

Finite BCK spectra 000 References 00

Spectra of BCK-algebras

Matt Evans

Washington & Jefferson College

mevans@washjeff.edu

Panglobal Algebra and Logic Seminar

October 29, 2024

Spectra 0000000000 Finite BCK spectra

References 00

Big Picture

2 Background on BCK-algebras

Spectra

Finite BCK spectra

Big Picture

In my dissertation I proved that the prime spectrum of any commutative BCK-algebra is nearly a spectral space (to be made precise later). A natural question is: what happens without the assumption of commutativity? I worked on this briefly (and even spoke at BLAST 2021), but put the project aside until recently when I started thinking about spectra of finite BCK-algebras.

Many of the results I'll discuss today are contained, in a much more general setting, in the paper:

 Abstractly constructed prime spectra Facchini, Alberto; Finocchiaro, Carmelo Antonio; Janelidze, George Algebra Universalis 83, 1 (2022), Article No. 8, 38 pp.

Big	Picture

Spectra 000000000 Finite BCK spectra 000 References

Definitions

Definition

A BCK-algebra is an algebra $\bm{\mathsf{A}}=\langle A;\boldsymbol{\cdot},0\rangle$ of type (2,0) such that

1
$$[(x \cdot y) \cdot (x \cdot z)] \cdot (z \cdot y) = 0$$

2 $[x \cdot (x \cdot y)] \cdot y = 0$
3 $x \cdot x = 0$
4 $0 \cdot x = 0$
5 $x \cdot y = 0$ and $y \cdot x = 0$ imply $x = y$.
for all $x, y, z \in A$.

These algebras are partially ordered by: $x \le y$ iff $x \cdot y = 0$.

A BCK-algebra **A** is *bounded* if there is an element $1 \in A$ such that $x \cdot 1 = 0$ for all $x \in A$.

Background on BCK-algebras ○●○○○○ Spectra 0000000000 Finite BCK spectra

References

Definitions

The element $x \wedge y := y \cdot (y \cdot x)$ is a lower bound for x and y, but may not be the greatest lower bound.

However, if $x \wedge y = y \wedge x$, then $x \wedge y$ is the greatest lower bound.

If $x \wedge y = y \wedge x$ for all $x, y \in A$, we say **A** is *commutative*.

Proposition (Iséki & Tanaka, 1978)

A BCK-algebra ${\bm A}$ is commutative if and only if it is a semilattice with respect to $\wedge.$

However, it can happen that the underlying poset of **A** is a lower semilattice even if **A** is not commutative. We call these BCK-semilattices.

Spectra 0000000000 Finite BCK spectra

References

Examples

- Any Boolean algebra **B** is a bounded commutative BCK-algebra via $x \cdot y = x \land (\neg y)$.
- **2** $\mathbf{R} = \langle \mathbb{R}_{\geq 0}; \cdot, 0 \rangle$ is a commutative BCK-algebra with operation $x \cdot y := \max\{x y, 0\}$. It is not bounded.

 \mathbb{N}_0 is a subalgebra of \boldsymbol{R}

Any finite chain $\mathbf{n} = \{0, 1, \dots, n-1\}$ is a subalgebra of \mathbf{R}

S Let X be any set and A any BCK-algebra. Then the set of functions

$$\mathsf{F}(X,\mathsf{A}) = \{ f \colon X \to \mathsf{A} \}$$

is a BCK-algebra with pointwise operation:

$$(f \cdot g)(x) = f(x) \cdot_{\mathbf{A}} g(x).$$

(a) An example of a non-commutative BCK-*lattice* is given by \mathbb{N}_0 with the operation

$$x \cdot y = \begin{cases} 0 & \text{if } x \le y \\ 1 & \text{if } x > y \ne 0 \\ x & \text{if } x > y = 0 \end{cases}$$

• And of course, not all BCK-algebras are BCK-semilattices. The smallest example has order 5:

Spectra 0000000000 Finite BCK spectra

References 00

Ideals

Given a BCK-algebra A, a subset I is an ideal if

- $0 \in I$
- **2** if $x \cdot y \in I$ and $y \in I$, then $x \in I$.

Let $Id(\mathbf{A})$ denote the lattice of ideals of \mathbf{A} .

An ideal I of **A** is *irreducible* if it is meet-irreducible as an element of $Id(\mathbf{A})$.

An ideal I of **A** is *meet-prime* if it is meet-prime as an element of $Id(\mathbf{A})$.

Let **A** be a BCK-semilattice. Define a proper ideal *P* to be *prime* if $glb\{x, y\} \in P$ implies $x \in P$ or $y \in P$.

If **A** is commutative, this looks like: $x \land y \in P \Rightarrow x \in P$ or $y \in P$.

Background on BCK-algebras 00000● Spectra 0000000000 Finite BCK spectra 000 References

Theorem (Pałasinski, 1981)

In a BCK-semilattice, the following are equivalent:

- 1 P is an irreducible ideal,
- **2** P is a meet-prime ideal,
- **8** *P* is a prime ideal .

Note: (1) and (2) are equivalent for *any* BCK-algebra since $Id(\mathbf{A})$ is a distributive lattice (Pałasinski, 1981).

