Using Prover9 for research on ortholattices and locally integral involutive residuated po-monoids

Peter Jipsen

Chapman University, California, USA

Panglobal Algebra and Logic Seminar

 University of Colorado Boulder, April 18, 2023
Outline

Part 1: Joint work with J.B. Nation and Ralph Freese, U. Hawaii
Ortholattice varieties and some equational bases

Part 2: Joint work with Melissa Sugimoto (CUNY), José Gil-Férez and Sid Lodhia (Chapman)

Plonka sums of locally integral involutive po-monoids

Ortholattices

An ortholattice $\left(A,+, \cdot,^{\prime}, 0,1\right)$ is a lattice $(A,+, \cdot)$ with a unary orthocomplement ' that satisfies

$$
x^{\prime \prime}=x, \quad(x+y)^{\prime}=x^{\prime} \cdot y^{\prime}, \quad x \cdot x^{\prime}=0 \quad \text { and } \quad x+x^{\prime}=1
$$

Examples: Boolean algebras, $M O_{n}=$

Benzene hexagon $H=$ bo $a_{0}^{1} a^{\prime}$

How does this look in Prover9 using Colab?

Go to http://colab.research.google.com and paste:
!pip install provers
!git clone https://github.com/jipsen/Prover9.git
from provers import *; execfile("/content/Prover9/Prover9.py")
OL=["(x+y)+z = x+(y+z)", "x+y = y+x", "x + x*y = x", "($\mathrm{x} * \mathrm{y}$) $* \mathrm{z}=\mathrm{x} *(\mathrm{y} * \mathrm{z})$ ", "x*y = $\mathrm{y} * \mathrm{x} ", ~ " \mathrm{x} *(\mathrm{x}+\mathrm{y})=\mathrm{x} "$, "x'' = x", "(x+y)' = x'*y'", "x*x' = 0", "x+x' = 1"]
$\mathrm{L}=\mathrm{p9}$ (0L, [],100,0,[8])
The first 3 lines take 30 seconds (but only need to run once).
p9 calls Mace4 and Prover9 for 100 and 0 seconds respectively.
[8] means find all models up to cardinality 8

Prover9/Mace4 output

Number of nonisomorphic models of cardinality 2 is 1 No model of cardinality 3
Number of nonisomorphic models of cardinality 4 is 1
No model of cardinality 5
Number of nonisomorphic models of cardinality 6 is 2
No model of cardinality 7
Number of nonisomorphic models of cardinality 8 is 5
Fine spectrum: [1, 1, 0, 1, 0, 2, 0, 5]
Mace is short for Models and counterexamples

See https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/

In Colab one can show diagrams of Mace4 output

$$
\begin{aligned}
& \mathrm{L}=\mathrm{L}[2]+\mathrm{L}[4]+\mathrm{L}[6]+\mathrm{L}[8] \\
& \text { show }(\mathrm{L}, "+") \\
& \text { show }(\operatorname{Con}(\mathrm{L}))
\end{aligned}
$$

Varieties of ortholattices

$\mathcal{O} \mathcal{L}=\operatorname{Mod}\{O L\}$ all ortholattices
$\mathcal{O}=\operatorname{Mod}\{x=y\}$ all one-element ortholattices (relative to $\mathcal{O} \mathcal{L})$
$\mathcal{B A}=\operatorname{Mod}\{x(y+z)=x y+x z\}$ all Boolean algebras
$\mathcal{M O \mathcal { L }}=\operatorname{Mod}\{(x z+y) z=x z+y z\}$ all modular ortholattices
$\mathcal{O} \mathcal{M L}=\operatorname{Mod}\left\{x+x^{\prime}(x+y)=x+y\right\}$ all orthomodular lattices

Some splittings in lattices (of varieties)

For a, b in a lattice L,
(a, b) is a splitting pair if $a \not \leq b$ and $a \leqslant c$ or $c \leqslant b$ for all c
$\Longleftrightarrow \uparrow a \cap \downarrow b=\emptyset$ and $\uparrow a \cup \downarrow b=L$.
E.g. $(\mathbb{V}(\mathbf{2}), \mathcal{O})$ is a splitting pair of varieties in $\Lambda_{\mathcal{L}}$ since a lattice has 2 as a sublattice \Longleftrightarrow it is nontrivial.
$\left(\mathbb{V}\left(N_{5}\right), \mathcal{M} \mathcal{L}\right)$ is a splitting pair since a lattice has N_{5} as a sublattice \Longleftrightarrow it is nonmodular.

