Circuits over Finite Algebras

Paweł M. Idziak

in collaboration with Piotr Kawałek, Jacek Krzaczkowski and Armin Weiß

```
http://tcs.uj.edu.pl
```

Panglobal Algebra and Logic Seminar Boulder \& Anywhere on Earth, March 21, 2023

Solving equations

- Linear equations
- Galois theory
- Diophantine equations - Hilbert's $10^{\text {th }}$ problem
- studies of decidable subcases
- SAt - satisfiability of Boolean formulas
- ... and many, many others ...
- PolSat - equations of polynomials over (finite) algebras
- SysPolSat - finite systems of polynomial equations over (finite) algebras

Research project

Brute force algorithm for an equation over a finite algebra \mathbf{A} :

$$
\mathbf{g}_{1}\left(x_{1}, \ldots, x_{n}\right)=\mathbf{g}_{2}\left(x_{1}, \ldots, x_{n}\right)
$$

requires $|A|^{n}$ evaluations

Problem

Characterize finite algebras $\mathbf{A}=\left(A ; f_{1}, \ldots, f_{s}\right)$, for which PolSat(A) can be solved in polynomial time.

In which terms such classification is possible?

Constraint Satisfaction Problem

CSP over a relational structure \mathbb{D}

asks whether a pp-formula is satisfiable in the structure \mathbb{D}

- undecidable in general (e.g. 10th Hilbert problem)
- in NP for finite structures \mathbb{D}
- in P or NP-complete for 2-element structures \mathbb{D}
(T.Schaefer, STOC 1978)

Bulatov (FOCS'17), Zhuk (FOCS'17)

Constraint satisfaction problem for a fixed finite relational structure is either in P or NP-complete.

Equations satisfiability and Constraint Satisfaction Problem

Why bother with equations

- dichotomy for CSP is confirmed
- even the precise borderline/characterization is known
- translate it here !!!

Feder, Madelaine \& Stewart 2004; Larose \& Zádori 2006

- for every finite relational structure \mathbb{D} there is a finite algebra $\mathbf{A}[\mathbb{D}]$ with $\operatorname{CSP}(\mathbb{D})$ polynomially equivalent to $\operatorname{SysPolSat}(\mathbf{A}[\mathbb{D}])$;
- for every finite algebra \mathbf{A} there is a relational structure $\mathbb{D}[\mathbf{A}]$ with $\operatorname{SysPolSat}(\mathbf{A})$ polynomially equivalent to $\operatorname{CSP}(\mathbb{D}[\mathbf{A}])$.

single equation: only one way

- for every finite relational structure \mathbb{D} there is a finite algebra $\mathbf{A}[\mathbb{D}]$ with $\operatorname{CSP}(\mathbb{D})$ polynomially equivalent to $\operatorname{PolSat}(\mathbf{A}[\mathbb{D}])$.
- the converse probably not true, unless certain complexity hypothesis fail

Examples

Groups (M. Goldmann \& A.Russell 1999)
Polynomial satisfiability problem (PolSat)

- is NP-complete for non-solvable groups,
- and in P for nilpotent groups.

Rings (S.Burris \& J.Lawrence 1993; G.Horváth 2011)

For a finite ring $\mathbf{A}, \operatorname{PolSat}(\mathbf{A})$ is

- in P , whenever \mathbf{A} is nilpotent,
- and NP-complete otherwise.

Lattices (B.Schwarz 2004)
For a finite lattice $\mathbf{A}, \operatorname{PolSat}(\mathbf{A})$ is

- in P if \mathbf{A} is distributive,
- and NP-complete otherwise.

PolSAT is language sensitive

Case study: non-nilpotent solvable groups

Fact (Goldmann, Russell)

PolSat is NP-complete for non-solvable groups and in P for nilpotent groups.

PolSat is language sensitive

Case study: non-nilpotent solvable groups

Fact (Goldmann, Russell)

PolSat is NP-complete for non-solvable groups and in P for nilpotent groups.

Kosicka Bela observations 2003

For (solvable but non-nilpotent) symmetric group S_{3} :

- PolSat $\left(\mathrm{S}_{3} ; \cdot{ }^{-1}\right)$ is in P (Horváth \& Szabó)
- PolSat $\left(\mathrm{S}_{3} ; \cdot,^{-1}\right.$, a couple of additional polynomials) is NP-complete.

