Characterizing some classical rings via superstability

Marcos Mazari-Armida Marcos.MazariA@colorado.edu

University of Colorado Boulder

October 2022 Panglobal Algebra and Logic Seminar

1 / 34

• Abstract elementary classes were introduced by Shelah in the 70's.

Shelah's categoricity conjecture (1976)

Assume K is an AEC.

If **K** is categorical in *some* cardinal greater than or equal to $\beth_{(2^{LS(K)})^+}$, then

- it is categorical in all cardinals greater than or equal to $\beth_{(2^{LS}(K))^+}$.
 - Superstability.
 - Abelian groups and modules

Basic notions

- 2 Limit models and stability
- Superstability
- Ocharacterizing rings via superstability
- Summary and future work

R is an associative ring with unity.

R-modules (intuition)

- An *R*-module is a "vector space" over the ring *R*.
- \mathbb{R} -modules are vectors spaces over \mathbb{R} .
- \mathbb{Z} -modules are abelian groups.

Language

Given a ring R, $L_R = \{0, +, -\} \cup \{r \cdot : r \in R\}$ is the language of *R*-modules.

Pure submodule: 1st Definition (Prüfer)

 $M \leq_p N$ if for every L right R-module $L \otimes M \to L \otimes N$ is a monomorphism.

Pure submodule: 2nd Definition

 $M \leq_p N$ if and only if for every $\bar{a} \in M$ and ϕ an existentially quantified system of linear equations, if $N \vDash \phi[\bar{a}]$ then $M \vDash \phi[\bar{a}]$.

Pure subgroup

 $M \leq_p N$ if and only if $kN \cap M = kM$ for every $k \in \mathbb{N}$.

Examples

$$M \leq_{p} M \oplus N$$
, $t(G) \leq_{p} G$, $\mathbb{Z} \nleq_{p} \mathbb{Q}$.

- 4 同 6 4 日 6 4 日 6

An abstract elementary class of modules (AEC) is a pair $\mathbf{K} = (K, \leq_{\mathbf{K}})$ where $K \subseteq R$ -Mod and $\leq_{\mathbf{K}}$ is a partial order on \mathbf{K} .

Key axioms

- **• K** is closed under isomorphisms.
- **2** If $M \leq_{\mathbf{K}} N$, then M is a submodule of N.
- S Tarski-Vaught axioms: Closed under unions of increasing chains.
- Some M₀ ≤_K M such that A ⊆ M₀ and M₀ is small.

In this talk small means that $\|M_0\| \leq |R| + \aleph_0 + |A|$.

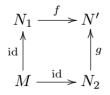
- (Ab, \leq) and (Ab, \leq_p) .
- (Tor, \leq) and (Tor, \leq_p).
- (torsion-free, \leq) (torsion-free, \leq_p).
- (RTF, \leq_p) .
- (\aleph_1 -free, \leq_p).
- (R-Mod, \leq) and (R-Mod, \leq_p).
- $(\mathfrak{s}\text{-}\mathsf{Tor},\leq_p)$
- (*R*-Flat, \leq_p).
- (R-Absp, \leq_p).
- $(R-I-inj, \leq_p)$ and $(R-I-pi, \leq_p)$.

Basic notions: Some properties

 $f: M \to N$ is a **K**-embedding if $f: M \cong f[M] \leq_{\mathbf{K}} N$.

Amalgamation property (AP)

Every $M \leq_{\mathbf{K}} N_1, N_2$ can be completed to a commutative square in \mathbf{K} .



Examples

- (Kucera-M.) AP: *R*-Mod with pure embeddings, Absolutely pure *R*-modules with pure embeddings.
- (Shelah) No AP: \aleph_1 -free abelian groups with pure embeddings.
- (?) AP?: Finitely Butler groups with pure embeddings.

Some properties

() K has JEP: if every $M, N \in K$ can be **K**-embedded into a model in **K**.

2 K has NMM: if every $M \in K$ can be properly extended in K.

Examples

All the examples we introduced have JEP and NMM as they are closed under direct sums.

Hypothesis

K has AP, JEP and NMM.

- Basic notions
- 2 Limit models and stability
- Superstability
- Ocharacterizing rings via superstability
- Summary and future work

Limit models and stability: Basic notions

Universal extension (Kolman-Shelah)

M is universal over *N* if and only if *M* and *N* have the same size, $N \leq_{\mathbf{K}} M$ and for any $N^* \in \mathbf{K}$ of the size of *M* such that $N \leq_{\mathbf{K}} N^*$, there is $f: N^* \xrightarrow{N} M$.

Limit model (Kolman-Shelah)

Let λ be an infinite cardinal and $\alpha < \lambda^+$ be a limit ordinal. M is a (λ, α) -limit model over N if and only if there is $\{M_i : i < \alpha\} \subseteq \mathbf{K}_{\lambda}$ an increasing continuous chain such that:

1
$$M_0 := N$$
.

