A Characterization of Finitely Based Abelian Mal'cev Varieties

Mateo Muro

February 6, 2025

Outline

- 1. the Finite Basis Problem
- 2. Abelian Mal'cev Varieties
- 3. future directions

Finite Basis Problem

Algebras and Varieties

An algebra **A** is a set with operations.

Example

- \blacktriangleright the group structure $\langle \mathbb{Z}, +, -, 0 \rangle$
- ▶ a lattice $\langle L, \lor, \land \rangle$

The set of operations the algebra's *signature*.

A variety \mathcal{V} is a class of algebras with the same signature that is defined by a set of equations Σ . Then Σ is a basis for \mathcal{V} .

Example

The variety of groups is the variety with signature $\langle +,-,0\rangle$ satisfying the following

G1
$$(x + y) + z \approx x + (y + z)$$

G2 $x + 0 \approx 0 + x \approx x$
G3 $x + (-x) \approx (-x) + x \approx 0$

If ${\bf A}$ is an algebra, then ${\cal V}({\bf A})$ is the variety of algebras satisfying all identities that ${\bf A}$ satisfies.

Equivalently, $\mathcal{V}(\mathbf{A})$ is the class of homomorphic images of subalgebras of direct powers of \mathbf{A} .

Example

 $\mathcal{V}(\langle \mathbb{Z},+,-,0
angle)=$ the variety of abelian groups

Finitely based varieties and algebras

A variety is *finitely based* if its basis of equations Σ is finite in size. Example

- The variety of groups is finitely based.
- The variety of lattices is finitely based.

An algebra A is *finitely based* if $\mathcal{V}(A)$ is finitely based.

Example

The group $\langle \mathbb{Z}, +, -, 0 \rangle$ is finitely based.

The Finite Basis Problem

In the 1960's, the following question was asked:

Question (A. Tarski)

Is there an algorithm that, given a finite algebra as input, can determine if it is finitely based?

R. McKenzie (1996) provided a negative answer.

The proof involved constructing for each Turing Machine T an algebra $\mathbf{A}(T)$ which was finitely based if and only if T halted.

Question

Can we characterize finitely based algebras in well-behaved classes?

Examples of Finite Basis Results

Example

- (Lyndon, 1954) There exist finite algebras that are not finitely based.
- (S. Oates and M. Powell, 1964) Every finite group is finitely based.
- (R. Freese and R. McKenzie, 1987) Every finite supernilpotent Mal'cev algebra is finitely based.

Abelian Mal'cev Algebras

A variety \mathcal{V} is Mal'cev if there exists a ternary term operation m(x, y, z), called the *Mal'cev term*, such that

$$\mathcal{V} \models m(x, x, y) \approx y \approx m(y, x, x).$$

Example

Any expansion of additive groups has Mal'cev term m(x, y, z) = x - y + z.

Abelian Algebras

An algebra is *abelian* if $[1_A, 1_A] = 0_A$, where $0_A, 1_A$ are the total and trivial congruences, respectively. A variety is abelian if its algebras are all abelian.

Theorem (H.P. Gumm, 1980)

A variety with Mal'cev term m(x, y, z) is abelian if and only if for every basic operation f we have

 $\mathcal{V} \models m(f(\overline{x}), f(\overline{y}), f(\overline{z})) \approx f(m(x_1, y_1, z_1), \dots, m(x_k, y_k, z_k)),$

where f is assumed to have arity k and \overline{x} is a k-tuple.