PolSAT is language sensitive

 Case study: non-nilpotent solvable groups
Fact (Goldmann, Russell)

PolSat is NP-complete for non-solvable groups and in P for nilpotent groups.

Kosicka Bela observations 2003

For (solvable but non-nilpotent) symmetric group S_{3} :

- PolSat $\left(\mathrm{S}_{3} ; \cdot,^{-1}\right)$ is in P (Horváth \& Szabó)
- PolSat $\left(\mathrm{S}_{3} ; \cdot,^{-1}\right.$, a couple of additional polynomials) is NP-complete.

Fact (Horváth \& Szabó 2012)

For (solvable but non-nilpotent) alternating group A_{4} :

- PolSat $\left(\mathrm{A}_{4} ; \cdot{ }^{-1}\right)$ is in P ,
- $\operatorname{PolSat}\left(\mathrm{A}_{4} ; \cdot,^{-1},[],\right)$, where $[x, y]=x^{-1} y^{-1} x y$, is NP-complete.

exponential syntactic tree vs polynomial size circuit

$$
t_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[\ldots\left[\left[x_{1}, x_{2}\right], x_{3}\right] \ldots x_{n}\right]
$$

Circuits satisfiability and circuits equivalence

$\operatorname{Csat}(\mathbf{A})$

given a circuit over A with two output gates $\mathbf{g}_{1}, \mathbf{g}_{2}$
is there a valuation of input gates $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ that gives the same output on $\mathbf{g}_{1}, \mathbf{g}_{2}$, i.e., $\mathbf{g}_{1}(\bar{x})=\mathbf{g}_{2}(\bar{x})$.

$\operatorname{SCsAt}(\mathbf{A})$

given a circuit over A with output gates $\mathbf{g}_{1}^{1}, \mathbf{g}_{2}^{1}, \ldots, \mathbf{g}_{1}^{k}, \mathbf{g}_{2}^{k}$
is there a valuation of input gates \bar{x} that gives the same output on all pairs $\mathbf{g}_{1}^{i}, \mathbf{g}_{2}^{i}$, i.e., $\mathbf{g}_{1}^{i}(\bar{x})=\mathbf{g}_{2}^{i}(\bar{x})$ for all i.
$\operatorname{MCsat}(\mathbf{A})$
given a circuit over A with output gates $\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{k}$
is there a valuation of input gates \bar{x} that gives the same output on all the \mathbf{g}_{i} 's, i.e., $\mathbf{g}_{1}(\bar{x})=\mathbf{g}_{2}(\bar{x})=\ldots=\mathbf{g}_{k}(\bar{x})$.

$\operatorname{Ceqv}(\mathbf{A})$

given a circuit over \mathbf{A} is it true that for all inputs \bar{x} we have the same values on given two output gates $\mathbf{g}_{1}, \mathbf{g}_{2}$,
i.e. $\mathbf{g}_{1}(\bar{x})=\mathbf{g}_{2}(\bar{x})$.

Back to groups

PolSat (Goldmann \& Russell 1999)

Polynomial satisfiability problem (PolSat)

- is NP-complete for non-solvable groups
- and in P for nilpotent groups.

Csat (Horváth \& Szabó 2011)

Circuit satisfiability problem (Сsat)

- is NP-complete for non-nilpotent groups
- and in P for nilpotent groups.

Open
(but with some progress)
Characterization of finite groups with poly-time PolSat in original language, i.e. with multiplication only.

CsAT in algebras from congruence modular varieties

LICS'18: two reasons for tractability of CsAT in CM varieties:

- supernilpotency,
(same as nilpotency in groups and rings)
- distributive lattice like behavior.

LICS'18: many reasons for intractability
CsAT for algebras not expressible as a product of a nilpotent algebra and a distributive lattice like algebra is NP-complete.

1st summary

LICS'18, SICOMP'22 and STACS'22

	tractable	open	intractable
CEQV	supernilpotent Aichinger \& Mudrinski	nil but not supernil	non nilpotent
CSAT	supernil \times DL-like	nil but not supernil	non (nil \times DL-like)
MCSAT	affine \times DL-like	-	otherwise
SCSAT	affine Gaussian elimination	-	otherwise Larose \& Zádori

Gap for nilpotent but not supernilpotent algebras.

