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Overview

Part 1: some general theory of splittings in quasivarieties

Part 2: what to do with it.
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Part 1: Splitting pairs

The concept of splitting is lattice theoretic: P.M. Whitman in 1943
introduced splittings in lattices and proved the �rst basic results about
them.

A splitting pair in a lattice L is a pair (a, b) such that L = (a]∪̇[b); in
this case a has to be strictly meet prime and b strictly join prime.

The concept lay dormant for about twenty years until McKenzie
revamped it in his seminal paper on varieties of lattices (1972).

From then on the concept has been applied many times to the lattice of
subvarieties of a given variety; however there are almost no application to
the lattice of subquasivarieties of a quasivariety.
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Three de�nitions

Let Q be a quasivariety and A ∈ Q; a Q-congruence of A is a
congruence θ ∈ Con(A) such that A/θ ∈ Q. The Q-congruences of A
form an algebraic lattice denoted by ConQ(A).

An algebra A ∈ Q is Q-irreducible if ConQ(A) has a unique minimal
element greater then the bottom.

An algebra A is weakly Q-projective if for all B ∈ Q, if A ∈ HHH(B) then
A ∈ IIISSS(B).
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Splittings in the lattices of subquasivarieties

Let Q be any quasivariety; Λq(Q) is the lattice of subquasivarieties of Q.

Suppose that (Q1,Q2) is a splitting in Λq(Q); if Σ1 is the quasiequational
theory of Q1 , then

Q1 = Mod(Σ1) =
⋂

{Mod(σ) : σ ∈ Σ1}.

As Q1 is completely meet prime there exists a σ1 such that if Σ ⊢ σ1, then
there is some σ ∈ Σ such that σ ⊢ σ1; in particular Q1 = Mod(σ1).

On the other hand every algebra in a quasivariety is embeddable in an
ultraproduct of its �nitely generated subalgebras, each of which is a subdirect
product of (necessarily �nitely generated) Q-irreducible algebras.

It follows that

Q2 =
∨

{Q(A) : A is Q-irreducible and �nitely generated};

as Q2 is completely join prime Q2 = Q(A) for some �nitely generated
Q-irreducible algebra A ∈ Q.
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Q-splitting algebras

A Q-splitting algebra is a �nitely generated Q-irreducible algebra A ∈ Q
such that there is a QA ⊆ Q such that (QA,Q(A)) is a splitting pair in
Λq(Q); in this case the single quasiequation axiomatizing QA is called the
splitting quasiequation for A.

In other words A is Q-splitting if there exists a largest subquasivariety QA

of Q, called the conjugate quasivariety of A such that A /∈ QA. As a
consequence of what we have seen so far we have:

Lemma

Let Q be a quasivariety and (Q1,Q2) be a splitting pair in Λq(Q); then
there exists a �nitely generated Q-irreducible algebra A ∈ Q such that
(Q1,Q2) = (QA,Q(A)).
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The FEP

A quasivariety has the �nite extension property (FEP) if for any
algebra A ∈ Q and for any �nite partial subalgebra F of A, there is a
�nite algebra B ∈ Q with F ≤ B.

Lemma

If Q has the FEP, then every Q-splitting algebra is �nite.
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Q-�nitely presented algebras

Let σ be a type and let K be a class of algebras of type σ; let X be a set of
variables and Σ be a set of equations of type σ in variables from X . We say
that the pair (X ,Σ) is a K-presentation of A ∈ K if there exists a function
α : X −→ A such that

• α(X ) generates A and for any p(x1, . . . , xn) ≈ q(x1, . . . , xn) ∈ Σ,

p(α(x1), . . . , α(xn)) = q(α(x1), . . . , α(xn));

• if B ∈ K and β : X −→ B such that for any
p(x1, . . . , xn) ≈ q(x1, . . . , xn) ∈ Σ,
p(β(x1), . . . , β(xn)) = q(β(x1), . . . , β(xn)), then there exists a
homomorphism f : A −→ B such that f (α(x)) = β(x) for all x ∈ X .