Example

 $\langle \mathbb{Z}, x - y + z, 3x + 4y + 3 \rangle$ is an abelian algebra

Free Algebras

For a variety \mathcal{V} and variables x_1, \ldots, x_n , we let $\mathbf{F}_{\mathcal{V}}(x_1, \ldots, x_n)$ denote the *free algebra over* x_1, \ldots, x_n . A term $t(x_1, \ldots, x_n)$ is *idempotent* in a variety \mathcal{V} if

$$\mathcal{V} \models t(z,\ldots,z) \approx z.$$

We let $F_{\mathcal{V}}^{id}(x_1,\ldots,x_n) = \{t \in F_{\mathcal{V}}(x_1,\ldots,x_n) \mid t(z,\ldots,z) = z\}$

Module Structure

Theorem (c.f. R. Freese, R. McKenzie, 1987) Let \mathcal{V} be an abelian variety with Mal'cev term *m*. For $s, t \in F_{\mathcal{V}}(x, z)$ define

$$s + t := m(s(x, z), z, t(x, z)),$$

 $s \cdot t := s(t(x, z), z)$
 $-s := m(z, s(x, z), z).$

R_V := ⟨F^{id}_V(x, z), +, -, ·⟩ is a ring with identity x and zero z.
 M_V := ⟨F_V(z), +, -, R_V⟩ is an R_V-module with zero z.
 ⟨F_V(x, z), +, -, R_V⟩ ≅ R_V ⊕ M_V as R_V-modules

Theorem (M. Muro, 2024)

Let ${\mathcal V}$ be an abelian Mal'cev variety. Then ${\mathcal V}$ is finitely based if and only if

- 1. ${\mathcal V}$ has finite signature,
- 2. the ring $\boldsymbol{R}_{\mathcal{V}}$ of binary idempotent terms is finitely presented,
- 3. and the $R_{\mathcal{V}}\text{-module}~M_{\mathcal{V}}$ of unary terms is finitely presented.

Proof of Characterization Theorem

Lemma (Folklore)

Let \mathcal{V} be an abelian variety with Mal'cev term m. Then \mathcal{V} is equivalent to a variety \mathcal{W} with operations induced by $F_{\mathcal{V}}(z) \cup F_{\mathcal{V}}^{id}(x, z) \cup \{m\}$. If \mathcal{V} has finite signature, then \mathcal{W} has signature $\{u_1, \ldots, u_\ell, r_1, \ldots, r_n, m\}$.

Proof.

Every term in ${\cal V}$ decomposes into a sum of unary and binary terms. For example, ${\cal V}$ models

$$f(x_1, x_2, z) \approx f(m(x_1, z, z), m(z, z, x_2), m(z, z, z))$$

$$\approx m(f(x_1, z, z), f(z, z, z), f(z, x_2, z))$$

$$\approx f(x_1, z, z) - f(z, z, z) + f(z, x_2, z)$$

$$\approx f(x_1, z, z) - f(z, z, z) + f(z, x_2, z) - f(z, z, z) + f(z, z, z).$$

Note that $f(x_1, z, z) - f(z, z, z)$ is idempotent in x_1, z . Also, $f(z, x_2, z) - f(z, z, z)$ is idempotent in x_2, z .

Example of Equivalent Variety

Example

The variety $\mathcal{V}(\langle \mathbb{Z}, x - y + z, 3x + 6y + 3 \rangle)$ is equivalent to an abelian variety in signature $\langle x - y + z, 3x - 3z, 6y - 6z, 9z + 3 \rangle$.

Definition of \mathcal{U}

We define the auxilliary variety U to be the variety with signature $\{u_1, \ldots, u_\ell, r_1, \ldots, r_n, m\}$ satisfying the following

• $m(x, y, y) \approx x \approx m(y, y, x).$

• $r_i(z,z) \approx z$ for all $1 \leq i \leq n$.