The lattice $\Lambda_{\mathcal{L}}$ of varieties of lattices

Figure: Splittings in the lattice $\Lambda_{\mathcal{L}}$ of lattice varieties

More about splittings for varieties (of ortholattices)

For a, b in a complete lattice L,
(a, b) is a splitting pair $\Longleftrightarrow a$ is completely join prime
$\Longleftrightarrow b$ is completely meet prime
$(\mathcal{U}, \mathcal{V})$ is a splitting pair of varieties
$\Longleftrightarrow \mathcal{U}=\mathbb{V}(A)$ for some countable s.i. algebra A
$\Longleftrightarrow \mathcal{V}=\operatorname{Mod}\{\varepsilon\}$ for some equation
A is called a splitting algebra and ε the conjugate equation of the conjugate variety \mathcal{V}.
$(\mathbb{V}(H), \mathcal{O} \mathcal{M})$ is a splitting pair since an ortholattice has H as a sublattice \Longleftrightarrow it is not orthomodular.

The lattice $\Lambda_{\mathcal{O L}}$ of varieties of ortholattices

Figure: Some splittings in the lattice $\Lambda_{\mathcal{O L}}$ of ortholattice varieties

Generating varieties of ortholattices

$\mathbb{V}(A)=\mathbb{H} \mathbb{S P}(A)$ is the smallest variety containing A

Examples: $\mathcal{M \mathcal { O } _ { n }}=\mathbb{V}\left(M O_{n}\right)$
$\mathcal{H}=\mathbb{V}(H)$ the variety generated by the hexagon benzene ring.
$\Lambda_{\mathcal{O L}}=$ the complete lattice of all ortholattice varieties
$L+M=$ the horizontal sum of (ortho)lattices L, M
${ }_{(k)} \mathbf{2}^{n}=k$ glued copies of the finite BA with n atoms

The lattice $\Lambda_{\mathcal{O L}}$ of varieties of ortholattices

Equational bases for some varieties

Baker [1972] proved that any congruence distributive variety that is generated by a finite algebra has a finite equational basis.

For bounded lattices L, M the (glued) horizontal sum $L+{ }_{h} M$ is the disjoint union with the bounds identified. If L, M are ortholattices, so is $L+{ }_{h} M$, and the orthomodular identity is preserved.

Bruns and Kalmbach [1971] found equational bases for all varieties of orthomodular lattices that are generated by finite horizontal sums of finite Boolean algebras.

In particular, $\mathcal{M O}_{2}$ has a 3-variable equational basis $c(x, y)+c(x, z)+c(y, z)=1$, where $c(x, y)=x y+x^{\prime} y+x y^{\prime}+x^{\prime} y^{\prime}$.

Lattice equational bases for $M_{n}, M O_{n}$

Jónsson [1968] \mathcal{M}_{ω} has basis $E=\{w(x+y z)(y+z) \leqslant x+w y+w z\}$
$\mathcal{M} \mathcal{O}_{\omega}$ has the same lattice basis relative to $\mathcal{O} \mathcal{L}$.
\mathcal{M}_{n} has basis $E_{n}=E \cup\left\{w \cdot \prod\left(x_{i}+x_{j}\right) \leqslant w x_{1}+w x_{2}+\cdots+w x_{n}\right\}$

$$
1 \leqslant i<j \leqslant n
$$

E.g. \mathcal{M}_{3} has basis $w\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right) \leqslant w x_{1}+w x_{2}+w x_{3}$
\mathcal{M}_{4} has a 5-variable basis, and $\mathcal{M} \mathcal{O}_{2}$ has the same lattice basis.
$\mathcal{M O} \mathcal{O}_{n}$ has a $2 n+1$-variable lattice basis $E_{2 n}$.

An equational basis for the hexagon variety \mathcal{H} ?

