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Ortholattices

An ortholattice (A,+, ·,′ , 0, 1) is a lattice (A,+, ·) with a unary
orthocomplement ′ that satisfies

x ′′ = x , (x + y)′ = x ′ · y ′, x · x ′ = 0 and x + x ′ = 1.

Examples: Boolean algebras, MOn =

1

a′nan· · ·a′1a1

0

Benzene hexagon H =

1

a′b

b′a

0

Not an OL: N5
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How does this look in Prover9 using Colab?

Go to http://colab.research.google.com and paste:

!pip install provers

!git clone https://github.com/jipsen/Prover9.git

from provers import *; execfile("/content/Prover9/Prover9.py")

OL=["(x+y)+z = x+(y+z)", "x+y = y+x", "x + x*y = x",

"(x*y)*z = x*(y*z)", "x*y = y*x", "x*(x+y) = x",

"x'' = x", "(x+y)' = x'*y'", "x*x' = 0", "x+x' = 1"]

L = p9(OL,[],100,0,[8])

The first 3 lines take 30 seconds (but only need to run once).

p9 calls Mace4 and Prover9 for 100 and 0 seconds respectively.

[8] means find all models up to cardinality 8
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Prover9/Mace4 output

Number of nonisomorphic models of cardinality 2 is 1

No model of cardinality 3

Number of nonisomorphic models of cardinality 4 is 1

No model of cardinality 5

Number of nonisomorphic models of cardinality 6 is 2

No model of cardinality 7

Number of nonisomorphic models of cardinality 8 is 5

Fine spectrum: [1, 1, 0, 1, 0, 2, 0, 5]

Mace is short for Models and counterexamples

See https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/
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In Colab one can show diagrams of Mace4 output

L = L[2]+L[4]+L[6]+L[8]

show(L,"+")

show(Con(L))
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Varieties of ortholattices

OL = Mod{OL} all ortholattices

O = Mod{x = y} all one-element ortholattices (relative to OL)

BA = Mod{x(y + z) = xy + xz} all Boolean algebras

MOL = Mod{(xz + y)z = xz + yz} all modular ortholattices

OML = Mod{x+x ′(x+y) = x+y} all orthomodular lattices
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Some splittings in lattices (of varieties)

For a, b in a lattice L,

(a, b) is a splitting pair if a ≰ b and a ⩽ c or c ⩽ b for all c

⇐⇒ ↑a ∩ ↓b = ∅ and ↑a ∪ ↓b = L.

E.g. (V(2),O) is a splitting pair of varieties in ΛL since a lattice
has 2 as a sublattice ⇐⇒ it is nontrivial.

(V(N5),ML) is a splitting pair since a lattice has N5 as a
sublattice ⇐⇒ it is nonmodular.
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The lattice ΛL of varieties of lattices

L

O

L

D = V(2)

O

L

ML

N5

D

O

L

ML

N5M3

D

O

Figure: Splittings in the lattice ΛL of lattice varieties
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More about splittings for varieties (of ortholattices)

For a, b in a complete lattice L,

(a, b) is a splitting pair ⇐⇒ a is completely join prime
⇐⇒ b is completely meet prime

(U ,V) is a splitting pair of varieties
⇐⇒ U = V(A) for some countable s.i. algebra A
⇐⇒ V = Mod{ε} for some equation

A is called a splitting algebra and
ε the conjugate equation of the conjugate variety V.

(V(H),OML) is a splitting pair since an ortholattice has H as a
sublattice ⇐⇒ it is not orthomodular.
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The lattice ΛOL of varieties of ortholattices

OL

O

OL

BA = V(2)

O

OL

OML

H

BA

O

OL

OML

HMO2

BA

O

Figure: Some splittings in the lattice ΛOL of ortholattice varieties
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Generating varieties of ortholattices

V(A) = HSP(A) is the smallest variety containing A

Examples: MOn = V(MOn)

H = V(H) the variety generated by the hexagon benzene ring.

ΛOL = the complete lattice of all ortholattice varieties

L + M = the horizontal sum of (ortho)lattices L,M

(k)2
n = k glued copies of the finite BA with n atoms
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The lattice ΛOL of varieties of ortholattices

OL

OML

MOL

MO2∨H ? ?