- $m(u_i(x), u_i(y), u_i(z)) \approx u_i(m(x, y, z))$ for all $1 \le i \le \ell$.
- ▶ $m(r_i(x_1, x_2), r_i(y_1, y_2), r_i(z_1, z_2)) \approx r_i(m(x_1, y_1, z_1), m(x_2, y_2, z_2))$ for all $1 \le i \le n$.
- $m(m(x_1, x_2, x_3), m(y_1, y_2, y_3), m(z_1, z_2, z_3)) \approx m(m(x_1, y_1, z_1), m(x_2, y_2, z_2), m(x_3, y_3, z_3)).$

Lemma

The variety $\ensuremath{\mathcal{U}}$ has the following properties

- The variety \mathcal{U} is finitely based.
- ► The variety U is the largest abelian Mal'cev variety in the signature {u₁,..., u_ℓ, r₁,..., r_n, m}.
- The ring $\mathbf{R}_{\mathcal{U}}$ is free over r_1, \ldots, r_n .
- The **R**_{\mathcal{U}}-module **M**_{\mathcal{U}} is free over u_1, \ldots, u_ℓ .
- The variety W is a subvariety of U.

Morphisms

Define $\phi : \mathbf{F}_{\mathcal{U}}(x_1, \ldots) \to \mathbf{F}_{\mathcal{W}}(x_1, \ldots), t^{\mathcal{U}} \mapsto t^{\mathcal{W}}$. By Birkhoff's Theorem, \mathcal{W} is finitely based relative to \mathcal{U} if and only if ker ϕ is finitely generated as a fully invariant congruence of $\mathbf{F}_{\mathcal{U}}(x_1, \ldots)$.

Lemma (M. Muro, 2024)

Every fully invariant congruence of $\mathbf{F}_{\mathcal{U}}(x_1,...)$ uniquely determines a pair of an ideal of $\mathbf{R}_{\mathcal{U}}$ and a submodule of $\mathbf{M}_{\mathcal{U}}$. Conversely, every pair of an ideal of $\mathbf{R}_{\mathcal{U}}$ and a submodule of $\mathbf{M}_{\mathcal{U}}$ determines a fully invariant congruence of $\mathbf{F}_{\mathcal{U}}(x_1,...)$. Furthermore, the finitely generated fully invariant congruences of $\mathbf{F}_{\mathcal{U}}(x_1,...)$ are in bijection with the finitely generated ideals and

 $\mathbf{F}_{\mathcal{U}}(x_1,\ldots)$ are in bijection with the finitely generated idea submodules.

We have all the parts to prove that W is finitely based if and only if \mathbf{R}_{W} and \mathbf{M}_{W} are finitely presented.

Let $\phi \colon \mathbf{F}_{\mathcal{U}}(x,\ldots) \to \mathbf{F}_{\mathcal{W}}(x,\ldots), \ t^{\mathcal{U}} \mapsto t^{\mathcal{W}} \text{ and let } \theta = \ker \phi.$

- If W is finitely based, then θ is finitely generated as a fully invariant congruence of F_U(x₁,...).
- This means that θ uniquely determines a finitely generated ideal I of R_U and finitely generated submodule N of M_U.
- We have $\mathbf{R}_{\mathcal{W}} \cong \mathbf{R}_{\mathcal{U}}/I$ and $\mathbf{M}_{\mathcal{W}} \cong \mathbf{M}_{\mathcal{U}}/N$.
- Since R_U and M_U are free with finitely many generators, that means R_W and M_W are finitely presented.

The backwards direction is similar.

Future Directions

The natural next step is to work with nilpotent Mal'cev algebras. Given a Mal'cev variety \mathcal{V} of finite type, is the subvariety \mathcal{V}_n of *n*-nilpotent algebras in \mathcal{V} finitely based relative to \mathcal{V} ?

- We know this is true for n = 1.
- ► (R. Freese, R. McKenzie, 1987) We also know this is true when F_V(x, z) is finite.

Non-abelian group structure

Recall that there was a addition on elements of the free algebra defined as

$$s+t:=m(s,z,t)$$

> This defines a loop on any free algebra in a nilpotent \mathcal{V} .

References

[M. Muro, 2024] Characterizing Finitely Based Abelian Mal'cev Algebras - https://arxiv.org/abs/2411.17004