In Sept 2020 John Harding sent me an email about finding an equational basis for \mathcal{H}.

Kirby Baker's finite basis theorem is in principle constructive, but in practice not feasible even for very small algebras.
Roberto Giuntini proposed a 3-variable basis

$$
\begin{aligned}
B= & \left\{(x+y)(x+z)\left(x^{\prime}+y z\right)=(x+y z)\left(x^{\prime}+y z\right),\right. \\
& \left.(x+y)\left(x^{\prime}+y\right)+x y^{\prime}=x+y\right\}
\end{aligned}
$$

McKenzie [1972] found a 4-variable basis for the lattice variety \mathcal{N}_{5}

$$
\begin{aligned}
M= & \{w(x+y)(x+z) \leqslant w(x+y z)+w y+w z \\
& w(x+y(w+z))=w(x+w y)+w(w x+y z)\}
\end{aligned}
$$

We also investigated whether this is a basis for \mathcal{H}, but (at that time) no progress after a few weeks.

When is an OL variety defined by lattice equations?

Joint work with J.B. Nation and Ralph Freese (Jan 2022).
$\mathrm{Rd} K$ denotes the lattice reduct of an ortholattice K.
Let $\Lambda_{\mathcal{L}}$ be the lattice of varieties of lattices and define $\rho: \Lambda_{\mathcal{O L}} \rightarrow \Lambda_{\mathcal{L}}$ by $\rho(\mathcal{V})=\mathbb{V}(\{\operatorname{Rd} K \mid K \in \mathcal{V}\})$.
(i) Describe the range of ρ.
(ii) When is a variety \mathcal{V} of ortholattices determined by an equational basis of $\rho(\mathcal{V})$?

Note: Varieties in the range of ρ are self-dual.
If k is odd then $\mathbb{V}\left(M_{k}\right)$ is not in the range of ρ.

An embedding $h: L \hookrightarrow \prod L_{i}$ is subdirect if $\left(\pi_{i} \circ h\right)[L]=L_{i}$ for all $i \in I$ L is subdirectly irreducible if $L \stackrel{s d}{\longrightarrow} \prod L_{i}$ implies $L \cong L_{i}$ for some $i \in I$

Theorem

Let L be a finite s.i. lattice. Then L is a lattice-subdirect factor of an ortholattice if and only if there exists an ortholattice S such that $\operatorname{Rd} S \xrightarrow{s d} L \times L^{d}$, where L^{d} is the dual of L.

Proof (outline).

Let $K \in \mathcal{O} \mathcal{L}$ and θ a lattice congruence with $(\operatorname{Rd} K) / \theta \cong L$.
On K define θ^{\prime} by $x \theta^{\prime} y \Longleftrightarrow x^{\prime} \theta y^{\prime}$.
Then θ^{\prime} is a lattice congruence (by De Morgan's law), $(\operatorname{Rd} K) / \theta^{\prime} \cong L^{d}$ and $\theta \cap \theta^{\prime}$ is an ortholattice congruence (since $x \theta \cap \theta^{\prime} y \Longleftrightarrow x^{\prime} \theta^{\prime} \cap \theta y^{\prime}$). So take $S=K / \theta \cap \theta^{\prime}$, then $\operatorname{Rd} S \stackrel{s d}{\hookrightarrow} \operatorname{Rd} K / \theta \times \operatorname{Rd} K / \theta^{\prime} \cong L \times L^{d}$.

Deciding if $\mathbb{V}\left(L \times L^{d}\right)$ is in the range of ρ

For a finite s.i. lattice L, check if there exists a subdirectly embedded sublattice S of $L \times L^{d}$ that supports an orthocomplement.

Example: $\mathbb{V}\left(N_{5} \times N_{5}^{d}\right)=\mathbb{V}\left(N_{5}\right)=\rho(\mathbb{V}(H))$ since $H \stackrel{s d}{\longrightarrow} N_{5} \times N_{5}^{d}$.

Any lattice basis for $\mathbb{V}\left(N_{5}\right)$ is a basis for $\mathbb{V}(H)$

Let K be an ortholattice such that $\operatorname{Rd} K \in \mathbb{V}\left(N_{5}\right)$.
Then RdK has a subdirect embedding into a product of copies of N_{5} and 2.