H

MOω

MO5

MO4

MO3 (5)2
3

(3)2
322+23

MO2

BA

T A partial diagram of ΛOL|ΛOL| = 2ℵ0
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Equational bases for some varieties

Baker [1972] proved that any congruence distributive variety
that is generated by a finite algebra has a finite equational basis.

For bounded lattices L,M the (glued) horizontal sum L +h M is
the disjoint union with the bounds identified. If L,M are
ortholattices, so is L +h M, and the orthomodular identity is
preserved.

Bruns and Kalmbach [1971] found equational bases for all varieties
of orthomodular lattices that are generated by finite horizontal
sums of finite Boolean algebras.

In particular, MO2 has a 3-variable equational basis
c(x , y) + c(x , z) + c(y , z) = 1, where c(x , y) = xy+x ′y+xy ′+x ′y ′.
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Lattice equational bases for Mn, MOn

M3 = Mn = an· · ·a1 Mω = · · ·

Jónsson [1968] Mω has basis E = {w(x+yz)(y+z) ⩽ x+wy+wz}

MOω has the same lattice basis relative to OL.

Mn has basis En = E ∪ {w ·
∏

1⩽i<j⩽n

(xi + xj) ⩽ wx1 + wx2 + · · · + wxn}

E.g. M3 has basis w(x1 + x2)(x1 + x3)(x2 + x3) ⩽ wx1 + wx2 + wx3

M4 has a 5-variable basis, and MO2 has the same lattice basis.

MOn has a 2n+1-variable lattice basis E2n.
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An equational basis for the hexagon variety H?

In Sept 2020 John Harding sent me an email about finding an
equational basis for H.

Kirby Baker’s finite basis theorem is in principle constructive, but
in practice not feasible even for very small algebras.

Roberto Giuntini proposed a 3-variable basis
B = {(x + y)(x + z)(x ′ + yz) = (x + yz)(x ′ + yz),

(x + y)(x ′ + y) + xy ′ = x + y}
McKenzie [1972] found a 4-variable basis for the lattice variety N5

M = {w(x + y)(x + z) ⩽ w(x + yz) + wy + wz ,
w(x + y(w + z)) = w(x + wy) + w(wx + yz)}

We also investigated whether this is a basis for H, but (at that
time) no progress after a few weeks.
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When is an OL variety defined by lattice equations?

Joint work with J.B. Nation and Ralph Freese (Jan 2022).

RdK denotes the lattice reduct of an ortholattice K .

Let ΛL be the lattice of varieties of lattices and define
ρ : ΛOL → ΛL by ρ(V) = V({RdK | K ∈ V}).

(i) Describe the range of ρ.

(ii) When is a variety V of ortholattices determined by an
equational basis of ρ(V)?

Note: Varieties in the range of ρ are self-dual.

If k is odd then V(Mk) is not in the range of ρ.
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An embedding h : L ↪→
∏

Li is subdirect if (πi ◦ h)[L] = Li for all i ∈ I

L is subdirectly irreducible if L
sd
↪→

∏
Li implies L ∼= Li for some i ∈ I

Theorem

Let L be a finite s.i. lattice. Then L is a lattice-subdirect factor of
an ortholattice if and only if there exists an ortholattice S such

that RdS
sd
↪→ L × Ld , where Ld is the dual of L.

Proof (outline).

Let K ∈ OL and θ a lattice congruence with (RdK )/θ ∼= L.
On K define θ′ by xθ′y ⇐⇒ x ′θy ′.
Then θ′ is a lattice congruence (by De Morgan’s law),
(RdK )/θ′ ∼= Ld and θ∩θ′ is an ortholattice congruence
(since xθ∩θ′y ⇐⇒ x ′θ′∩θy ′). So take S = K/θ∩θ′, then

RdS
sd
↪→ RdK/θ × RdK/θ′ ∼= L × Ld .
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Deciding if V(L× Ld ) is in the range of ρ

For a finite s.i. lattice L, check if there exists a subdirectly
embedded sublattice S of L × Ld that supports an orthocomplement.

Example: V(N5 × Nd
5 ) = V(N5) = ρ(V(H)) since H

sd
↪→ N5 × Nd

5 .

