CIRCUITS OVER FINITE ALGEBRAS

Paweł M. Idziak

in collaboration with Piotr Kawałek, Jacek Krzaczkowski and Armin Weiß

http://tcs.uj.edu.pl

Panglobal Algebra and Logic Seminar Boulder & Anywhere on Earth, March 21, 2023

Solving equations

- Linear equations
- Galois theory
- Diophantine equations Hilbert's 10th problem – studies of decidable subcases
- SAT satisfiability of Boolean formulas
- . . . and many, many others . . .

- POLSAT equations of polynomials over (finite) algebras
- SYSPOLSAT finite systems of polynomial equations over (finite) algebras

I → □ ► < □ ►</p>

Brute force algorithm for an equation over a finite algebra A:

$$\mathbf{g}_1(x_1,\ldots,x_n)=\mathbf{g}_2(x_1,\ldots,x_n)$$

requires $|A|^n$ evaluations

Problem

Characterize finite algebras $\mathbf{A} = (A; f_1, \dots, f_s)$, for which POLSAT(\mathbf{A}) can be solved in polynomial time.

In which terms such classification is possible?

イロト イヨト イヨト

CSP over a relational structure $\mathbb D$

asks whether a pp-formula is satisfiable in the structure $\ensuremath{\mathbb{D}}$

- undecidable in general (e.g. 10th Hilbert problem)
- in NP for finite structures $\mathbb D$
- in P or NP-complete for 2-element structures D (T.Schaefer, STOC 1978)

Bulatov (FOCS'17), Zhuk (FOCS'17)

Constraint satisfaction problem for a fixed finite relational structure is either in P or NP-complete.

Equations satisfiability and Constraint Satisfaction Problem

Why bother with equations

- dichotomy for CSP is confirmed
- even the precise borderline/characterization is known
- translate it here !!!

Feder, Madelaine & Stewart 2004; Larose & Zádori 2006

- for every finite relational structure D there is a finite algebra A[D] with CSP(D) polynomially equivalent to SYSPOLSAT(A[D]);
- for every finite algebra A there is a relational structure D[A] with SysPolSAT(A) polynomially equivalent to CSP(D[A]).

single equation: only one way

- for every finite relational structure D there is a finite algebra A[D] with CSP(D) polynomially equivalent to POLSAT(A[D]).
- the converse probably not true, unless certain complexity hypothesis fail

Examples

Groups (M.Goldmann & A.Russell 1999)

Polynomial satisfiability problem (POLSAT)

- is NP-complete for non-solvable groups,
- and in P for nilpotent groups.

Rings (S.Burris & J.Lawrence 1993; G.Horváth 2011)

For a finite ring A, POLSAT(A) is

- in P, whenever A is nilpotent,
- and NP-complete otherwise.

Lattices (B.Schwarz 2004)

For a finite lattice A, POLSAT(A) is

- in P if A is distributive,
- and NP-complete otherwise.

POLSAT is language sensitive

Case study: non-nilpotent solvable groups

Fact (Goldmann, Russell)

 POLSAT is NP-complete for non-solvable groups and in P for nilpotent groups.

POLSAT is language sensitive

Case study: non-nilpotent solvable groups

Fact (Goldmann, Russell)

 POLSAT is NP-complete for non-solvable groups and in P for nilpotent groups.

Kosicka Bela observations 2003

For (solvable but non-nilpotent) symmetric group S_3 :

- $POLSAT(S_3; \cdot, \cdot^1)$ is in P (Horváth & Szabó)
- POLSAT(S₃; ·, ⁻¹, a couple of additional polynomials) is NP-complete.

ヘロト ヘヨト ヘヨト ヘヨト

POLSAT is language sensitive

Case study: non-nilpotent solvable groups

Fact (Goldmann, Russell)

 POLSAT is NP-complete for non-solvable groups and in P for nilpotent groups.