As in the proof of the preceding theorem, every N_{5}-congruence $\theta \in \operatorname{Con}(\operatorname{Rd} K)$ is paired with $\theta^{\prime}=\left\{(x, y) \mid x^{\prime} \theta y^{\prime}\right\}$, and $\bar{\theta}:=\theta \cap \theta^{\prime}$ is an ortholattice congruence.

Thus we get an embedding of K into a product of $K / \bar{\theta}$ and copies of 2, where θ ranges over all N_{5}-congruences.

Since $K / \bar{\theta}$ is an orthocomplemented sublattice of $N_{5} \times N_{5}$, it suffices to check that all subdirect sublattices of $N_{5} \times N_{5}$ that admit an orthocomplement are isomorphic to H.

Any lattice basis for $\mathbb{V}(N(L))$ is a basis for $\mathbb{V}\left(L+L^{d}\right)$

This was first checked with a computer calculation for $N_{5} \times N_{5}$.
Later generalized by hand to cover all lattices $N(L)=L+{ }_{p}\{c\}$ where L is a finite subdirectly irreducible lattice.
(For lattices L, M the (loose) parallel sum $L+{ }_{p} M$ is the disjoint union of L and M with a new 0,1 added.)
Note: $L+{ }_{p} L^{d}$ is orthocomplemented by the map $x \leftrightarrow x^{d}, 0 \leftrightarrow 1$.

Theorem

For any finite subdirectly irreducible lattice L, the ortholattice variety $\mathbb{V}\left(L+{ }_{p} L^{d}\right)$ is determined by lattice identities.
\mathcal{H} is covered by the case when $L=2$.

Lattices with several (nonisomorphic) orthocomplements

These two ortholattices cannot be distinguished by lattice identities.

However $2^{3}+2^{3}$ is orthomodular, whereas H is a subalgebra of K.

Recall: $\Lambda_{\mathcal{O L}}$ lattice of ortholattice varieties

Compare with the lattice Λ_{L} of lattice varieties

Nine ortholattices that generate covers of $\mathbb{V}(H)$

O_{7}

O_{9}
\mathcal{O}_{5} shows that a basis for $\mathbb{V}(H)$ requires 3 variables.

O_{4} is a splitting ortholattice

Theorem

For a variety \mathcal{V} of ortholattices,
$O_{4} \notin \mathcal{V} \Longleftrightarrow \mathcal{V}$ satisfies $\left(x+x^{\prime} y^{\prime}\right)\left(x+x^{\prime}(x+y)\right)=x$.
Equivalently, \mathcal{V} satisfies $x \leqslant y \Longrightarrow\left(x+y^{\prime}\right)\left(x+x^{\prime} y\right)=x$.
This result was first proved with the help of Prover9.

Other subdirectly irreducible ortholattices

More details of the lattice $\Lambda_{\mathcal{O L}}$ of ortholattice varieties

$$
\mathcal{O M L}
$$

$\mathcal{M O L}$
$\mathcal{M O}{ }_{\omega}$

A full list of covering varieties gives a test for bases

Suppose \mathcal{V} is a variety and \mathcal{C} is a collection of varieties that strongly cover \mathcal{V}, i.e. for all varieties $\mathcal{W}, \mathcal{V} \subseteq \mathcal{W}$ implies $\mathcal{U} \subseteq \mathcal{W}$ for some $\mathcal{U} \in \mathcal{C}$.

Then E is a basis for \mathcal{V} iff $\mathcal{V} \models E$ and for all $\mathcal{U} \in \mathcal{C}, \mathcal{U} \not \vDash E$.
Jónsson and Rival [1979] $\mathcal{M}_{3} \vee \mathcal{N}_{5}, \mathbb{V}\left(L_{1}\right), \ldots, \mathbb{V}\left(L_{15}\right)$ strongly cover \mathcal{N}_{5}. $\left(L_{1}, \ldots, L_{15}\right.$ were found by McKenzie [1972].)
\Rightarrow can easily test lattice identities to see if they are a basis for \mathcal{N}_{5}.
If so, then by the preceding results they are also a basis for \mathcal{H}.
But to test ortholattice identities we need a full list of covers of \mathcal{H}

Is $\mathcal{M O} \mathcal{O}_{2} \vee \mathcal{H}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{9}$ a full list of covers of \mathcal{H} ?