×
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Any lattice basis for V(N5) is a basis for V(H)

Let K be an ortholattice such that RdK ∈ V(N5).

Then RdK has a subdirect embedding into a product of copies of
N5 and 2.

As in the proof of the preceding theorem, every N5-congruence
θ ∈ Con(RdK ) is paired with θ′ = {(x , y) | x ′θy ′}, and θ̄ := θ ∩ θ′

is an ortholattice congruence.

Thus we get an embedding of K into a product of K/θ̄ and copies
of 2, where θ ranges over all N5-congruences.

Since K/θ̄ is an orthocomplemented sublattice of N5 × N5, it
suffices to check that all subdirect sublattices of N5 × N5 that
admit an orthocomplement are isomorphic to H.
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Any lattice basis for V(N(L)) is a basis for V(L + Ld )

This was first checked with a computer calculation for N5 × N5.

Later generalized by hand to cover all lattices N(L) = L +p {c}
where L is a finite subdirectly irreducible lattice.

(For lattices L, M the (loose) parallel sum L +p M is the disjoint
union of L and M with a new 0, 1 added.)

Note: L +p Ld is orthocomplemented by the map x ↔ xd , 0 ↔ 1.

Theorem

For any finite subdirectly irreducible lattice L, the ortholattice
variety V(L +p Ld) is determined by lattice identities.

H is covered by the case when L = 2.
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Lattices with several (nonisomorphic) orthocomplements

1

d ′e′f ′

fed

a′b′c ′

cba

0
23 + 23

1

a′b′c ′

fed

d ′e′f ′

cba

0
K

These two ortholattices cannot be distinguished by lattice
identities.

However 23 + 23 is orthomodular, whereas H is a subalgebra of K .
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Recall: ΛOL lattice of ortholattice varieties

OL

OML

MOL

MO2∨H ? ?

H

MOω

MO5

MO4

MO3 (5)23(3)2322+23

MO2

BA

T A partial diagram of ΛOL|ΛOL| = 2ℵ0
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T = C1

D = C2

N5M3

M4 M32 M3 ∨ N5 L1 L2 L3 L4 L5 L6 L10 L11 L12L13L14L15

M5 M33A1A2A3F7 V1 V8L16 L25L
d
16 Ld

25P1 P10K1 K6K
d
1 Kd

6 L1
6 L1

10L
1
11G

1
dL

1
12G

1L1
13L

1
14L

1
15

· · · · · · · · · · · · · · · · · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

M6 M34 L2
6 L2

10L
2
11G

2
dL

2
12G

2L2
13L

2
14L

2
15

Mω

M

M ∨ N5

L

AD

Compare with the lattice ΛL of lattice varieties
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Nine ortholattices that generate covers of V(H)

O1 O2 O3 O4 O5 O6

O7 O8 O9

O5 shows that a basis for V(H) requires 3 variables.
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O4 is a splitting ortholattice

O4

y

x

Theorem

For a variety V of ortholattices,
O4 /∈ V ⇐⇒ V satisfies (x + x ′y ′)(x + x ′(x + y)) = x .

Equivalently, V satisfies x ⩽ y =⇒ (x + y ′)(x + x ′y) = x .

This result was first proved with the help of Prover9.
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Other subdirectly irreducible ortholattices

Q1 Q2 Q3 Q4 Q5 Q6

Q7 Q8 R1 R2 R3 R4
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More details of the lattice ΛOL of ortholattice varieties

OL

OML

MOL

· · ·R4R3R2R1

· · ·Q8Q7Q6Q5Q4Q3Q2Q1

O9O8O7O6O5O4O3O2O1MO2∨H

H

MOω

MO5

MO4

MO3 (5)2
3

(3)2
322+23

MO2

BA

T A partial diagram of ΛOL
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A full list of covering varieties gives a test for bases

Suppose V is a variety and C is a collection of varieties that
strongly cover V, i.e. for all varieties W, V ⊆ W implies U ⊆ W
for some U ∈ C.

Then E is a basis for V iff V |= E and for all U ∈ C, U ̸|= E .

Jónsson and Rival [1979] M3 ∨N5,V(L1), . . . ,V(L15) strongly
cover N5. (L1, . . . , L15 were found by McKenzie [1972].)

⇒ can easily test lattice identities to see if they are a basis for N5.