Hardness part

Easy, moderate and sometimes quite heavy use of:

- comutator theory
- tame congruence theory

A dozen of constructions eliminating bad local behaviours:

- eliminating type 3
- separating types 2 and 4 (transfer principles)
- forcing type 2 (i.e., solvable) algebras to be nilpotent
- forcing type 4 (subdirectly irreducible) algebras
to have only 2 elements

Poly-time algorithms

For a supernilpotent algebra (or a distributive lattice) A there is a constant d_{A} so that for each n there is $S_{n} \subseteq A^{n}$ with

- $\left|S_{n}\right|$ is $O\left(n^{d_{\mathrm{A}}}\right)$,
- for two n-ary polynomials \mathbf{s} and \mathbf{t} the equation $\mathbf{s}(\bar{x})=\mathbf{t}(\bar{x})$ has a solution $\bar{x} \in A^{n}$ iff it has a solution in S_{n}.
- in 2-element lattice case: $S_{n}=\{(0, \ldots, 0),(1, \ldots, 1)\}$
in DL-like algebra: $\quad S_{n}=\{(a, \ldots, a): a \in A\} \quad d_{\mathrm{A}}=|A|$
- in supernilpotent case:

$$
S_{n}=\bigcup_{a \in A}\left\{\left(a_{1}, \ldots, a_{n}\right): \#\left\{i: a_{i} \neq a\right\} \leqslant d_{\mathrm{A}}^{\prime}\right\}, \quad d_{\mathrm{A}}=|A|^{d_{\mathrm{A}}^{\prime}} \cdot\binom{n}{d_{\mathrm{A}}^{\prime}}
$$

- where (rather huge) constant d_{A}^{\prime} is obtained by a quite involved Ramsey type argument,
- d_{A}^{\prime} depends on: size of \mathbf{A}, supernilpotency degree, functions arity...

After a fascinating race for decreasing d_{A} we end up with $d_{\mathrm{A}}=1$, but for a randomized algorithm

Nilpotent vs supernilpotent gap

- supernilpotency is not necessary for tractability
- limits of small search space method
- nilpotency is not sufficient for tractability

(MFCS'18)

There are nilpotent (but not supernilpotent) algebras \mathbf{A} with:

- $\operatorname{Csat}(\mathbf{A})$ in P,
- $\operatorname{Csat}(\mathbf{A})$ can not be solved in polynomial time using algorithm checking a small set of potential solutions which depends only on the number of input gates (unless $P=N P$).

Example: $\mathbf{A}=\left(\mathbb{Z}_{6} ;+, \% 2\right)$

(LICS'20)

There are nilpotent algebras \mathbf{A} with $\operatorname{CsAT}(\mathbf{A}) \notin \mathrm{P}$, unless ETH fails

ETH - Exponential Time Hypothesis

k-CNF-SAT requires at least $2^{\sigma_{k} \cdot n}$ time to be solved for some constant $0<\sigma_{k} \leqslant 1$

Inside the nilpotent vs. supernilpotent gap

External/internal conjunction problem

Single equation versus system of equations

- external conjunction in systems of equations
- need to squeeze many terms into a single one
- analogue of an internal conjunction is needed
- present in Boolean algebras
- in some rings: $\bigwedge_{i} t_{i}=s_{i}$ iff $\sum_{i}\left(t_{i}-s_{i}\right)\left(t_{i}-s_{i}\right)=0$
- solvable non-nilpotent algebras have internal (conjunction-like) polynomials of arbitrary arity e.g. in groups $\left[\ldots\left[\left[\left[a, x_{1}\right], x_{2}\right], x_{3}\right] \ldots x_{n}\right]$
- Each supernilpotent algebra has its own bound for the arity of conjunction-like polynomials.
- Nilpotent but not supernilpotent algebras do have conjunction-like polynomials of arbitrary large arity,
- unfortunately the ones we can construct are of superpolynomial, or even exponential size (wrt to the arity).

Inside the nilpotent vs. supernilpotent gap

Stratifying the failure of supernilpotency

Supernilpotent rank of A

- splitting congruence lattice into supernilpotent intervals
- supernilpotent algebras have just one such supernilpotent block
- $\operatorname{sr}(\mathbf{A}) \leqslant h$ if there is a chain of congruences $0_{\mathbf{A}}=\sigma_{0}<\sigma_{1}<\cdots<\sigma_{h}=1_{\mathbf{A}}$ with σ_{i+1} being supernilpotent over σ_{i}

Supernilpotent rank and alternation of primes

For a finite nilpotent algebra \mathbf{A} from a CM variety tfae:

- $\operatorname{sr}(\mathbf{A}) \leqslant h$,
- chains $\varphi_{1}<\varphi_{2}<\ldots<\varphi_{s}$ of meet irreducible congruences with alternating characteristics (i.e. $\operatorname{char}\left(\varphi_{i}\right) \neq \operatorname{char}\left(\varphi_{i+1}\right)$), have length s bounded by h.