Kosicka Bela observations 2003

For (solvable but non-nilpotent) symmetric group S_3 :

- $POLSAT(S_3; \cdot, {}^{-1})$ is in P (Horváth & Szabó)
- $\operatorname{POLSAT}(S_3; \cdot, {}^{-1}, {}_{\mathsf{a}} \text{ couple of additional polynomials}) \text{ is NP-complete.}$

Fact (Horváth & Szabó 2012)

For (solvable but non-nilpotent) alternating group A_4 :

- PolSat $(A_4; \cdot, \cdot^1)$ is in P,
- POLSAT(A₄; ·, ⁻¹, [,]), where [x, y] = x⁻¹y⁻¹xy, is NP-complete.

exponential syntactic tree vs polynomial size circuit

$$t_n(x_1, x_2, \ldots, x_n) = [\ldots [[x_1, x_2], x_3] \ldots x_n]$$

Circuits satisfiability and circuits equivalence

CSAT(**A**) given a circuit over **A** with two output gates $\mathbf{g}_1, \mathbf{g}_2$ is there a valuation of input gates $\overline{x} = (x_1, \dots, x_n)$ that gives the same output on $\mathbf{g}_1, \mathbf{g}_2$, i.e., $\mathbf{g}_1(\overline{x}) = \mathbf{g}_2(\overline{x})$.

SCSAT(A)

given a circuit over **A** with output gates $\mathbf{g}_1^1, \mathbf{g}_2^1, \dots, \mathbf{g}_1^k, \mathbf{g}_2^k$ is there a valuation of input gates $\overline{\mathbf{x}}$ that gives the same output on all pairs $\mathbf{g}_1^i, \mathbf{g}_2^i$, i.e., $\mathbf{g}_1^i(\overline{\mathbf{x}}) = \mathbf{g}_2^i(\overline{\mathbf{x}})$ for all *i*.

MCSAT(A) given a circuit over A with output gates $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_k$ is there a valuation of input gates \overline{x} that gives the same output on all the \mathbf{g}_i 's, i.e., $\mathbf{g}_1(\overline{x}) = \mathbf{g}_2(\overline{x}) = \dots = \mathbf{g}_k(\overline{x})$.

CEQV(A)

given a circuit over **A** is it true that for all inputs \overline{x} we have the same values on given two output gates $\mathbf{g}_1, \mathbf{g}_2$,

i.e. $\mathbf{g}_1(\overline{x}) = \mathbf{g}_2(\overline{x})$.

POLSAT (Goldmann & Russell 1999)

Polynomial satisfiability problem (POLSAT)

- is NP-complete for non-solvable groups
- and in P for nilpotent groups.

CSAT (Horváth & Szabó 2011)

Circuit satisfiability problem (CSAT)

- is NP-complete for non-nilpotent groups
- and in P for nilpotent groups.

Open

(but with some progress)

Characterization of finite groups with poly-time $\rm POLSAT$ in original language, i.e. with multiplication only.

LICS'18: two reasons for tractability of CSAT in CM varieties:

- supernilpotency, (same as nilpotency in groups and rings)
- distributive lattice like behavior.

LICS'18: many reasons for intractability

 $\rm CSAT$ for algebras not expressible as a product of a nilpotent algebra and a distributive lattice like algebra is NP-complete.

< ロ > < 同 > < 三 > < 三 >

	tractable	open	intractable
Ceqv	supernilpotent	nil but not	non nilpotent
	Aichinger & Mudrinski	supernil	
CSAT	supernil imes DL-like	nil but not	non (nil $ imes$ DL-like)
		supernil	
MCSAT	affine $ imes$ DL-like		otherwise
SCSAT	affine		otherwise
	Gaussian elimination		Larose & Zádori

Gap for nilpotent but not supernilpotent algebras.