If so, then by the preceding results they are also a basis for H.

But to test ortholattice identities we need a full list of covers of H
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Is MO2 ∨H,O1, ...,O9 a full list of covers of H?

So far we have proved the following result.

Theorem

If a finite ortholattice K has an atom a such that ↓a′ is not a
prime ideal, then there exists x ∈ K such that Sg(a, x) contains
MO2 or Oj for some j ∈ {1, 2, 3, 4, 8}.

Now can assume that K is a finite ortholattice in which ↓a′ is a
prime ideal for every atom a. If K /∈ H then show K contains MO2

or Oj for some j ∈ {4, 5, 6, 7, 9}.

Last step would be to remove finiteness of K .

If MO2 ∨H,O1, ...,O9 is a full list of covers of H then
Roberto Giuntini’s identities B are also a basis for H.
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Part 2

Joint work with Melissa Sugimoto at CUNY,

José Gil-Férez and Sid Lodhia at Chapman

Plonka sums of integral involutive partially ordered monoids
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Involutive residuated lattices and posets

A pointed residuated lattice A = (A,∧,∨, ·, 1, \, /, 0) is a lattice
(A,∧,∨) and a monoid (A, ·, 1) with a constant 0 such that

xy ⩽ z ⇐⇒ x ⩽ z/y ⇐⇒ y ⩽ x\z .

It is involutive if −∼x = x = ∼−x where −x = 0/x , ∼x = x\0.

In this case x/y = −(y · ∼x) and x\y = ∼(−y · x), so the
residuals become term-definable.

Examples: Boolean algebras (xy = x ∧ y) and MV-algebras

MV = V{([0, 1],min,max,⊙, 1,∼)} where [0, 1] ⊆ R,
x ⊙ y = max(x + y − 1, 0) and −x = ∼x = 1 − x

Involutive residuated posets = ipo-monoids generalize
involutive residuated lattices by replacing (A,∧,∨) with (A,⩽)
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Structural results about involutive residuated lattices?

The structure of (finite) Boolean algebras is well understood.

Similarly for MV-algebras, they are products of MV-chains MVn

Can we build on these results to describe larger classes of
involutive residuated lattices?

Boolean algebras are idempotent xx = x , so study these involutive
RLs.

Full description for the finite commutative ones by [J., Tuyt &
Valota 2020]

Used Mace4 to look at finite models up to size 16.
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Idempotent ipo-monoids are Plonka sums of BAs

Let {φij : Ai → Aj : i ⩽ j} be a family of homomorphisms indexed
by a join-semilattice (I ,∨,⊥) and compatible, i.e.,
φjk ◦ φij = φik , if i ⩽ j ⩽ k , and φii is the identity on Ai .

Its P lonka sum is the algebra S with universe
⊎

i∈I Ai and

a ·S b = φik(a) ·Ak φjk(b) where a ∈ Ai , b ∈ Aj , k = i ∨ j

∼Sa = ∼Ai a, −Sa = −Ai a and 1S = 1A⊥ .

Lemma (J., Sugimoto)

The · of every finite commutative idempotent ipo-monoid A is a
P lonka sum of generalized BA homomorphisms φpq(x) = xq
indexed by I = {p ∈ A : p ≥ 1} where Ap = {x ∈ A : x/x = p}.
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Mace4 produced the following diagrams for the monoidal order
x ⊑ y ⇐⇒ x · y = x of all commutative idempotent
ipo-semigroups (bold lines show Boolean components)

1 2 S3 S4 S4,2 S4,3 S5 S5,2 S5,3 S5,4 S6

S6,2 S6,3 S6,4 S6,5 S6,6 S6,7 S6,8 S6,9 S6,10
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How does this look in Prover9 using Colab?

Go to http://colab.research.google.com and paste:

!pip install provers

!git clone https://github.com/jipsen/Prover9.git

from provers import *; execfile("/content/Prover9/Prover9.py")

iposg=[

"x<=x", "x<=y & y<=x -> x=y", "x<=y & y<=z -> x<=z",

"x*y <= z <-> x<=-(y*~z)", "x*y <= z <-> y<=~(-z*x)",

"x<=y -> -y<=-x", "x<=y -> ~y<=~x", "-~x = x", "~-x = x",

"(x*y)*z = x*(y*z)"]

b=p9(iposg+["x*x=x","0*x=0"],[],100,100,[9])

show(b[6])
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Commutative idempotent ipo-semigroups of size 6
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However the previous result did not explain how to reconstruct the
partial order ⩽ of the ipo-monoid A and did not characterize the
families of homomorphisms.