Inside the nilpotent vs. supernilpotent gap

Length of conjunctions

- One alternation of primes provides n-ary conjunction-like polynomials but with exponential length $\Theta\left(2^{c n}\right)$.
In fact: $\left(\mathbb{Z}_{6} ;+, \% 2\right)$ has such polynomials of exactly exponential size
- h alternating primes $p_{1} \neq p_{2} \neq p_{3} \neq \ldots \neq p_{h}$ gives n-ary conjunction like polynomials of length $\Theta\left(2^{c n^{1 /(h-1)}}\right)$,
- which for $h \geqslant 3$ yields subexponential size
- more alternations \longrightarrow shorter conjunction.

(LICS'20 - examples and an idea of the proof)

If \mathbf{A} is a finite nilpotent algebra with $\operatorname{sr}(\mathbf{A}) \geqslant 3$ then $\operatorname{CsAt}(\mathbf{A}) \notin \mathrm{P} \not \supset \operatorname{CEQv}(\mathbf{A})$, actually there are no algorithm for $\operatorname{CsAT}(\mathbf{A})$ or $\operatorname{CeqV}(\mathbf{A})$ faster than $\Omega\left(2^{c \cdot \log ^{h} n}\right)$
(the first part has been shown in generality by M.Kompatscher, with a very cute proof)

Inside the nilpotent vs. supernilpotent gap

Upper bounds and another complexity hypothesis
$C C\left[p_{1} ; \ldots ; p_{h}\right]$ modular boolean circuits
$C C[m]$-circuits of depth h with $M O D_{p_{i}}$ on the i-th level $\mathrm{MOD}_{p_{1}} \circ \ldots \circ \mathrm{MOD}_{p_{h}}$

SESH - Strong Exponential Size Hypothesis
 (or AND-weakness hypothesis)

The sizes of $C C\left[p_{1} ; \ldots ; p_{h}\right]$-circuits, with $h>1$, that compute $\left(\mathrm{AND}_{n}\right)_{n}$, grow at least as $\Omega\left(2^{c n^{1 /(h-1)}}\right)$.

Deterministic and probabilistic upper bounds (under SESH)

Let \mathbf{A} be a finite nilpotent algebra from a $C M$ variety with $\operatorname{sr}(\mathbf{A})=h$.
Then for both $\operatorname{Csat}(\mathbf{A})$ and $\operatorname{Ceqv}(\mathbf{A})$ we have:

- a deterministic $O\left(2^{c \log ^{h} \ell}\right)$-time algorithm, (where ℓ is the size of a circuit on the input),
- a probabilistic $O\left(2^{\log ^{h-1} \ell}\right)$-time algorithm, (where ℓ is the size of a circuit on the input).

Under ETH \& SESH

- no dichotomy for CsAT
- no equivalence of CSAT with CSP - in contrast to SCsAT \equiv CSP
- in fact:

Csat has strictly bigger expression power than CSP or SCsat
Natural conjecture
For a finite algebra \mathbf{A} from a $C M$ variety
$\operatorname{Csat}(\mathbf{A}) \in \mathrm{P} \quad$ iff $\quad \mathbf{A}$ is nilpotent and $\operatorname{sr}(\mathbf{A}) \leqslant 2$
Fails. . . but very recently we got:
For a finite algebra \mathbf{A} from a CM variety
$\operatorname{Ceqv}(\mathbf{A}) \in \operatorname{RP} \quad$ iff $\quad \mathbf{A}$ is nilpotent and $\operatorname{sr}(\mathbf{A}) \leqslant 2$

Barrington, Beigel and Rudich construction

BBR construction of $C C[m]$-circuits computing $\left(\mathrm{AND}_{n}\right)_{n}$

- of depth 3,
- and size $2^{O\left(n^{1 / \omega(m)} \cdot \log n\right), ~}$
where $\omega(m)$ is the number of prime divisors of m.

Our recent (LICS'22) improvement of $C C[m]$-circuits computing (AND $\left._{n}\right)_{n}$

- of depth 2,
- and size $2^{O\left(n^{1 / \omega(m)} \cdot \log n\right)}$.