So far we have proved the following result.

Theorem

If a finite ortholattice K has an atom a such that $\downarrow a^{\prime}$ is not a prime ideal, then there exists $x \in K$ such that $\operatorname{Sg}(a, x)$ contains MO_{2} or O_{j} for some $j \in\{1,2,3,4,8\}$.

Now can assume that K is a finite ortholattice in which $\downarrow a^{\prime}$ is a prime ideal for every atom a. If $K \notin \mathcal{H}$ then show K contains $M O_{2}$ or O_{j} for some $j \in\{4,5,6,7,9\}$.
Last step would be to remove finiteness of K.
If $\mathcal{M} \mathcal{O}_{2} \vee \mathcal{H}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{9}$ is a full list of covers of \mathcal{H} then
Roberto Giuntini's identities B are also a basis for \mathcal{H}.

Some references for Part 1

R K. Baker, Finite equational bases for finite algebras in a congruence-distributive equational class, Advances in Math. 24 (1977), 207-243.
E. Gruns and G. Kalmbach: Varieties of orthomodular lattices, Canadian J. Math., Vol. XXIII, No. 5, 1971, pp. 802-810
B. Jónsson: Equational classes of lattices. Math. Scand., 22:187-196, 1968.
B. Jónsson and I. Rival: Lattice varieties covering the smallest nonmodular variety. Pacific J. Math., 82(2):463-478, 1979.
围 R. McKenzie: Equational bases and nonmodular lattice varieties. Trans. Amer. Math. Soc., 174:1-43, 1972.

Part 2

Joint work with Melissa Sugimoto at CUNY,
José Gil-Férez and Sid Lodhia at Chapman

Plonka sums of integral involutive partially ordered monoids

Involutive residuated lattices and posets

A pointed residuated lattice $\mathbf{A}=(A, \wedge, \vee, \cdot, 1, \backslash, /, 0)$ is a lattice (A, \wedge, \vee) and a monoid $(A, \cdot, 1)$ with a constant 0 such that

$$
x y \leqslant z \Longleftrightarrow x \leqslant z / y \Longleftrightarrow y \leqslant x \backslash z
$$

It is involutive if $-\sim x=x=\sim-x$ where $-x=0 / x, \sim x=x \backslash 0$.
In this case $x / y=-(y \cdot \sim x)$ and $x \backslash y=\sim(-y \cdot x)$, so the residuals become term-definable.

Examples: Boolean algebras ($x y=x \wedge y$) and MV-algebras $\mathcal{M V}=\mathbb{V}\{([0,1], \min , \max , \odot, 1, \sim)\}$ where $[0,1] \subseteq \mathbb{R}$, $x \odot y=\max (x+y-1,0)$ and $-x=\sim x=1-x$

Involutive residuated posets $=\mathbf{i p o}$-monoids generalize involutive residuated lattices by replacing (A, \wedge, \vee) with (A, \leqslant)

Structural results about involutive residuated lattices?

The structure of (finite) Boolean algebras is well understood.
Similarly for MV-algebras, they are products of MV-chains MV ${ }_{n}$
Can we build on these results to describe larger classes of involutive residuated lattices?

Boolean algebras are idempotent $x x=x$, so study these involutive RLs.

Full description for the finite commutative ones by [J., Tuyt \& Valota 2020]

Used Mace4 to look at finite models up to size 16.

Idempotent ipo-monoids are Plonka sums of BAs

Let $\left\{\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}: i \leqslant j\right\}$ be a family of homomorphisms indexed by a join-semilattice (I, \vee, \perp) and compatible, i.e., $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k}$, if $i \leqslant j \leqslant k$, and $\varphi_{i i}$ is the identity on \mathbf{A}_{i}.