An algebra A is Q-�nitely presented if there is a Q-presentation (X ,Σ) of A in
which both X and Σ are �nite.
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Let (X ,Σ) be a �nite Q-presentation of Q-irreducible algebra A and let
(p, q) any pair of elements generating the Q-monolith of A. Then the
quasiidentity

Σ ⇒ p ≈ q

is a characteristic quasiidentity of A. We denote it by ch(A) the set of
characteristic quasiidentities of A.

Lemma

If an algebra A ∈ Q is Q-irreducible and Q-�nitely presented, then for
every algebra B ∈ Q and for every Φ ∈ ch(A), B ̸⊨ Φ if and only if
A ∈ IIISSS(B).

The lemma is the key of a classical argument from which (I swear!) we
can prove that a Q-presentation is exactly what it should be,
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The characterization

Theorem

1 If Q is a quasivariety for any �nite sets X ,Σ there is exactly one
algebra (up to isomorphism) A ∈ Q that is Q-�nitely presented by
(X ,Σ).

2 We will denote that algebra by FQ(X ,Σ) and we may assume that
α(X ) = X , i.e. α is the identity mapping.

3 If ϑQ(Σ) is the Q-congruence generated by Σ in FQ(X ) then

FQ(X ,Σ) ∼= FQ(X )/ϑQ(Σ).

4 An algebra A ∈ Q is Q-�nitely presented if and only if
A ∼= FQ(X )/ϑQ(Σ) for some �nite sets X ,Σ.
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Getting closer

Let Q be a quasivariety and A ∈ Q; we de�ne

[Q : A] = {B ∈ Q : A /∈ IIISSS(B)}.

Lemma

Let Q be a quasivariety of �nite type; if A ∈ Q is Q-irreducible and
Q-�nitely presented, then [Q : A] is a quasivariety. If A is also weakly
projective in Q, then [Q : A] is a variety. Moreover if Q is locally �nite
then both converse implications holds.
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Proof.

Suppose that A is Q-irreducible and Q-�nitely presented, i.e.
A ∼= FQ(x)/θQ(Σ). If Φ is a characteristic quasiidentity of A then by the key
Lemma we get at once that [Q : A] = {B ∈ Q : B ⊨ Φ} and this of course
implies that [Q : A] is a quasivariety. If A is also weakly projective and then if
B ∈ HHH(C) for some C in [Q : A] and A ∈ IIISSS(B), then A ∈ SSSHHH(C) ⊆ HHHSSS(C).
Hence A ∈ IIISSS(C) which is impossible. So A /∈ IIISSS(B) and [Q : A] is a variety.

Conversely suppose that Q is locally �nite and [Q : A] is a quasivariety; then
A ∈ Q is embeddable in an ultraproduct of its �nite subalgebras, say
A ∈ IIISSSPPPu({Bi : i ∈ I}). If A is not �nite, then A /∈ IIISSS(Bi ) for all i , so
Bi ∈ [Q : A] for all i . But then A ∈ [Q : A], a contradiction. Hence A is �nite
and, begin Q of �nite type, also Q-�nitely presented.
Suppose now that A ≤sd

∏
i∈I Bi where each Bi is Q-irreducible in Q. Since A

is �nite, each Bi can be taken to be �nite; if A /∈ IIISSS(Bi ) for all i , then
Bi ∈ [Q : A] for all i and as above we get a contradiction.

Hence there is an i such that A ∈ IIISSS(Bi ), so that |A| ≤ |Bi |; on the other hand
Bi ∈ HHH(A), so |Bi | ≤ |A|. Since everything is �nite we have A = Bi and A is
Q-irreducible.

Finally if [Q : A] is a variety, let B ∈ Q such that A ∈ HHH(B); if A /∈ IIISSS(B), then
B ∈ [Q : A] and thus A ∈ [Q : A] a contradiction.
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Too many splittings

Corollary

In any quasivariety Q every Q-�nitely presented Q-irreducible algebra A is
splitting with conjugate quasivariety [Q : A].

Proof.

By the previous Lemma, [Q : A] is a quasivariety and A /∈ [Q : A].
Suppose that A ∈ Q′ and Q′ ̸⊆ [Q : A]. Then there is a B ∈ Q′ s.t.
A ∈ IIISSS(B); but then A ∈ [Q : A] a contradiction. Hence Q′ ⊆ [Q : A]
and A is splitting with [Q : A] as conjugate variety.