Moreover for any depth $h \geqslant 3$ we have $C C[m]$-circuits computing $\left(\mathrm{AND}_{n}\right)_{n}$

- of size $2^{O\left(n^{1 /(\omega-1)(h-2)+\omega^{\prime}} \cdot \log n\right)}$,
where ω^{\prime} is the number of prime divisors of m bigger than ω.

Consequences for Boolean modular circuits (LICS'22)
A CC $[m]$-circuit of depth h is satisfiable iff $h=1$ or $\omega(m)=1$

Small supernilpotent rank is not sufficient

Csat for the algebra $\left(\mathbb{Z}_{30} ;+; \% 2\right)$ is not in P (unless ETH fails)

- higher circuits (bigger h)
\longrightarrow shorter conjunction-like polynomials
- wider circuits (i.e. more primes on the same level)
\longrightarrow shorter conjunction-like polynomials
- shorter conjunction-like polynomials \longrightarrow bigger complexity

Group case i.e. PolSAT in original language with multiplication only

CsAT

A finite group \mathbf{G} has Csat in P iff \mathbf{G} is nilpotent, (unless $P=N P$), otherwise $\operatorname{CsAt}(\mathbf{G})$ is NP-complete.

PolSAT

- PolSat for nilpotent groups is in P
- PolSat for non-solvable groups is NP-complete
- no solvable group has been known to have NP-complete PolSat
- few examples of solvable, nonnilpotent groups with PolSat in P:
- $\mathbf{S}_{3}, \mathbf{A}_{4}, \ldots$
- all of them have (super)nilpotent (or Fitting) rank 2

Solvable nonnilpotent groups have AND-like polynomials

- but of exponential size in original language of groups

This allows to use methods modelled after nil- but not supernil- realm for Csat

Towards filling solvable vs nilpotent gap

(LICS'20, ICALP'20, TOCS'22)

If $\operatorname{PolSat}(\mathbf{G}) \in \mathrm{P}$ then $\mathrm{nr}(\mathbf{G}) \leqslant 2$, unless ETH fails.

Dihedral groups (LICS'20, ICALP'22)

For a dihedral group \mathbf{D}_{m} (with $2 m$ elements) we have:

- if $\omega_{o}(m) \leqslant 1$ then $\operatorname{PolSat}\left(\mathbf{D}_{m}\right) \in \operatorname{RP}$,
- if $\omega_{o}(m) \geqslant 2$ then $\operatorname{PolSat}\left(\mathbf{D}_{m}\right) \notin \mathrm{RP}$ (under rETH),
- if $\omega_{o}(m) \geqslant 2$ then $\operatorname{PolSat}\left(\mathbf{D}_{m}\right) \notin \mathrm{P}$ (under ETH), where $\omega_{o}(m)$ is the number of odd prime divisors of m.

(ICALP'22)

If \mathbf{G} has two normal subgroups with

- coprime sizes
- and the join of their centralizers not covering G then $\operatorname{PolSat}(\mathbf{G}) \notin \operatorname{RP}$ (under rETH).

Restricting values for variables in PoLSAT

ListPolSat - set of possible solutions assigned to each variable
2-ListPolSat - 2-element set of possible solutions assigned to each variable
ProgramSat - 2-element list of possible solutions assigned to each variable, with some connections between these assignments

$$
\begin{array}{rl}
\text { PolSat } \leqslant_{m} & 2 \text {-ListPolSat } \leqslant_{m} \text { ListPolSat } \\
& 2 \text {-ListPolSat } \leqslant_{m} \text { ProgramSat }
\end{array}
$$

NUDFA and Programsat

Non-uniform deterministic finite automata (over monoids) recognize languages over $\{0,1\}$
ProgramSat(M) asks if NUDFA's over M recognize a nonempty language

Goldman \& Russell

For finite nilpotent groups ProgramSat $\in P$.
A finite group with ProgramSat $\in P$ has to be solvable.

Non-Uniform automata or program over algebra A

n-ary boolean program $(\mathbf{p}, n, \iota, S)$ over \mathbf{A}

- \mathbf{p} is a k-ary polynomial/circuit over \mathbf{A}
- k instructions, one for each argument of \mathbf{p} of the form $\iota(x)=\left(b^{x}, a_{0}^{x}, a_{1}^{x}\right)$, where b^{x} is one of the boolean variables/inputs $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{n}$, while $a_{0}^{x}, a_{1}^{x} \in A$,
- set $S \subseteq A$ of accepting values/states.