Its Płonka sum is the algebra \mathbf{S} with universe $\biguplus_{i \in I} A_{i}$ and
$a \cdot{ }^{\mathbf{S}} b=\varphi_{i k}(a) \cdot \mathbf{A}_{k} \varphi_{j k}(b)$ where $a \in A_{i}, b \in A_{j}, k=i \vee j$
$\sim^{\mathbf{S}} a=\sim^{\mathbf{A}_{i}} a,-\mathbf{S}_{a}=-\mathbf{A}_{i}$ and $1^{\mathbf{S}}=1^{\mathbf{A}_{\perp}}$.

Lemma (J., Sugimoto)

The • of every finite commutative idempotent ipo-monoid \mathbf{A} is a Płonka sum of generalized BA homomorphisms $\varphi_{p q}(x)=x q$ indexed by $I=\{p \in A: p \geq 1\}$ where $\mathbf{A}_{p}=\{x \in A: x / x=p\}$.

Mace4 produced the following diagrams for the monoidal order $x \sqsubseteq y \Longleftrightarrow x \cdot y=x$ of all commutative idempotent ipo-semigroups (bold lines show Boolean components)

How does this look in Prover9 using Colab?

Go to http://colab.research.google.com and paste:
!pip install provers
!git clone https://github.com/jipsen/Prover9.git
from provers import *; execfile("/content/Prover9/Prover9.py")
iposg=[

"x*y <= $z<->x<=-(y * \sim z) ", ~ " x * y<=z<->y<=\sim(-z * x) "$,
"x<=y -> -y<=-x", "x<=y -> ~y<=~x", "-~x = $x ", ~ " ~-x=x "$,
" (x*y) *z = x*(y*z)"]
b=p9 (iposg+["x*x=x", "0*x=0"],[],100,100,[9])
show(b[6])

Commutative idempotent ipo-semigroups of size 6

However the previous result did not explain how to reconstruct the partial order \leqslant of the ipo-monoid \mathbf{A} and did not characterize the families of homomorphisms.

With Sid Lodhia we investigated weaker axioms than assuming commutativity and idempotence.

The components \mathbf{A}_{p} have top element $1_{p}=p=-(x \cdot \sim x)$, hence they are integral and have bottom $0_{p}=x \cdot \sim x$.

Prover9 was helpful in showing the following axioms suffice:
An ipo-monoid is locally integral if it satisfies
(i) $x \cdot \sim x=-x \cdot x$, (ii) $x x \leqslant x$ and (iii) $x \leqslant 0 \Rightarrow x x=x$

Every integral (i.e., $x \leqslant 1$) ipo-monoid is locally integral.

Locally integral ipo-monoids

An ipo-monoid $(A, \leqslant, \cdot, 1, \sim,-)$ is a poset (A, \leqslant) and a monoid $(A, \cdot, 1)$ with $0=\sim 1=-1$ such that

$$
x \leqslant y \Longleftrightarrow x \cdot \sim y \leqslant 0 \Longleftrightarrow-y \cdot x \leqslant 0
$$

It follows that $\sim-x=x=-\sim x$ and $x \leqslant \sim y \Longleftrightarrow y \leqslant-x$.
The class of ipo-monoids includes all groups (if \leqslant is $=$) and all partially ordered groups where $\sim x=-x=x^{-1}, 0=1$.

Boolean algebras and MV-algebras are integral ipo-monoids, in fact $\mathbf{i} \ell$-monoids (\vee, \wedge are definable)

Structural Characterization of Locally Integral ipo-monoids

Theorem (Gil-Férez, J., Lodhia)

Let A be a locally integral ipo-monoid and $\left\{\varphi_{p q}: p \leqslant q\right\}$ as before.
Then their Płonka sum $\left(\biguplus A_{p},{ }^{\mathbf{S}}, 1^{\mathbf{S}}\right)$ is the monoidal reduct of \mathbf{A}.
Define $\sim^{\mathbf{S}_{X}}=\sim^{\mathbf{A}_{\rho}} X$ and $-\mathbf{S}_{X}=-\mathbf{A}_{\boldsymbol{A}_{X}}$, for every $x \in A_{p}$.
Define $x \leqslant^{\mathbf{S}} y \Longleftrightarrow x \cdot{ }^{\mathbf{S}} \sim^{\mathbf{S}} y=0_{p q}, \quad$ for all $x \in A_{p}, y \in A_{q}$.
Then $\left(\biguplus A_{p}, \leqslant^{\mathbf{S}},{ }^{\mathbf{S}}, \sim^{\mathbf{S}},-^{\mathbf{s}}\right)=\mathbf{A}$.
Moreover, if \mathbf{A} is in $\operatorname{In} R L$ then all \mathbf{A}_{p} are in $\operatorname{In} R L$.
Furthermore, \mathbf{A} is commutative if and only if all its components are commutative