Let X(A) denote the set of irreducible ideals of A.

Spectra ●0000000000 Finite BCK spectra 000 References

For a subset $S \subseteq \mathbf{A}$, define

$$\sigma(S) = \{ P \in \mathcal{X}(\mathbf{A}) \mid S \not\subseteq P \} .$$

We will write $\sigma(a)$ for $\sigma(\{a\})$.

Proposition

(1) The family $\mathcal{T}(\mathbf{A}) = \{ \sigma(I) \mid I \in \mathsf{Id}(\mathbf{A}) \}$ is a topology on $X(\mathbf{A})$

(2) $\mathcal{T}_0(\mathbf{A}) = \{\sigma(a) \mid a \in A\}$ is a basis for this topology.

The space $(X(A), \mathcal{T}(A))$ is the **spectrum** of **A**.

Big Picture	Background on BCK-algebras	Spectra	Finite BCK spectra	References
0	000000	o●oooooooo	000	00

Proposition

(1) The family
$$\mathcal{T}(\mathbf{A}) = \{ \sigma(I) \mid I \in \mathsf{Id}(\mathbf{A}) \}$$
 is a topology on $X(\mathbf{A})$

(2) $\mathfrak{T}_0(\mathbf{A}) = \{ \sigma(a) \mid a \in A \}$ is a basis for this topology.

The first proof seems to be a result of Aslam, Deeba, and Thaheem in 1992.

In their proof, they assume **A** is commutativity, but if you look closely what they're really using is the fact that prime ideals (in a comm. BCK-alg.) are meet-prime.

So in fact, this is actually true for all BCK-algebras (since we are taking $X(\mathbf{A})$ to be the irreducible \equiv meet-prime ideals).

A spectral space is a topological space X that is homeomorphic to the prime spectrum of a commutative ring.

Hochster famously characterized spectral spaces in his PhD thesis:

Theorem (Hochster, 1969)

- A topological space X is spectral iff
- H1 X is compact
- H2 X is T_0
- H3 the set $\mathcal{K}^{\circ}(X)$ of compact open subsets is a basis that is closed under finite intersections, and
- H4 X is sober: every irreducible closed subset is the closure of a unique point.

Theorem (Meng & Jun, 1998)

If $\boldsymbol{\mathsf{A}}$ is a bounded commutative BCK-algebra, then $\mathrm{X}(\boldsymbol{\mathsf{A}})$ is a spectral space.

What happens if \mathbf{A} is commutative but not necessarily bounded?

Boundedness is sufficient to show $X(\mathbf{A})$ is compact, but certainly not necessary: if \mathbf{A} has finitely many ideals then $X(\mathbf{A})$ is a finite space and hence compact.

Theorem (E., 2020)

Let A be a commutative (not necessarily bounded) BCK-algebra.

- $\bullet X(A) is locally compact$
- **2** X(A) is T_0
- ${f S} \ {\cal K}^{\circ} X({f A})$ is a basis that is closed under finite intersections
- **4** X(A) is sober

That is, X(A) is a locally compact generalized spectral space.

Proposition (E., 2020)

Let **A** be a commutative (not necessarily bounded) BCK-algebra. Then X(A) is compact (and thus spectral) iff **A** is finitely generated as an ideal.

But looking closely at the proof.... I never use the assumption of commutativity!

If one replaces all instances of "prime ideal" with "irreducible ideal," the proof goes through otherwise unchanged.

Question

What other results still work without commutativity?

One thing we do need to know is that the basic open sets $\sigma(a)$ are compact.

In my previous work, I cited a proof by Meng & Jun which uses both commutativity *and* boundedness in a fundamental way.

There is an easy proof for any BCK-algebra **A**:

Lemma

For each $a \in A$, the set $\sigma(a)$ is compact open in X(A).

Finite BCK spectra

Lemma

For each $a \in A$, the set $\sigma(a)$ is compact open in X(A).

Proof.

Let $\{\sigma(I_{\lambda})\}_{\lambda \in \Lambda}$ be an open cover of $\sigma(a)$. Then

$$\sigma(\mathbf{a}) \subseteq \bigcup_{\lambda \in \Lambda} \sigma(I_{\lambda}) = \sigma\left(\bigvee_{\lambda \in \Lambda} I_{\lambda}\right)$$

and one can show that $a \in \bigvee_{\lambda \in \Lambda} I_{\lambda}$. By some general BCK-theory, this means there are $b_1, b_2, \ldots, b_n \in \bigcup_{\lambda \in \Lambda} I_{\lambda}$ such that

$$(\cdots ((ab_1)b_2)\cdots b_{n-1})b_n=0$$
.

Let us say $b_i \in I_{\lambda_i}$ for i = 1, ..., n. Then in fact, $a \in \bigvee_{i=1}^n I_{\lambda_i}$, and therefore $\sigma(a) \subseteq \sigma\left(\bigvee_{i=1}^n I_{\lambda_i}\right) = \bigcup_{i=1}^n \sigma(I_{\lambda_i})$. Other results that still work without commutativity:

Proposition

- $\bullet X(A) is locally compact$
- **2** $\mathcal{K}^{\circ}X(\mathbf{A})$ is a basis
- 3 X(A) is sober

The first two are straightforward, the third requires a little more work.