Functions associated with program (p, n, ι, S)

- inner function $(\mathbf{p})[l]:\{0,1\}^{n} \longrightarrow Y$ $\left(b_{1}, \ldots, b_{n}\right) \longmapsto \mathbf{p}\left(a_{b^{x_{1}}}^{x_{1}}, \ldots, a_{b^{x_{k}}}^{x_{k}}\right)$,
- final n-ary boolean function $(\mathbf{p})[\iota, S]:\{0,1\}^{n} \longrightarrow\{0,1\}$ with $(\mathbf{p})[\iota, S]\left(b_{1}, \ldots, b_{n}\right)=1$ iff $(\mathbf{p})[\iota]\left(b_{1}, \ldots, b_{n}\right) \in S$

ListPolSat and ProgramSat in finite groups

CDH - constant degree hypothesis
(Barrington, Straubing, and Thérien: Inform\&Comput'1990) (Krause, Pudlák: TCS'1997)
$\mathrm{AND}_{d} \circ \mathrm{MOD}_{m} \circ \mathrm{MOD}_{p}$-circuits require $2^{\Omega(n)}$ size to compute AND_{n} with constant d

Grolmusz and Tardos, SICOMP'2000

$M O D_{m} \circ \mathrm{MOD}_{p}$-circuits require $2^{\Omega(n)}$ size to compute $A N D_{n}$

Barrington, Straubing \& Thérien, 1990

Under CDH:
$\operatorname{ProgramSat}\left(\mathbf{G}_{\mathrm{p}} \rtimes \mathbf{N}\right) \in \mathrm{P}$, whenever \mathbf{G}_{p} is a p-group and \mathbf{N} is nilpotent.

(ICALP'22)

Under both ETH and CDH:
for a finite solvable group \mathbf{G} with the smallest co-nilpotent normal subgroup \mathbf{N} :
$\operatorname{ProgramSat}(\mathbf{G}) \in \operatorname{RP} \quad$ iff $\quad \mathbf{N}$ is a p-group \quad iff $\operatorname{ListPolSat}(\mathbf{G}) \in R P$

ProgramCSat in finite algebras from CM varieties

Under both ETH and CDH:

For a finite algebra \mathbf{A} from a $C M$ variety $\operatorname{ProgramCSAT}(\mathbf{A}) \in R P$ iff

- A is nilpotent,
- $\operatorname{sr}(\mathbf{A}) \leqslant 2$,
- there is only one (prime) characteristics below the smallest co-supernilpotent congruence of \mathbf{A}

Under both ETH and CDH:

For a finite algebra \mathbf{A} from a $C M$ variety $\operatorname{CEQv}(\mathbf{A}) \in R P$ iff

- A is nilpotent,
- $\operatorname{sr}(\mathbf{A}) \leqslant 2$.

Under both ETH and CDH:

A finite group \mathbf{G} has $\operatorname{PoLEQv}(\mathbf{G})$ in $R P$ iff \mathbf{G} is solvable and $\operatorname{nr}(\mathbf{G}) \leqslant 2$,

Satisfiability in finite lattices

For a finite lattice L :

- $\operatorname{Csat}(\mathbf{L}) \in P$ iff \mathbf{L} is distributive,
- $\operatorname{PolSat}(\mathbf{L}) \in P$ iff \mathbf{L} is distributive,
- ListPolSat $(\mathbf{L}) \in P$ iff $|L| \leqslant 2$,
- $\operatorname{ProgramSat}(\mathbf{L}) \in P$ iff $|L|=1$,

Open

Csat (even in congruence modular realm)
Which finite nilpotent algebras of supernilpotent rank 2 have Csat solvable in (randomized) polynomial time?

PolSAT for groups

Which finite solvable groups of nilpotent rank 2 have PolSat solvable in (randomized) polynomial time?

Open

Csat (even in congruence modular realm)
Which finite nilpotent algebras of supernilpotent rank 2 have CsAT solvable in (randomized) polynomial time?

PolSAT for groups

Which finite solvable groups of nilpotent rank 2 have PolSat solvable in (randomized) polynomial time?

Thank you

Open

Csat (even in congruence modular realm)
Which finite nilpotent algebras of supernilpotent rank 2 have Csat solvable in (randomized) polynomial time?

PolSAT for groups

Which finite solvable groups of nilpotent rank 2 have PolSat solvable in (randomized) polynomial time?

Thank you
and join us

