ordered groups where $\sim x = -x = x^{-1}$, 0 = 1.

Boolean algebras and **MV-algebras** are integral ipo-monoids, in fact $i\ell$ -monoids (\lor , \land are definable)

Structural Characterization of Locally Integral ipo-monoids

Theorem (Gil-Férez, J., Lodhia)

Let **A** be a locally integral ipo-monoid and $\{\varphi_{pq} : p \leq q\}$ as before. Then their Płonka sum $([+] A_{p}, \cdot^{\mathbf{S}}, 1^{\mathbf{S}})$ is the monoidal reduct of **A**. Define $\sim^{\mathbf{S}} x = \sim^{\mathbf{A}_{p}} x$ and $-^{\mathbf{S}} x = -^{\mathbf{A}_{p}} x$, for every $x \in A_{p}$. Define $x \leq {}^{\mathbf{S}} y \iff x \cdot {}^{\mathbf{S}} \sim {}^{\mathbf{S}} y = 0_{pq}$, for all $x \in A_p$, $y \in A_q$. Then $(\models A_p, \leq \mathbf{S}, \mathbf{S}, \mathbf{S}, \mathbf{S}, -\mathbf{S}) = \mathbf{A}.$ Moreover, if **A** is in InRL then all \mathbf{A}_p are in InRL. Furthermore, **A** is commutative if and only if all its components are commutative

A Generic Example with 4 Integral InRL Components

Peter Jipsen

Glueing Integral ipo-monoids

Let $(D, \vee, 1)$ be a lower-bounded join-semilattice; $\mathbf{A}_p = (A_p, \leq_p, \cdot_p, 1_p, \sim_p, -_p)$ integral ipo-monoid, for every $p \in D$; $\Phi = \{\varphi_{pq} : \mathbf{A}_p \to \mathbf{A}_q : p \leq^D q\}$ compat. family of monoidal hom.

Define the structure:

$$\int_{\Phi} \mathbf{A}_{p} = \left(\biguplus_{D} A_{p}, \leqslant^{\mathsf{G}}, \cdot^{\mathsf{G}}, 1^{\mathsf{G}}, \sim^{\mathsf{G}}, -^{\mathsf{G}} \right)$$

where $(\biguplus_D A_p, \cdot^G, 1^G)$ is the Płonka sum of the family Φ and for all $p, q \in D$, $a \in A_p$, and $b \in A_q$,

•
$$\sim^{G} a = \sim_{p} a$$
 and $-^{G} a = -_{p} a$,
• $a \leq^{G} b \iff a \cdot^{G} \sim^{G} b = 0_{p \vee q}$.

 $\int_{\Phi} \mathbf{A}_{p}$ is the glueing of $\{\mathbf{A}_{p} : p \in D\}$ along the family Φ .

Peter Jipsen

A Sugihara Glueing of Copies of the Standard MV-chain

Peter Jipsen

Glueing L_3 into a Small IMTL-algebra

Peter Jipsen

Glueing of Integral ipo-monoids that is not an ipo-monoid

The relation \leq of $\int_{\Phi} \mathbf{A}_{\rho}$ is not transitive.

Peter Jipsen

Required Conditions for Glueing Integral ipo-monoids

(balanced): for all $p, q \in D, a \in A_p, b \in A_q$,

$$a \cdot {}^G \sim {}^G b = 0_{p \lor q} \iff -{}^G b \cdot {}^G a = 0_{p \lor q}.$$

(zero): for all
$$p \leqslant^D q$$
, $\varphi_{pq}(0_p) = 0_q \iff p = q$.

(tr): for all $a, b, c \in \biguplus A_p$, if $a \leqslant^G b$ and $b \leqslant^G c$, then $a \leqslant^G c$.

Peter Jipsen

Main Glueing Result

Theorem (Gil-Férez, J., Lodhia)

A structure A is a locally integral ipo-monoid if and only if there is

- a lower-bounded join-semilattice D,
- a family of integral ipo-monoids $\{\mathbf{A}_p : p \in D\}$, and
- a compatible family Φ = {φ_{pq}: A_p → A_q : p ≤^D q} of monoidal homomorphisms satisfying (bal), (zero), and (tr)

so that $\mathbf{A} = \int_{\mathbf{\Phi}} \mathbf{A}_{p}$.

Glueing of infinitely many BAs that produces an $i\ell$ -monoid

Peter Jipsen

A Few Remarks and Questions

The condition (tr) can be replaced by more "local" condition.