Paolo Aglianò Alex Citkin agliano@live.com acitkin@gmail.com Splittings and a (yet another!) generalization of Baker's Finite Basis Theorem



Too many splittings

Corollary

In any quasivariety Q every Q-�nitely presented Q-irreducible algebra A is
splitting with conjugate quasivariety [Q : A].

Proof.

By the previous Lemma, [Q : A] is a quasivariety and A /∈ [Q : A].
Suppose that A ∈ Q′ and Q′ ̸⊆ [Q : A]. Then there is a B ∈ Q′ s.t.
A ∈ IIISSS(B); but then A ∈ [Q : A] a contradiction. Hence Q′ ⊆ [Q : A]
and A is splitting with [Q : A] as conjugate variety.

Paolo Aglianò Alex Citkin agliano@live.com acitkin@gmail.com Splittings and a (yet another!) generalization of Baker's Finite Basis Theorem



Or not enough

We remark that the requirement of A be Q-�nitely presented is necessary.

Let Q be any quasivariety with the FEP; then Q = Q(Qfin).

If A is in�nite then [Q : A] is not a quasivariety, since all �nite algebras
are in [Q : A] and they generate the entire Q.

However:

Lemma

Let Q be quasivariety; then if A ∈ Q is �nitely generated, weakly
Q-projective and Q-irreducible, A is Q-splitting with conjugate variety
[Q : A].
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Part 2: Ordering the splitting algebras

If Q is a quasivariety, then Qspl denotes the class of all splitting algebras
in Q.

The relation on Qspl de�ned by

A ≺ B if and only if A ∈ Q(B).

is clearly a quasiordering.

Hence it has an associated equivalence relation and an associated partial
ordering on the equivalence classes; we will denote the partial ordering by
⪯.

Remind that, if A′ is splitting for Q, then we can �nd a Q-irreducible
algebra A with Q(A) = Q(A′).

Hence we may safely assume that all the algebras in Qspl are
Q-irreducible and that Qspl is partially ordered by ⪯.
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Two easy Lemmas

Λq(Q) denotes the lattice of subquasivarieties of Q.

Lemma

Let Q be a quasivariety and let S ⊆ Qspl be an antichain w.r.t. ⪯. If
S1,S2 ⊆ S and S1 ̸= S2 then Q(S1) ̸= Q(S2).

Corollary

If Q is a quasivariety such that Qspl contains an in�nite antichain, then
Λq(Q) is not countable.

Lemma

Let Q be a quasivariety and let A ⊆ Qspl a class of �nite algebras; then A
contains a minimal antichain.
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Equational bases

Let Q be a quasivariety; an equational basis relative to Q of a
subquasivariety Q′ ⊆ Q is a set Σ of equations such that
Q′ = Mod(Σ) ∩ Q.

A quasivariety Q is primitive if for any quasivariety Q′ ⊆ Q,
Q′ = HHH(Q′) ∩ Q.

Lemma

A quasivariety Q is primitive if and only if any subquasivariety of Q has
an equational basis relative to Q.

The following is essentially due to V. Gorbunov:

Theorem

(Gorbunov) If Q is primitive, then any Q-�nitely presented and
Q-irreducible algebra in Q is weakly projective in Q.
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Primitivity implies splitting equations

Observe that if a quasivariety is primitive and A is Q-splitting, then its
conjugate quasivariety QA can be de�ned relative to Q by a set ∆ of
equations; therefore if Σ is a quasiquational basis for Σ

QA = Mod(Σ ∪∆) =
⋂
δ∈∆

Mod(Σ ∪ {δ}).

But QA is strictly meet prime, so there is a δ ∈ ∆ such that
QA = Mod(Σ ∪ {δ}).

Clearly Q′ ⊆ QA if and only if Q′ ⊨ δ, so δ can be considered a splitting
equation for A, which we will denote from now on with φA.

Observe also that if A is Q-irreducible and Q-�nitely presented then A is
splitting and also, by Gorbunov's result, weakly projective. Thus
QA = [Q : A] and the latter is indeed a variety by the key Lemma.