A Generic Example with 4 Integral InRL Components

Glueing Integral ipo-monoids

Let $(D, \vee, 1)$ be a lower-bounded join-semilattice;
$\mathbf{A}_{p}=\left(A_{p}, \leqslant_{p}, \cdot{ }_{p}, 1_{p}, \sim_{p},-_{p}\right)$ integral ipo-monoid, for every $p \in D$;
$\Phi=\left\{\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}: p \leqslant^{D} q\right\}$ compat. family of monoidal hom.
Define the structure:

$$
\int_{\Phi} \mathbf{A}_{p}=\left(\biguplus_{D} A_{p}, \leqslant^{G}, \cdot^{G}, 1^{G}, \sim^{G},-{ }^{G}\right)
$$

where $\left(\biguplus_{D} A_{p},{ }^{G}, 1^{G}\right)$ is the Płonka sum of the family Φ and for all $p, q \in D, a \in A_{p}$, and $b \in A_{q}$,

- $\sim^{G} a=\sim_{p} a$ and $-{ }^{G} a=-{ }_{p} a$,
- $a \leqslant^{G} b \Longleftrightarrow a \cdot{ }^{G} \sim^{G} b=0_{p \vee q}$.
$\int_{\Phi} \mathbf{A}_{p}$ is the glueing of $\left\{\mathbf{A}_{p}: p \in D\right\}$ along the family Φ.

A Sugihara Glueing of Copies of the Standard MV-chain

Glueing $Ł_{3}$ into a Small IMTL-algebra

Glueing of Integral ipo-monoids that is not an ipo-monoid

The relation \leqslant of $\int_{\Phi} \mathbf{A}_{p}$ is not transitive.

Required Conditions for Glueing Integral ipo-monoids

(balanced): for all $p, q \in D, a \in A_{p}, b \in A_{q}$,

$$
a \cdot{ }^{G} \sim^{G} b=0_{p \vee q} \Longleftrightarrow-{ }^{G} b \cdot{ }^{G} a=0_{p \vee q} .
$$

(zero): for all $p \leqslant^{D} q, \quad \varphi_{p q}\left(0_{p}\right)=0_{q} \Longleftrightarrow p=q$.
(tr): for all $a, b, c \in \biguplus A_{p}, \quad$ if $a \leqslant^{G} b$ and $b \leqslant^{G} c$, then $a \leqslant^{G} c$.

Main Glueing Result

Theorem (Gil-Férez, J., Lodhia)

A structure \mathbf{A} is a locally integral ipo-monoid if and only if there is

- a lower-bounded join-semilattice \mathbf{D},
- a family of integral ipo-monoids $\left\{\mathbf{A}_{p}: p \in D\right\}$, and
- a compatible family $\Phi=\left\{\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}: p \leqslant^{\mathbf{D}} q\right\}$ of monoidal homomorphisms satisfying (bal), (zero), and (tr)
so that $\mathbf{A}=\int_{\Phi} \mathbf{A}_{p}$.

Glueing of infinitely many BAs that produces an $i \ell$-monoid

A Few Remarks and Questions

The condition (tr) can be replaced by more "local" condition.

- for all $p \leqslant^{\mathrm{D}} q$, and $a, b \in A_{p}, a \leqslant_{p} b \Longrightarrow \varphi_{p q}(a) \leqslant_{q} \varphi_{p q}(b)$;
- for all $p \leqslant^{\mathbf{D}} q, p \leqslant^{\mathrm{D}} r$, and $a \in A_{p}, \sim \varphi_{p q}(a) \leqslant^{\mathbf{G}} \varphi_{p r}(\sim a)$;
- for all $p \vee r \leqslant^{\mathrm{D}} v, a \in A_{p}$, and $b \in A_{r}$,

$$
\begin{equation*}
\varphi_{r v}(\sim b) \leqslant v \sim \varphi_{p v}(a) \Longrightarrow a \leqslant^{G} b \tag{lax}
\end{equation*}
$$

A locally integral ipo-monoid \mathbf{A} is idempotent if and only if all its integral components are Boolean algebras.