The key ingredients for (3) are:

- σ is injective, which can be proved without commutativity.
- X(A) consists of *irreducible* ideals.
- Every ideal *I* is the intersection of the irreducible ideals containing *I*, which can be proved without commutativity.

Finite BCK spectra

What about closure of $\mathcal{K}^{\circ}X(\mathbf{A})$ under finite intersections? Given $U, V \in \mathcal{K}^{\circ}X(\mathbf{A})$, we have

$$U \cap V = \left(\bigcup_{i=1}^{n} \sigma(a_{i})\right) \cap \left(\bigcup_{k=1}^{m} \sigma(b_{k})\right) = \bigcup_{i=1}^{n} \bigcup_{k=1}^{m} \sigma(a_{i}) \cap \sigma(b_{k})$$
$$= \bigcup_{i=1}^{n} \bigcup_{k=1}^{m} \sigma(a_{i} \wedge b_{k})$$
if A is comm.
$$= \bigcup_{i=1}^{n} \bigcup_{k=1}^{m} \sigma(\operatorname{glb}\{a_{i}, b_{k}\})$$
if A is a BCK-semilattice

Finite BCK spectra 000

Proposition (E.)

If **A** is a BCK-semilattice, then $X(\mathbf{A})$ is locally compact generalized spectral space. Further, $X(\mathbf{A})$ is spectral iff **A** is finitely generated as an ideal.

But, in general, the intersection of two compact open subsets need not be compact.

Of course, an open set $\sigma(I)$ is compact iff I is a finitely generated ideal, which motivates the question:

Question

What conditions on a BCK-algebra gaurantee that the intersection of two finitely generated ideals is itself finitely generated?

However, if $\boldsymbol{\mathsf{A}}$ is only has finitely many ideals, this problem resolves itself.

Spectra 0000000000 Finite BCK spectra ●00 References 00

Spectral stats for finite BCK-algebras

Meng & Jun's book on BCK-algebras contains all BCK-algebras up to order 5, including a breakdown of their ideal lattices.

	1 pt spaces	2 pt spaces	3 pt spaces	4 pt spaces
 A = 2	1			
A = 3	1	2		
$ {\bf A} = 4$	3	6	5	
$ \mathbf{A} = 5$	14	28	30	16

This is not a lot of data, but there are a few suggestive patterns. I will call attention to one in particular.

Spectra 0000000000 Finite BCK spectra ○●○ References 00

Spectral stats for finite BCK-algebras

Meng & Jun's book on BCK-algebras contains all BCK-algebras up to order 5, including a breakdown of their ideal lattices.

	1 pt spaces	2 pt spaces	3 pt spaces	4 pt spaces
A = 2	1			
A = 3	1	2		
$ {\bf A} = 4$	3	6	5	
$ \mathbf{A} = 5$	14	28	30	16

This is not a lot of data, but there are a few suggestive patterns. I will call attention to one in particular.

The numbers 1, 2, 5, 16 are the numbers of non-homeomorphic spectral topologies on a 1-, 2-, 3-, and 4-element set, respectively.

Finite BCK spectra

References 00

Conjecture

For every spectral space Y on n-1 elements, there is a BCK-algebra **A** of order n such that $X(\mathbf{A}) \simeq Y$.

It is known that if X(A) is a Noetherian space, then $\mathcal{K}^{\circ}X(\textbf{A})\cong \mathsf{Id}(\textbf{A}).$

Conjecture

Every finite bounded distributive lattice is the ideal lattice of some finite BCK-algebra.

Big	

Spectra 0000000000 Finite BCK spectra 000 References

References I

Aglianò, P.: Prime spectra in modular varieties.
Algebra Universalis 30 (4), 581–597 (1993)

- Evans, C.M.: Spectral properties of cBCK-algebras. Algebra Universalis **83**(3), Article 25 (2022)
- Facchini, A., Finocchiaro, C.; Janelidze, G.: Abstractly constructed prime spectra

Algebra Universalis 83(1), Article 8 (2022)

Hochster, M.: Prime ideal structure in commutative rings. Trans. Amer. Math. Soc. **142**, 43–60 (1969)

- Iséki, K.: On ideals in BCK-algebras. Mathematics Seminar Notes **3**, 1–12 (1975)
- lséki, K., Tanaka, S.: An introduction to the theory of BCK-algebras. Math. Japonica ${\bf 23},$ 1–26 (1978)
- Meng, J., Jun Y.: BCK-Algebras. Kyung Moon Sa Co., 1994

Meng, J., Jun, Y.: The spectral space of MV-algebras is a Stone space. Sci. Math. Jpn. 1(2), 211–215 (1998)

Spectra 0000000000 Finite BCK spectra

References

References II

Pałasinski, M.: Ideals in BCK-algebras which are lower semilattices. Math. Japonica $\mathbf{26}(5)$, 245–250 (1981)

Pałasinski, M.: On ideal and congruence lattices of BCK-algebras. Math. Japonica 26(5), 543–544 (1981)