Paolo Aglianò Alex Citkin agliano@live.com acitkin@gmail.com Splittings and a (yet another!) generalization of Baker's Finite Basis Theorem



Primitivity implies splitting equations

Observe that if a quasivariety is primitive and A is Q-splitting, then its
conjugate quasivariety QA can be de�ned relative to Q by a set ∆ of
equations; therefore if Σ is a quasiquational basis for Σ

QA = Mod(Σ ∪∆) =
⋂
δ∈∆

Mod(Σ ∪ {δ}).

But QA is strictly meet prime, so there is a δ ∈ ∆ such that
QA = Mod(Σ ∪ {δ}).

Clearly Q′ ⊆ QA if and only if Q′ ⊨ δ, so δ can be considered a splitting
equation for A, which we will denote from now on with φA.

Observe also that if A is Q-irreducible and Q-�nitely presented then A is
splitting and also, by Gorbunov's result, weakly projective. Thus
QA = [Q : A] and the latter is indeed a variety by the key Lemma.

Paolo Aglianò Alex Citkin agliano@live.com acitkin@gmail.com Splittings and a (yet another!) generalization of Baker's Finite Basis Theorem



Primitivity implies splitting equations

Observe that if a quasivariety is primitive and A is Q-splitting, then its
conjugate quasivariety QA can be de�ned relative to Q by a set ∆ of
equations; therefore if Σ is a quasiquational basis for Σ

QA = Mod(Σ ∪∆) =
⋂
δ∈∆

Mod(Σ ∪ {δ}).

But QA is strictly meet prime, so there is a δ ∈ ∆ such that
QA = Mod(Σ ∪ {δ}).

Clearly Q′ ⊆ QA if and only if Q′ ⊨ δ, so δ can be considered a splitting
equation for A, which we will denote from now on with φA.

Observe also that if A is Q-irreducible and Q-�nitely presented then A is
splitting and also, by Gorbunov's result, weakly projective. Thus
QA = [Q : A] and the latter is indeed a variety by the key Lemma.

Paolo Aglianò Alex Citkin agliano@live.com acitkin@gmail.com Splittings and a (yet another!) generalization of Baker's Finite Basis Theorem



The main result

If Q′ ⊆ Q, then I [Q′,Q] = {Q′′ : Q′ ⊆ Q′′ ⊆ Q}.

Theorem

Let Q be a primitive quasivariety of �nite type and Q′ ⊆ Q such that
every quasivariety in I [Q′,Q] has the FEP. Then the following are
equivalent:

1 every Q′′ ∈ I [Q′,Q] has a �nite equational basis relative to Q;

2 I [Q′,Q] is countable;

3 Qspl \ Q′
spl has no in�nite antichain;

4 I [Q′,Q] enjoys the descending chain condition.
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The Corollary

If Q is locally �nite, then all the subquasivarieties of Q have the FEP,
hence

Corollary

For a primitive locally �nite quasivariety Q of �nite type the following are
equivalent:

1 every subquasivariety of Q has a �nite equational basis relative to Q;

2 Λq(Q) is countable;

3 Qspl has no in�nite antichain;

4 Λq(Q) enjoys the descending chain condition.

Corollary

Let Q be a primitive quasivariety of �nite type; if Q has �nitely many
Q-irreducible algebras, then every subquasivariety of Q has a �nite
equational basis relative to Q.
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Rybakov's example

The Corollary can be seen as a version of Baker's Finite Basis Theorem
for quasivarieties; for instance our version di�ers from the one in Pigozzi
(1988) in that we drop Q-congruence distributivity and add primitivity,
which in turn gives us an equational basis.

Note that primitivity is essential; Rybakov (1997) produced a �nite
Heyting algebra A that does not have a �nite quasiequational basis
relative to the variety H of Heyting algebras. As VVV (A) is congruence
distributive, Baker's Finite Basis Theorem applies, and VVV (A) has a �nite
equational basis relative to H. It follows that Q(A) cannot have a �nite
quasiequational basis relative to VVV (A).
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THANK YOU!
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