Several properties are "local" (i.e., A satisfies them if and only if all its components do): e.g., commutativity, local finiteness.

Under which conditions is A lattice-ordered?
Are locally integral ipo-monoids or InRLs decidable?

Some subvarieties of commutative idempotent InRLs

$$
\text { Let } \mathcal{S}_{i, j}=\mathbb{V}\left(S_{i, j}\right) \text {. }
$$

Some equational bases for commutative idempotent InRLs

The previous diagram is complete below $\mathcal{S M}$ and $\mathcal{S}_{5,2}$.
Hence we have full lists of covering varieties for proper subvarieties of $\mathcal{S M}$ (excluding $\mathcal{O S M}$).
$\mathcal{B A}$ is covered only by $\mathcal{S}_{3} \vee \mathcal{B A}$, so $x 0=0$ is a basis relative to $\mathcal{S M}$
\mathcal{S}_{3} has $(x \vee-x)(0 \vee-y)=x \vee-(x y)$ as basis relative to $\mathcal{O S} \mathcal{M}$.
\mathcal{S}_{4} has $0 \leqslant x \vee-(x y)$ as basis relative to $\mathcal{S M}$.
$\mathcal{S}_{5,2}$ has $(x \vee-x)(0 \vee-y)=x \vee-(x y)$ as basis relative to odd unital i ℓ-semilattices.

Dual Representation by Partial Functions Between Sets

Partial Functions

Definition. A proper partial function $f: X \rightarrow Y$ is a function from U to Y where $U \subsetneq X$ is the domain of f.

Developing a Dual Representation

Given a commutative idempotent ipo-monoid \mathbf{A}, it is Płonka sum of Boolean components.

Each Boolean component is determined by its set of atoms.
The partial functions map between sets of atoms (opposite to homomorphisms).

A dual representation of families of Boolean algebras gives a much more compact way of drawing finite ipo-monoids.

Dual Representation by Partial Functions Between Sets

Every finite Boolean algebra \mathbf{A}_{i} is isomorphic to the powerset Boolean algebra of its finite set X_{i} of atoms.
For $i \leqslant j$, the generalized BA homomorphism $h_{j i}$ corresponds to the partial map $f_{i j}: X_{i} \rightarrow X_{j}$ defined by

$$
f_{i j}(a)=b \Longleftrightarrow a \leqslant h_{j i}(b) \text { and } a \not \leq h_{j i}\left(0_{j}\right) .
$$

A family of proper partial maps is a triple $\mathbf{X}=\left(X_{i}, f_{i j}, I\right)$ st

- for a semilattice $I,\left\{X_{i}: i \in I\right\}$ is a family of disjoint sets, and
- $f_{i j}: X_{i} \rightarrow X_{j}$ is a proper partial map for all $i \leqslant j \in I$ such that $f_{i i}=i d_{X_{i}}$ and for all $i \leqslant j \leqslant k, f_{j k} \circ f_{i j}=f_{i k}$.
\Rightarrow Every commutative idempotent ipo-monoid can be represented by a family of proper partial maps.

Some references for Part 2

目 S．Bonzio，A．Loi，L．Peruzzi：A duality for involutive bisemilattices， Studia Logica，（2019）107：423－444．
䍰 J．Gil－Férez，P．Jipsen，S．Lodhia：The structure of locally integral involutive po－monoids and semirings，in proceedings of RAMiCS 2023，LNCS 13896，Springer 2023.

國 S．Jenei：Group－representation for even and odd involutive commutative residuated chains．Studia Logica， 2022.
圊 P．Jipsen，O．Tuyt，D．Valota：Structural characterization of commutative idempotent involutive residuated lattices，Algebra Universalis，82，57， 2021.
围
W．McCune：Prover9 and Mace4．
www．cs．unm．edu／～mccune／prover9／，2005－2010．
THANKS！