With Sid Lodhia we investigated weaker axioms than assuming
commutativity and idempotence.

The components Ap have top element 1p = p = −(x · ∼x), hence
they are integral and have bottom 0p = x · ∼x .

Prover9 was helpful in showing the following axioms suffice:

An ipo-monoid is locally integral if it satisfies

(i) x · ∼x = −x · x , (ii) xx ⩽ x and (iii) x ⩽ 0 ⇒ xx = x

Every integral (i.e., x ⩽ 1) ipo-monoid is locally integral.
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Locally integral ipo-monoids

An ipo-monoid (A,⩽, ·, 1,∼,−) is a poset (A,⩽) and a monoid
(A, ·, 1) with 0 = ∼1 = −1 such that

x ⩽ y ⇐⇒ x · ∼y ⩽ 0 ⇐⇒ −y · x ⩽ 0

It follows that ∼−x = x = −∼x and x ⩽ ∼y ⇐⇒ y ⩽ −x .

The class of ipo-monoids includes all groups (if ⩽ is =) and

all partially ordered groups where ∼x = −x = x−1, 0 = 1.

Boolean algebras and MV-algebras are integral ipo-monoids, in
fact iℓ-monoids (∨,∧ are definable)
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Structural Characterization of Locally Integral ipo-monoids

Theorem (Gil-Férez, J., Lodhia)

Let A be a locally integral ipo-monoid and {φpq : p ⩽ q} as before.

Then their P lonka sum
(⊎

Ap, ·S, 1S
)

is the monoidal reduct of A.

Define ∼Sx = ∼Apx and −Sx = −Apx , for every x ∈ Ap.

Define x ⩽S y ⇐⇒ x ·S ∼Sy = 0pq, for all x ∈ Ap, y ∈ Aq.

Then
(⊎

Ap,⩽S, ·S,∼S,−S
)

= A.

Moreover, if A is in InRL then all Ap are in InRL.

Furthermore, A is commutative if and only if all its components
are commutative
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A Generic Example with 4 Integral InRL Components

1

q

r

p

0r

1r

0p

1p

0q

1q

01

11

A+

ArAp AqA1

A
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Glueing Integral ipo-monoids

Let (D,∨, 1) be a lower-bounded join-semilattice;
Ap = (Ap,⩽p, ·p, 1p,∼p,−p) integral ipo-monoid, for every p ∈ D;
Φ = {φpq : Ap → Aq : p ⩽D q} compat. family of monoidal hom.

Define the structure:∫
Φ Ap =

(⊎
D Ap,⩽G , ·G , 1G ,∼G ,−G

)
where

(⊎
D Ap, ·G , 1G

)
is the P lonka sum of the family Φ

and for all p, q ∈ D, a ∈ Ap, and b ∈ Aq,

∼Ga = ∼pa and −Ga = −pa,

a ⩽G b ⇐⇒ a ·G ∼Gb = 0p∨q.∫
Φ Ap is the glueing of {Ap : p ∈ D} along the family Φ.
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A Sugihara Glueing of Copies of the Standard MV-chain

q

p

1

D
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Φ
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Glueing  L3 into a Small IMTL-algebra

p

1

D

1

a

a2 = 0

1p

b = b2

−b

0p

Φ

φ1p

1

a

a2 = 0

1p

b = b2

−b

0p∫
Φ

Ap
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Glueing of Integral ipo-monoids that is not an ipo-monoid

p

q r

s

D

0p

0q 0r

0s
1p

1q 1r

1s

Φ

φpq φpr

φrsφqs

0p

0q

0r

0s

1p

1q

1r

1s

∫
Φ

Ap

⩽̸

The relation ⩽ of
∫
Φ Ap is not transitive.
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Required Conditions for Glueing Integral ipo-monoids

(balanced): for all p, q ∈ D, a ∈ Ap, b ∈ Aq,

a ·G ∼Gb = 0p∨q ⇐⇒ −Gb ·G a = 0p∨q.