• for all
$$p \leqslant^{\mathsf{D}} q$$
, and $a, b \in A_p$, $a \leqslant_p b \implies \varphi_{pq}(a) \leqslant_q \varphi_{pq}(b)$; (mon)

• for all
$$p \leqslant^{\mathsf{D}} q$$
, $p \leqslant^{\mathsf{D}} r$, and $a \in A_p$, $\sim \varphi_{pq}(a) \leqslant^{\mathsf{G}} \varphi_{pr}(\sim a)$; (lax)

• for all $p \lor r \leqslant^{\mathsf{D}} v$, $a \in A_p$, and $b \in A_r$,

$$\varphi_{rv}(\sim b) \leqslant_{v} \sim \varphi_{pv}(a) \implies a \leqslant^{\mathbf{G}} b. \qquad (\sim \mathsf{lax})$$

A locally integral ipo-monoid **A** is idempotent if and only if all its integral components are Boolean algebras.

Several properties are "local" (i.e., **A** satisfies them if and only if all its components do): e.g., commutativity, local finiteness.

Under which conditions is A lattice-ordered?

Are locally integral ipo-monoids or InRLs decidable?

Some subvarieties of commutative idempotent InRLs

Peter Jipsen

Some equational bases for commutative idempotent InRLs

The previous diagram is complete below SM and $S_{5,2}$.

Hence we have full lists of covering varieties for proper subvarieties of SM (excluding OSM).

 \mathcal{BA} is covered only by $\mathcal{S}_3 \lor \mathcal{BA}$, so x0 = 0 is a basis relative to \mathcal{SM}

 \mathcal{S}_3 has $(x \lor -x)(0 \lor -y) = x \lor -(xy)$ as basis relative to \mathcal{OSM} .

 S_4 has $0 \leq x \lor -(xy)$ as basis relative to SM.

 $S_{5,2}$ has $(x \vee -x)(0 \vee -y) = x \vee -(xy)$ as basis relative to odd unital i ℓ -semilattices.

Dual Representation by Partial Functions Between Sets

Partial Functions

Definition. A proper partial function $f : X \to Y$ is a function from U to Y where $U \subsetneq X$ is the domain of f.

Developing a Dual Representation

Given a commutative idempotent ipo-monoid \mathbf{A} , it is Płonka sum of Boolean components.

Each Boolean component is determined by its set of atoms.

The partial functions map between sets of atoms (opposite to homomorphisms).

A dual representation of families of Boolean algebras gives a much more compact way of drawing finite ipo-monoids.

Dual Representation by Partial Functions Between Sets

Every finite Boolean algebra \mathbf{A}_i is **isomorphic** to the powerset Boolean algebra of its finite set X_i of atoms.

For $i \leq j$, the **generalized BA homomorphism** h_{ji} corresponds to the **partial map** $f_{ij} : X_i \to X_j$ defined by

$$f_{ij}(a) = b \iff a \leqslant h_{ji}(b) \text{ and } a \nleq h_{ji}(0_j).$$

- A family of proper partial maps is a triple $\mathbf{X} = (X_i, f_{ij}, I)$ st
 - for a semilattice I, $\{X_i : i \in I\}$ is a family of disjoint sets, and
 - $f_{ij}: X_i \to X_j$ is a proper partial map for all $i \leq j \in I$ such that $f_{ii} = id_{X_i}$ and for all $i \leq j \leq k$, $f_{jk} \circ f_{ij} = f_{ik}$.

 \Rightarrow Every commutative idempotent ipo-monoid can be represented by a family of proper partial maps.

Some references for Part 2

- S. Bonzio, A. Loi, L. Peruzzi: A duality for involutive bisemilattices, Studia Logica, (2019) 107: 423–444.
- J. Gil-Férez, P. Jipsen, S. Lodhia: The structure of locally integral involutive po-monoids and semirings, in proceedings of RAMiCS 2023, LNCS 13896, Springer 2023.
- S. Jenei: Group-representation for even and odd involutive commutative residuated chains. Studia Logica, 2022.
- P. Jipsen, O. Tuyt, D. Valota: Structural characterization of commutative idempotent involutive residuated lattices, Algebra Universalis, 82, 57, 2021.
- W. McCune: Prover9 and Mace4. www.cs.unm.edu/~mccune/prover9/, 2005-2010.

THANKS!

Peter Jipsen