ヘロト ヘヨト ヘヨト ヘヨト

Easy, moderate and sometimes quite heavy use of:

- comutator theory
- tame congruence theory

A dozen of constructions eliminating bad local behaviours:

- eliminating type 3
- separating types 2 and 4 (transfer principles)
- forcing type 2 (i.e., solvable) algebras to be nilpotent
- forcing type **4** (subdirectly irreducible) algebras to have only 2 elements

Poly-time algorithms

For a supernilpotent algebra (or a distributive lattice) **A** there is a constant $d_{\mathbf{A}}$ so that for each *n* there is $S_n \subseteq A^n$ with

- $|S_n|$ is $O(n^{d_A})$,
- for two *n*-ary polynomials **s** and **t** the equation $\mathbf{s}(\overline{x}) = \mathbf{t}(\overline{x})$ has a solution $\overline{x} \in A^n$ iff it has a solution in S_n .
- in 2-element lattice case: $S_n = \{(0, \dots, 0), (1, \dots, 1)\}$ in DL-like algebra: $S_n = \{(a, \dots, a) : a \in A\}$ $d_A = |A|$
- in supernilpotent case: $S_n = \bigcup_{a \in A} \{(a_1, \dots, a_n) : \#\{i : a_i \neq a\} \leqslant d'_{\mathbf{A}}\}, \quad d_{\mathbf{A}} = |A|^{d'_{\mathbf{A}}} \cdot {n \choose d'_{\mathbf{A}}}$

 where (rather huge) constant d'_A is obtained by a quite involved Ramsey type argument,

• $d'_{\mathbf{A}}$ depends on: size of \mathbf{A} , supernilpotency degree, functions arity...

After a fascinating race for decreasing d_A we end up with $d_A = 1$, but for a randomized algorithm

Nilpotent vs supernilpotent gap

- supernilpotency is not necessary for tractability
- limits of small search space method
- nilpotency is not sufficient for tractability

(MFCS'18)

There are nilpotent (but not supernilpotent) algebras A with:

- CSAT(A) in P,
- CSAT(A) can not be solved in polynomial time using algorithm checking a small set of potential solutions which depends only on the number of input gates (unless P = NP).

Example: $A = (\mathbb{Z}_6; +, \%2)$

(LICS'20)

There are nilpotent algebras **A** with $CSAT(\mathbf{A}) \notin P$, unless ETH fails

ETH - Exponential Time Hypothesis

k-CNF-SAT requires at least $2^{\sigma_k \cdot n}$ time to be solved for some constant $0 < \sigma_k \leq 1$

Inside the nilpotent vs. supernilpotent gap

External/internal conjunction problem

Single equation versus system of equations

- external conjunction in systems of equations
- need to squeeze many terms into a single one
- analogue of an internal conjunction is needed
 - present in Boolean algebras
 - in some rings: $\bigwedge_i t_i = s_i$ iff $\sum_i (t_i s_i)(t_i s_i) = 0$
 - solvable non-nilpotent algebras have internal (conjunction-like) polynomials of arbitrary arity e.g. in groups [... [[[a, x₁], x₂], x₃]... x_n]
- Each supernilpotent algebra has its own bound for the arity of *conjunction-like* polynomials.
- Nilpotent but not supernilpotent algebras do have *conjunction-like* polynomials of arbitrary large arity,
- unfortunately the ones we can construct are of superpolynomial, or even exponential size (wrt to the arity).

Inside the nilpotent vs. supernilpotent gap

Stratifying the failure of supernilpotency

Supernilpotent rank of $\boldsymbol{\mathsf{A}}$

- splitting congruence lattice into supernilpotent intervals
- supernilpotent algebras have just one such supernilpotent block
- sr (A) $\leq h$ if there is a chain of congruences $0_{\mathbf{A}} = \sigma_0 < \sigma_1 < \cdots < \sigma_h = 1_{\mathbf{A}}$ with σ_{i+1} being supernilpotent over σ_i

Supernilpotent rank and alternation of primes

For a finite nilpotent algebra \mathbf{A} from a CM variety tfae:

• sr
$$(\mathbf{A}) \leqslant h$$
,

 chains φ₁ < φ₂ < ... < φ_s of meet irreducible congruences with alternating characteristics (i.e. char(φ_i) ≠ char(φ_{i+1})), have length s bounded by h.