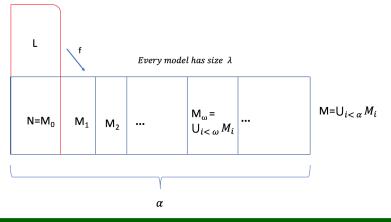
$$M = \bigcup_{i < \alpha} M_i.$$

• M_{i+1} is universal over M_i for each $i < \alpha$.

M is a λ -limit model if there is $\alpha < \lambda^+$ limit ordinal and $N \in K_\lambda$ such that *M* is a (λ, α) -limit model over *N*.

Limit models and stability: Basic notions

Let $\alpha < \lambda^+$ limit ordinal. *M* is a (λ, α) -limit model over *N*.



(M.) Limit models in (Ab, \leq)

If *M* is a (λ, α) -limit model in (Ab, \leq) , then $M \cong \mathbb{Q}^{(\lambda)} \oplus \bigoplus_{p} \mathbb{Z}(p^{\infty})^{(\lambda)}$.

Marcos Mazari-Armida

Stable (Shelah)

- **K** is λ -stable if **K** has a λ -limit model.
- **K** is stable if there is a λ such that **K** is λ -stable.

This is not the standard definition of stability for AECs but its equivalent to it by work of Shelah, Grossberg and Van Dieren.

T is a complete first-order theory: $(Mod(T), \preceq)$

 $(Mod(T), \preceq)$ is λ -stable if and only if T is λ -stable (as a first-order theory).

Theorem (Fisher-Bauer 70s)

If T is a complete first-order theory of modules, then $(Mod(T), \leq_p)$ is stable.

Question

Let R be an associative ring with unity. If (K, \leq_p) be an AEC of modules, is (K, \leq_p) stable? Is this true if $R = \mathbb{Z}$? Under what conditions on R is this true?

- Characterize Galois-types using first-order pp-types.
- Use a non-forking independence relation which is a notion similar to linear independence.

Examples

- (Kucera-M.) (R-Mod, \leq_p).
- (Lieberman-Rosický-Vasey) (R-Flat, \leq_p).
- (M.) (R-Absp, \leq_p).
- (M.) (*R*-l-inj, \leq_p) and (*R*-l-pi, \leq_p).

Stability can be use to answer algebraic questions ...

- Basic notions
- 2 Limit models and stability
- Superstability
- Ocharacterizing rings via superstability
- Summary and future work

Key issue

Given $M, N \lambda$ -limit models, are M and N isomorphic?

Fact (Shelah)

If *M* is a (λ, α) -limit model, *N* is a (λ, β) -limit model and $cf(\alpha) = cf(\beta)$, then *M* is isomorphic to *N*.

Uniqueness of limit models

K has uniqueness of limit models of cardinality λ if **K** has a λ -limit model and if given $M, N \lambda$ -limit models, M and N are isomorphic.

Superstability (Shelah, Grossberg, Vasey)

K is superstable if and only if **K** has uniqueness of limit models in a tail of cardinals, i.e., there is a μ such that for every $\lambda \ge \mu$ **K** has uniqueness of limit models of cardinality λ .

If K is superstable, then K is stable.

T is a complete first-order theory: $(Mod(T), \preceq)$

 $(Mod(T), \leq)$ is superstable if and only if T is superstable.

Main question

If K is an AEC of modules, under what conditions is K superstable? Is there an algebraic reason why this happens?

Hypothesis 1

Let $\mathbf{K} = (K, \leq_p)$ be an AEC of modules such that:

- *K* is closed under direct sums.
- **2** K is closed under pure submodules.
- Solution K is closed under pure-injective envelopes, i.e., if M ∈ K, then PE(M) ∈ K.

Examples

- R-modules.
- Absolutely pure modules: For all N, $M \subseteq_R N$ implies $M \leq_p N$.

Pure-injective

M is pure-injective if for every *N* with $M \leq_p N$ we have that *M* is a direct summand of *N*, i.e., there is *M'* such that $N = M \oplus M'$.

Pure-injective envelope (Ziegler)

The pure-injective envelope of M, denoted by PE(M), is a pure-injective module with $M \leq_p PE(M)$ and it is minimum with respect to these properties.

Long limit models (M.)

If *M* is a (λ, α) -limit model with $cf(\alpha) \ge (|R| + \aleph_0)^+$, then *M* is pure-injective.

Where $(|R| + \aleph_0)^+$ is the cardinal following $|R| + \aleph_0$

・ロト ・ 同ト ・ ヨト ・ ヨト

Shortest limit model (M.)

If *M* is a (λ, ω) -limit model and *N* is a $(\lambda, (|R| + \aleph_0)^+)$ -limit model, then $M \cong N^{(\aleph_0)}$.

Question

Let *M* be a (λ, α) -limit model with $\omega < cf(\alpha) < (|R| + \aleph_0)^+$. What can we say about *M*?

Lemma (M.)

If M and N are limit models, then M and N are elementary equivalent, i.e., they look the same from the perspective of first-order logic.

