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Outline

I Semigroups act on sets (representations by transformations).

I Actions ↔ right (or left) congruences.

I Actions can be regarded as algebras in their own right (unary
algebras).

I One can try to classify semigroups by the properties of their
actions. (Analogous to rings and modules.)

I Finiteness condition: a property that is possessed by all finite
semigroups.
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Outline (contd.)

I We discuss four finiteness conditions of semigroups defined by
properties of their acts.

I Noetherian: every finitely generated S-act is finitely
presented.

I Coherent: Every finitely generated subact of every finitely
presented S-act is finitely presented.

I FP1: The trivial S-act is finitely presented.

I Pseudofinite: the trivial S-act is finitely presented and there is
a bound on derivation sequences.
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Semigroups/monoids

I Monoid = semigroup S with an identity element 1S
(meaning x1S = 1Sx = x , ∀x ∈ S).

I S is commutative if xy = yx for all x , y ∈ S .

I S is regular if for every x ∈ S there exists y ∈ S such that
xyx = x .

I S is inverse if for every x ∈ S there exists a unique
y = x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1.

I Every semigroup is isomorphic to a semigroup of mappings on
a set. (Cayley Theorem for semigroups)

I Every inverse semigroup is isomorphic to an inverse semigroup
of partial bijections on a set. (Cayley Theorem for inverse
semigroups)
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Actions

Definition
An action of a monoid S on a set X is a mapping X × S → X ,
(x , s) 7→ x · s, such that

(x · s) · t = x · (st), x · 1S = x (∀x ∈ X ; s, t ∈ S).

We also say: S acts on X ; X is an S-act.

I S-acts ↔ unary algebras (one operation per element of S).

I Subacts, homomorphisms, generators, presentations,. . .

I Occasionally we will talk about semigroup actions:
omit x · 1S = x .
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Actions: examples

I S acts on itself by multiplication: x · s = xs. (Cayley
representation)

I S acts on any right ideal by multiplication.

I Right ideals are precisely the subacts of the S-act S .

I S acts on {0} via 0 · s = 0 (trivial S-act).

University of St Andrews Nik Ruškuc: Actions & finiteness conditions



Actions: generators, congruences

Let S be a monoid, and X an S-act.

I For A ⊆ X , the subact generated by A is

A · S := {a · s : a ∈ A, s ∈ S}.

I X is finitely generated if X = A · S1 for some finite A.

I A congruence on X is an equivalence relation ∼ such that

x ∼ y ⇒ x · s ∼ y · s (x , y ∈ X , s ∈ S).

I A congruence on the S-act S is called a right congruence of
(the monoid) S .

I Right congruences of a group G ↔ partitions of G into right
cosets of subgroups.
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Finitely presented actions

I For a relation R on an S-act X , denote by R] the congruence
generated by R, i.e. the smallest congruence on X
containing R.

I For a set B, the free S-act over B consists of |B| disjoint
copies of the S-act S ; denote it by F S

B .

I The S-act S is the free monogenic (or cyclic) S-act.

I Right congruences on S ↔ monogenic S-acts.

I An S-act X is finitely presented if X ∼= F S
B /R

] for some finite
B and R.
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Finitely generated and presented actions: examples

Example

The free S-act F S
B over finite B is both finitely generated and

finitely presented.

Example

Every finite S-act X is finitely generated. (by X )

Example

If S is finitely generated (as a monoid) then every finite S-act X is
finitely presented. (The multiplication table of elements of X by
the generators of S .)

Example

If S = A∗ is the free monoid of countable rank then the trivial act
{0} is not finitely presented. (In any finite set of pairs, there would
be an element of A that doesn’t appear.)
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(Right) noetherian monoids

Definition
A semigroup S is (right) noetherian if every finitely generated
S-act is finitely presented.

Theorem (standard)

The following are equivalent:

• S is noetherian.

• Every right congruence on S is finitely generated.

• S satisfies the ACC on right congruences.

Open Problem

Is every noetherian monoid finitely generated?

Open Problem

Is the direct product of two noetherian monoids again noetherian?
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Noetherian monoids: generators

Theorem
All noetherian monoids belonging to the following classes are
finitely generated:

• groups [standard];

• commutative semigroups [Budach/Rédei 1963];

• inverse semigroups [Kozhukhov 1980; Miller, NR 2020].

Remark
In fact for groups and inverse monoids the following holds: S is
noetherian iff all its subgroups/inverse subsemigroups are finitely
generated. The analogue is not true for commutative semigroups:
N0 × N0 is noetherian but contains a non-finitely generated
submonoid (N× N)1.

Conjecture (Brookes, Miller, et al.)

Every noetherian cancellative monoid is finitely generated.
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Noetherian monoids: direct products

Theorem (Miller, NR 2020)

Let S be a finite or commutative or inverse monoid (including
groups). If S and T are noetherian then so is S × T.

Problem
Develop a theory of congruences of direct products of monoids.

Remark
The direct product of noetherian semigroups need not be
noetherian. Example: N× N, which is commutative but not
finitely generated.
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(Right) coherence

Definition
A monoid S is (right) coherent if every finitely generated subact of
any finitely presented S-act is finitely presented.

Theorem (Gould 1992)

S is coherent if and only if for every finitely generated right
congruence ρ and all a, b ∈ S, the following hold:

(i) the right annihilator congruence

r(aρ) := {(s, t) ∈ S × S : (as, at) ∈ ρ}

is finitely generated; and

(ii) the subact (aρ) · S ∩ (bρ) · S of the S-act S/ρ is finitely
generated.
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Coherent monoids: examples

Theorem
All of the following monoids are coherent:

• finite [obvious];

• groups [easy];

• finitely generated commutative [Carson, Gould 2021];

• free [Gould, NR 2017];

• free left ample [Gould, Hartmann 2017].