(zero): for all p ⩽D q, φpq(0p) = 0q ⇐⇒ p = q.

(tr): for all a, b, c ∈
⊎

Ap, if a ⩽G b and b ⩽G c , then a ⩽G c .
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Main Glueing Result

Theorem (Gil-Férez, J., Lodhia)

A structure A is a locally integral ipo-monoid if and only if there is

a lower-bounded join-semilattice D,

a family of integral ipo-monoids {Ap : p ∈ D}, and

a compatible family Φ = {φpq : Ap → Aq : p ⩽D q} of
monoidal homomorphisms satisfying (bal), (zero), and (tr)

so that A =
∫
Φ Ap.
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Glueing of infinitely many BAs that produces an iℓ-monoid

ω 2 1 0
D

⩽D ⩽D ⩽D

1ω

0ω

12

−a2
a2

02

11

−a1
a1

01

10

−a0
a0

00

Φ

φω2 φ21 φ10

1ω

0ω

13

12

11 10

03
02

01 00

−a3
−a2 −a1 −a0

a3 a2 a1 a0

∫
Φ Ap
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A Few Remarks and Questions

The condition (tr) can be replaced by more “local” condition.

for all p ⩽D q, and a, b ∈ Ap, a ⩽p b =⇒ φpq(a) ⩽q φpq(b); (mon)

for all p ⩽D q, p ⩽D r , and a ∈ Ap, ∼φpq(a) ⩽G φpr (∼a); (lax)

for all p ∨ r ⩽D v , a ∈ Ap, and b ∈ Ar ,

φrv (∼b) ⩽v ∼φpv (a) =⇒ a ⩽G b. (∼lax)

A locally integral ipo-monoid A is idempotent if and only if all its
integral components are Boolean algebras.

Several properties are “local” (i.e., A satisfies them if and only if
all its components do): e.g., commutativity, local finiteness.

Under which conditions is A lattice-ordered?

Are locally integral ipo-monoids or InRLs decidable?
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Some subvarieties of commutative idempotent InRLs

Let Si ,j = V(Si ,j). unital iℓ

SM

OSM

S8,2S8

S6,2S6S7,2S7 S7,3

S4S5,2S5

S3 BA

T(O)SM = (odd) Sugihara monoids
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Some equational bases for commutative idempotent InRLs

The previous diagram is complete below SM and S5,2.

Hence we have full lists of covering varieties for proper subvarieties
of SM (excluding OSM).

BA is covered only by S3∨BA, so x0 = 0 is a basis relative to SM

S3 has (x ∨ −x)(0 ∨ −y) = x ∨ −(xy) as basis relative to OSM.

S4 has 0 ⩽ x ∨ −(xy) as basis relative to SM.

S5,2 has (x ∨ −x)(0 ∨ −y) = x ∨ −(xy) as basis relative to odd
unital iℓ-semilattices.
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Dual Representation by Partial Functions Between Sets

Partial Functions

Definition. A proper partial function f : X → Y is a function
from U to Y where U ⊊ X is the domain of f .

Developing a Dual Representation

Given a commutative idempotent ipo-monoid A, it is P lonka sum
of Boolean components.

Each Boolean component is determined by its set of atoms.

The partial functions map between sets of atoms (opposite to
homomorphisms).

A dual representation of families of Boolean algebras gives a much
more compact way of drawing finite ipo-monoids.
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Dual Representation by Partial Functions Between Sets

Every finite Boolean algebra Ai is isomorphic to the powerset
Boolean algebra of its finite set Xi of atoms.

For i ⩽ j , the generalized BA homomorphism hji corresponds to
the partial map fij : Xi → Xj defined by

fij(a) = b ⇐⇒ a ⩽ hji (b) and a ≰ hji (0j).

A family of proper partial maps is a triple X = (Xi , fij , I ) st

for a semilattice I , {Xi : i ∈ I} is a family of disjoint sets, and

fij : Xi → Xj is a proper partial map for all i ⩽ j ∈ I such that
fii = idXi

and for all i ⩽ j ⩽ k , fjk ◦ fij = fik .

⇒ Every commutative idempotent ipo-monoid can be represented
by a family of proper partial maps.
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