< ロ > < 同 > < 三 > < 三 >

Inside the nilpotent vs. supernilpotent gap Length of conjunctions

 One alternation of primes provides *n*-ary conjunction-like polynomials but with exponential length Θ(2^{cn}).

In fact: (\mathbb{Z}_6 ; +, %2) has such polynomials of exactly exponential size

- h alternating primes p₁ ≠ p₂ ≠ p₃ ≠ ... ≠ p_h gives n-ary conjunction like polynomials of length Θ(2^{cn^{1/(h-1)}}),
- which for $h \ge 3$ yields subexponential size
- more alternations —> shorter conjunction.

(LICS'20 - examples and an idea of the proof)

If **A** is a finite nilpotent algebra with sr (**A**) \geq 3 then CSAT(**A**) \notin P $\not\supseteq$ CEQV(**A**), actually there are no algorithm for CSAT(**A**) or CEQV(**A**) faster than $\Omega\left(2^{c \cdot \log^{h} n}\right)$

(the first part has been shown in generality by M.Kompatscher, with a very cute proof)

イロン イヨン イヨン ・ ヨン

Inside the nilpotent vs. supernilpotent gap

Upper bounds and another complexity hypothesis

$CC[p_1; \ldots; p_h]$ modular boolean circuits

CC[m]-circuits of depth h with MOD_{p_i} on the i-th level $MOD_{p_1} \circ \ldots \circ MOD_{p_h}$

SESH - Strong Exponential Size Hypothesis

(or AND-weakness hypothesis)

・ロット (日) マイヨット

The sizes of $CC[p_1; ...; p_h]$ -circuits, with h > 1, that compute $(AND_n)_n$, grow at least as $\Omega(2^{cn^{1/(h-1)}})$.

Deterministic and probabilistic upper bounds (under SESH)

Let **A** be a finite nilpotent algebra from a CM variety with sr $(\mathbf{A}) = h$. Then for both CSAT (\mathbf{A}) and CEQV (\mathbf{A}) we have:

- a deterministic O(2^{c log^b ℓ})-time algorithm, (where ℓ is the size of a circuit on the input),
- a probabilistic O(2^{c log^{h-1} ℓ})-time algorithm, (where ℓ is the size of a circuit on the input).

(at least under ETH)

イロト イヨト イヨト イヨト

Under ETH & SESH

 no dichotomy for CSAT - in contrast to CSP
 no equivalence of CSAT with CSP - in contrast to SCSAT = CSP
 in fact: CSAT has strictly bigger expression power than CSP or SCSAT

Natural conjecture

 $\begin{array}{ll} \mbox{For a finite algebra } \textbf{A} \mbox{ from a CM variety} \\ \mbox{CSAT}(\textbf{A}) \in \mbox{P} & \mbox{iff} \quad \textbf{A} \mbox{ is nilpotent and } \mbox{sr}\left(\textbf{A}\right) \leqslant 2 \\ \end{array}$

Fails. . . but very recently we got:

For a finite algebra **A** from a CM variety $CEQV(\mathbf{A}) \in RP$ iff **A** is nilpotent and sr $(\mathbf{A}) \leq 2$

Barrington, Beigel and Rudich construction

BBR construction of CC[m]-circuits computing $(AND_n)_n$

- of depth ${\bf 3},$
- and size $2^{O(n^{1/\omega(m)} \cdot \log n)}$,

where $\omega(m)$ is the number of prime divisors of m.

Our recent (LICS'22) improvement of CC[m]-circuits computing $(AND_n)_n$

- of depth 2,

- and size
$$2^{O(n^{1/\omega(m)} \cdot \log n)}$$
.

Moreover for any depth $h \ge 3$ we have CC[m]-circuits computing $(AND_n)_n$ – of size $2^{O(n^{1/(\omega-1)(h-2)+\omega'} \cdot \log n)}$.

where ω' is the number of prime divisors of *m* bigger than ω .