21 / 34

Σ -pure-injective

M is Σ -pure-injective if and only if $M^{(\aleph_0)}$ is pure-injective

If a module is Σ -pure-injective then it is pure-injective.

Why are Σ -pure-injective modules important to us? (Gruson-Jensen, Zimmerman, Garavaglia)

- They are closed under elementary equivalence.
- They are closed under pure submodules.

Lemma (M.)

If there exists $\lambda \ge (|R| + \aleph_0)^+$ such that **K** has uniqueness of limit models of cardinality λ , then every limit model is Σ -pure-injective.

Proof sketch:

- N be a $(\lambda, (|R| + \aleph_0)^+)$ -limit model.
- $N^{(\aleph_0)}$ is the (λ, ω) -limit model.
- *N* is isomorphic to $N^{(\aleph_0)}$ by uniqueness of limit models.
- $N^{(\aleph_0)}$ is pure-injective because N is pure-injective.
- *N* is Σ-pure-injective.
- Every limit model is Σ -pure-injective because it is elementarily equivalent to N.

Theorem (M.)

The following are equivalent.

- K is superstable.
- **2** Every limit model in **K** is Σ -pure-injective.
- **O** Every model in **K** is pure-injective.

- Basic notions
- 2 Limit models and stability
- Superstability
- Characterizing rings via superstability
- Summary and future work

Noetherian rings (1921): Every absolutely pure module is injective.

Characterizing noetherian rings (M.)

Let R be an associative ring with unity. The following are equivalent.

- **1** *R* is left noetherian.
- The class of absolutely pure left *R*-modules with pure embeddings is superstable
- **③** The class of left *R*-modules with embeddings is superstable.

(1) \leftrightarrow (2) follows directly from the theorem we obtained under hypothesis 1.

Pure-semisimple rings (1977): Every *R*-module is pure-injective.

Characterizing pure-semisimple rings (M.)

Let R be an associative ring with unity. The following are equivalent.

- R is left pure-semisimple
- **2** The class of left *R*-modules with pure embeddings is superstable

Follows directly from the theorem we obtained under hypothesis 1.

Abelian groups (M.)

 (Ab, \leq) is superstable, but (Ab, \leq_p) is not superstable.

Perfect rings (1960): Every flat module is a projective module.

Characterizing perfect rings (M.)

Let R be an associative ring with unity. The following are equivalent.

- **O** *R* is left perfect.
- ② The class of flat left *R*-modules with pure embeddings is superstable.

How does this case compare to previous cases?

- Flat modules are NOT closed under pure-injective envelopes so we need to work with cotorsion modules.
- (Σ-) Cotorsion modules are NOT as nice a (Σ-)pure-injective modules.

(Martsinkovsky-Russell) $\mathfrak{s}\text{-torsion}$ modules are a generalization of torsion abelian groups.

Characterizing superstability (M.)

Let R be an associative ring with unity such that for every N, $\mathfrak{s}(N) \leq_p N$. The following are equivalent.

- **(**) The class of \mathfrak{s} -torsion *R*-modules with pure embeddings is superstable.
- **2** Every limit model is Σ -**K**^{\$-Tor}-pure-injective.
- **③** Every \mathfrak{s} -torsion modules is $\mathbf{K}^{\mathfrak{s}-\mathsf{Tor}}$ -pure-injective.

How does this case compare to previous cases?

- s-torsion modules are NOT closed under pure-injective envelopes or cotorsion envelopes so we need to work with K^{s-Tor}-pure-injectives.
- Nobody had studied K^{s-Tor}-pure-injective modules, so I had to develop the algebraic theory.
- It is open whether superstability for s-torsion modules characterizes a classical class of rings.

Abelian groups (M.)

 (Tor, \leq_{p}) is not superstable.

30 / 34

- Basic notions
- 2 Limit models and stability
- Superstability
- Ocharacterizing rings via superstability
- **Summary and future work**

Summary

- There are many natural AECs of modules.
- Characterizing limit models algebraically is the key to understand superstability.
- Superstability is a natural algebraic property.

Future work

- Are all AECs of modules with pure embeddings stable?
- Characterize the limit models algebraically for other AECs of modules.
- Do the algebraic characterizations of superstability extend to other algebraic settings? Ongoing project with Rosický.
- Use AECs of modules to answer algebraic questions.

- Marcos Mazari-Armida, Some stable non-elementary classes of modules, The Journal of Symbolic Logic, to appear, 22 pages, URL: https://doi.org/10.1017/jsl.2021.68
- Marcos Mazari-Armida, Superstability, noetherian rings and pure-semisimple rings, Annals of Pure and Applied Logic 172 (2021), no. 3, 102917 (24 pages).
- Marcos Mazari-Armida, On superstability in the class of flat modules and perfect rings, Proceedings of the American Mathematical Society, 149 (2021), 2639 - 2654.
- Marcos Mazari-Armida, *A note on torsion modules with pure embeddings*, submitted.

Thank you!

2