The free inverse monoid of rank ≥ 2 is not coherent (ibid.).
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Non-coherence of natural transformation monoids

Theorem (Brookes, Gould, NR, in prep.)

If A is an infinite set, then none of the following are coherent:

• the full transformation monoid TA;

• the partial transformation monoid PTA;

• the symmetric inverse monoid IA;

• the partition monoid PA.

Remark
Behind all those results is a technical condition in terms of
elements and left/right ideals, which all the above monoids happen
to satisfy.
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Coherence and direct products

Theorem (Dandan, Gould, Hartmann, NR, Zenab 2020)

If S is a finite monoid, and T a coherent monoid then S × T is
coherent.

Theorem (ibid.)

The direct product F3 × F3 of two free monoids of rank 3 is not
coherent.

Questions

I When is the direct product of two coherent monoids coherent?

I When is the direct product Fm × Fn of two free monoids
coherent?

I Is the direct product F1 × Fn coherent? (Conj: yes.)

I Is it true that the direct product of a group and a coherent
monoid is coherent?
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Finitely presented trivial act FP1

Definition
A monoid S has the property FP1 if the trivial S-act is finitely
presented.

Facts
I FP1 ⇔ the full relation ∇ := S × S is finitely generated as a

right congruence of S [standard].

I A group satisfies FP1 iff it is finitely generated [standard].

Y. Dandan, V. Gould, T. Quinn-Gregson, R.-E Zenab, Semigroups
with finitely generated universal left congruence, Monatsh. Math.
190 (2019), 689–724.
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Generation of congruences; R-sequences

Definition
An R-sequence (for R ⊆ S × S):

s = a1u1, b1u1 = a2u2, b2u2 = a3u3, . . . , bn−1un−1 = anun, bnun = t,

where (ai , bi ) ∈ R, ui ∈ S .

Proposition

For R ⊆ S × S, s, t ∈ S:

(s, t) ∈ R] ⇔ ∃ an R-sequence from s to t.
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Diameter, pseudofiniteness

Definition
Let S be an FP1 monoid, and let R ⊆ S × S be a finite generating
set for ∇. The distance between s, t ∈ S with respect to R is

dR(s, t) := min{n ∈ N : ∃ an R − sequence from s to t of length n}.

The diameter of S with respect to R is

D(S ,R) := sup{dR(s, t) : s, t ∈ S}.

The diameter of S is

D(S) := min{D(S ,R) : 〈R〉 = ∇}.

If D(S) is finite, we say that S is pseudofinite.
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Pseudofinite vs. finite vs. minimal ideal

Facts
I Finite ⇒ pseudofinite.

I For groups: finite ⇔ pseudofinite.

I True in general?

I No: If S has a zero element then it is pseudofinite.
(∇ is generated by (1S , 0S) and D(S) ≤ 2.)

I More generally: If S has a finite (minimal) ideal then S is
pseudofinite.

I Question: Does every pseudofinite monoid have a minimal
ideal?
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Pseudofiniteness and minimal ideals (+)

Theorem
I Every pseudofinite commutative monoid has a finite minimal

ideal (which is then necessarily a group) [Gould, Miller,
Quinn-Gregson, NR 2023].

I Every pseudofinite inverse monoid has a finite minimal ideal
(which is then necessarily a group) [Dandan, Gould,
Quinn-Gregson, Zenab 2019].

I Every pseudofinite completely regular monoid has a finite
minimal ideal (which is then necessarily a completely simple
semigroup) (ibid.).

I . . . more. . . [Gould, Miller, Quinn-Gregson, NR 2023].
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Pseudofiniteness and minimal ideals (−)

Theorem (Gould, Miller, Quinn-Gregson, NR 2023)

Let X be an infinite set, and let X =
⋃

i∈N Xi be a partition into
subsets of size |X |. Then

UX =
{
α : X → X | Xiα ⊆

⋃
j≥iXj , ∀i ∈ N

}
is a pseudofinite monoid with no minimal ideal.

Theorem (ibid.)

There exists a pseudofinite monoid without minimal ideal, which
has any one of the following properties: (a) regular; (b) J -trivial;
(c) periodic.

Remark
The proof relies on an explicit construction, which is an extension
of a Rees matrix semigroup construction.
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Small diameter

J. East, V. Gould, C. Miller, T. Quinn-Gregson, NR, in prep.:
many natural monoids of transformations and partitions are
pseudofinite, and they all have small diameter.

Theorem
Let A be an infinite set. All of the following are pseudofinite, with
the diameter as stated:

I the full transformation monoid TA, with D(TA) = 1;

I the partial transformation monoid PTA, with D(PTA) = 1;

I the symmetric inverse monoid IA, with D(IA) = 2;

I the monoid FA of finite-to-one mappings, with D(FA) = 1;

I the monoid InjA of all injective mappings, with D(InjA) = 4;

I the Baer-Levi semigroup BLA, with D(InjA) = 3;

I . . . more. . .
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Pseudofiniteness: some questions

Question

I Do there exist monoids of larger finite diameters?

I Yes: Gould, NR, work in progress; arbitrarily large diameters;
via a construction.

I Do there exist ‘natural’ examples?

Question

I Fact: D(S) = 1 iff S × S considered as an S-act is finitely
generated.

I Does there exist a similar (necessarily more complicated)
characterisation for D(S) = n for n = 2, 3, . . . ?
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