Consequences for Boolean modular circuits (LICS'22) A CC[m]-circuit of depth h is satisfiable iff h = 1 or $\omega(m) = 1$

 CSAT for the algebra (Z30; +; %2) is not in P

(unless ETH fails)

イロト イポト イヨト イヨト

- higher circuits (bigger h)
 → shorter conjunction-like polynomials
- wider circuits (i.e. more primes on the same level)
 → shorter conjunction-like polynomials
- shorter conjunction-like polynomials —> bigger complexity

$\mathbf{C}\mathbf{S}\mathbf{A}\mathbf{T}$

A finite group **G** has CSAT in P iff **G** is nilpotent, (unless P =NP), otherwise CSAT(G) is NP-complete.

PolSat

- POLSAT for nilpotent groups is in P
- POLSAT for non-solvable groups is NP-complete
- no solvable group has been known to have NP-complete POLSAT
- few examples of solvable, nonnilpotent groups with POLSAT in P:
 - S_3, A_4, \ldots
 - all of them have (super)nilpotent (or Fitting) rank 2

Solvable nonnilpotent groups have AND-like polynomials

- but of exponential size in original language of groups

This allows to use methods modelled after nil- but not supernil- realm for CSAT

イロト イヨト イヨト イヨト

Towards filling solvable vs nilpotent gap

(LICS'20, ICALP'20, TOCS'22)

 $\label{eq:constraint} \text{If } \operatorname{POLSAT}(\boldsymbol{G}) \in \mathsf{P} \quad \text{then} \quad \text{nr}\left(\boldsymbol{G}\right) \leqslant 2 \text{, unless ETH fails.}$

Dihedral groups (LICS'20, ICALP'22)

For a dihedral group \mathbf{D}_m (with 2m elements) we have:

- if $\omega_o(m) \leq 1$ then $\text{POLSAT}(\mathbf{D}_m) \in \mathsf{RP}$,
- if $\omega_o(m) \ge 2$ then POLSAT $(\mathbf{D}_m) \notin \mathsf{RP}$ (under rETH),
- if $\omega_o(m) \ge 2$ then POLSAT $(\mathbf{D}_m) \notin \mathsf{P}$ (under ETH),

where $\omega_o(m)$ is the number of odd prime divisors of m.

(ICALP'22)

If ${\boldsymbol{\mathsf{G}}}$ has two normal subgroups with

- coprime sizes
- and the join of their centralizers not covering G

then $POLSAT(G) \notin RP$ (under rETH).

Restricting values for variables in POLSAT

LISTPOLSAT – set of possible solutions assigned to each variable 2-LISTPOLSAT – 2-element set of possible solutions assigned to each variable PROGRAMSAT – 2-element list of possible solutions assigned to each variable, with some connections between these assignments

POLSAT $\leq_m 2$ -LISTPOLSAT $\leq_m L$ ISTPOLSAT 2-LISTPOLSAT $\leq_m PROGRAMSAT$

NUDFA and PROGRAMSAT

Non-uniform deterministic finite automata (over monoids) recognize languages over $\{0,1\}$ $\operatorname{ProgramSat}(M) \text{ asks if NUDFA's over } M \text{ recognize a nonempty language}$

Goldman & Russell

For finite nilpotent groups $PROGRAMSAT \in P$. A finite group with $PROGRAMSAT \in P$ has to be solvable.

< ロ > < 同 > < 三 > < 三 >

n-ary boolean program $(\mathbf{p}, n, \iota, S)$ over **A**

- p is a k-ary polynomial/circuit over A
- *k* instructions, one for each argument of **p** of the form $\iota(x) = (b^x, a_0^x, a_1^x)$, where b^x is one of the boolean variables/inputs b_1, \ldots, b_n , while $a_0^x, a_1^x \in A$,
- set $S \subseteq A$ of accepting values/states.

Functions associated with program $(\mathbf{p}, n, \iota, S)$

- inner function $(\mathbf{p})[\iota] : \{0,1\}^n \longrightarrow Y$ $(b_1,\ldots,b_n) \longmapsto \mathbf{p}(a_{b^{x_1}}^{x_1},\ldots,a_{b^{x_k}}^{x_k}),$
- final *n*-ary boolean function $(\mathbf{p})[\iota, S] : \{0, 1\}^n \longrightarrow \{0, 1\}$ with $(\mathbf{p})[\iota, S] (b_1, \dots, b_n) = 1$ iff $(\mathbf{p})[\iota] (b_1, \dots, b_n) \in S$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

LISTPOLSAT and PROGRAMSAT in finite groups

CDH – constant degree hypothesis (Barrington, Straubing, and Thérien: Inform&Comput'1990) (Krause, Pudlák: TCS'1997)

 $AND_d \circ MOD_m \circ MOD_p$ -circuits require $2^{\Omega(n)}$ size to compute AND_n with constant d

Grolmusz and Tardos, SICOMP'2000

 $MOD_m \circ MOD_p$ -circuits require $2^{\Omega(n)}$ size to compute AND_n

Barrington, Straubing & Thérien, 1990

Under CDH: PROGRAMSAT($\mathbf{G}_{p} \rtimes \mathbf{N}$) $\in \mathsf{P}$, whenever \mathbf{G}_{p} is a *p*-group and \mathbf{N} is nilpotent.

(ICALP'22)

Under both ETH and CDH:

for a finite solvable group ${\boldsymbol{\mathsf{G}}}$ with the smallest co-nilpotent normal subgroup ${\boldsymbol{\mathsf{N}}}$:

 $\operatorname{ProgramSat}(\boldsymbol{G}) \in \mathsf{RP} \quad \text{iff} \quad \boldsymbol{\mathsf{N}} \text{ is a } \textit{p-group} \quad \text{iff} \quad \operatorname{ListPolSat}(\boldsymbol{\mathsf{G}}) \in \mathsf{RP}$

PROGRAMCSAT in finite algebras from CM varieties

(very recently)

(very recently)

(very recently)

臣

イロト イヨト イヨト イヨト

Under both ETH and CDH:

For a finite algebra A from a CM variety PROGRAMCSAT $(A) \in \mathsf{RP}$ iff

- A is nilpotent,
- sr $(\mathbf{A}) \leqslant 2$,
- there is only one (prime) characteristics below the smallest co-supernilpotent congruence of **A**

Under both ETH and CDH:

For a finite algebra $\boldsymbol{\mathsf{A}}$ from a CM variety $\operatorname{CEQV}(\boldsymbol{\mathsf{A}}) \in \mathsf{RP}$ iff

- A is nilpotent,
- sr $(\mathbf{A}) \leq 2$.

Under both ETH and CDH:

A finite group **G** has POLEQV(G) in RP iff **G** is solvable and $nr(G) \leq 2$,

For a finite lattice L:

- $CSAT(L) \in P$ iff L is distributive,
- POLSAT(L) $\in P$ iff L is distributive,
- LISTPOLSAT(L) $\in P$ iff $|L| \leq 2$,
- PROGRAMSAT(L) $\in P$ iff |L| = 1,

イロト イヨト イヨト イヨト

CSAT

(even in congruence modular realm)

Which finite nilpotent algebras of supernilpotent rank 2 have $\rm CSAT$ solvable in (randomized) polynomial time?

POLSAT for groups

Which finite solvable groups of nilpotent rank 2 have ${\rm POLSAT}$ solvable in (randomized) polynomial time?

CSAT

(even in congruence modular realm)

Which finite nilpotent algebras of supernilpotent rank 2 have $\rm CSAT$ solvable in (randomized) polynomial time?

POLSAT for groups

Which finite solvable groups of nilpotent rank 2 have ${\rm POLSAT}$ solvable in (randomized) polynomial time?

Thank you

CSAT

(even in congruence modular realm)

Which finite nilpotent algebras of supernilpotent rank 2 have $\rm CSAT$ solvable in (randomized) polynomial time?

POLSAT for groups

Which finite solvable groups of nilpotent rank 2 have ${\rm POLSAT}$ solvable in (randomized) polynomial time?

Thank you

and join us