L-algebras: the Yang–Baxter equation and algebraic logic Leandro Vendramin Vrije Universiteit Brussel Panglobal Algebra and Logic Seminar – September 2025 # The Yang–Baxter equation ## Problem (Drinfeld) Study set-theoretic solutions (to the YBE). A set-theoretic solution (to the YBE) is a pair (X, r), where X is a set and $r: X \times X \to X \times X$ is a bijective map such that $$(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r).$$ **First works:** Gateva–Ivanova and Van den Bergh and Etingof, Schedler and Soloviev. #### **Examples:** - ▶ The flip: r(x, y) = (y, x). - Let X be a set and $\sigma, \tau \colon X \to X$ be bijections such that $\sigma \tau = \tau \sigma$. Then $$r(x, y) = (\sigma(y), \tau(x))$$ r(x, y) = (2x - y, x) and r(x, y) = (y - 1, x + 1) - is a solution. Let $$X = \mathbb{Z}/n$$. Then **200**) t = 2/ are solutions. # More examples: are solutions. If X is a group, then $$r(x,y) = (xyx^{-1},x)$$ and $r(x,y) = (xy^{-1}x^{-1},xy^2)$ #### Problem Construct (finite) set-theoretical solutions. We deal with non-degenerate solutions, i.e. solutions $$r(x,y)=(\sigma_x(y),\tau_y(x)),$$ where all maps $\sigma_x \colon X \to X$ and $\tau_x \colon X \to X$ are bijective. We consider involutive solutions, i.e. $r^2 = \mathrm{id}$. #### Convention: A solution will be a non-degenerate involutive solution. How many involutive solutions are there? The number of solutions (up to isomorphism). | size | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |------|----|----|-----|------|-------|--------|---------| | | 23 | 88 | 595 | 3456 | 34530 | 321931 | 4895272 | These solutions were constructed with Akgün and Mereb using constraint programming techniques. Constraint programming is a paradigm for solving combinatorial problems. The idea is to search for variables that satisfy a certain number of constraints. Involutive solutions are easier to construct than arbitrary solutions. Let us write $$r(x, y) = (\sigma_x(y), \tau_y(x)).$$ Assume that $r^2 = id$. Then $$\sigma_y(x) = \tau_{\tau_x(y)}^{-1}(x)$$ for all x, y. This means that to construct involutive solutions over a set X, one needs, only the set $\{\tau_x : x \in X\}$. Which conditions on the set $\{\tau_x : x \in X\}$ are needed to construct involutive solutions? This is how you find cycle sets! # Cycle sets A cycle set is a pair (X,\cdot) , where X is a set and $X\times X\to X$, $(x,y)\mapsto x\cdot y$, is a binary operation such that 1. The cycloid equation $$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$$ holds for all $x, y, z \in X$, and 2. the maps $\varphi_x \colon X \to X$, $y \mapsto x \cdot y$, are bijective for all $x \in X$. # Theorem (Rump) There exists a bijective correspondence between finite cycle sets and finite non-degenerate involutive solutions to the YBE. The correspondence is given as follows: If (X, \cdot) is a cycle set, then $$r(x,y) = ((y*x) \cdot y, y*x),$$ where y*x=z if and only if $y\cdot z=x$, is a solution. Conversely, if (X,r) is a solution, then X with $x\cdot y=\tau_x^{-1}(y)$ is a cycle set. The cycloid equation is relevant in extensions of classical logic, like the Birkhoff and Von Neumann approach¹ to quantum logic. ¹Ann. Math. 37(4) (1936), 823-843. # L-algebras A set X with a binary operation $X \times X \to X$, $(x, y) \mapsto x \cdot y$, is an L-algebra if there exists an element $e \in X$ such that $$e \cdot x = x$$ and $x \cdot e = x \cdot x = e$ for all $x \in X$, (1) $$x \cdot y = y \cdot x = e \implies x = y, \tag{2}$$ and the cycloid equation $$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) \tag{3}$$ holds for all $x, y, z \in X$. The element $e \in X$ is the logical unit. Let X be an L-algebra. Then $$x \le y \iff x \cdot y = e$$ defines a partial order on X with greatest element e. If you like algebraic logic, maybe you should write the binary operation \cdot with an arrow (e.g. \rightarrow) for "implication". The logical unit is the "truth". Moreover, $x \le y$ means that x entails y. (This means strong implication: x is true, so y is also true.) # Example For a cycle set X and a formal symbol e, let $L_X = X \cup \{e\}$. The binary operation $$L_X \times L_X \to L_X, \qquad (x,y) \mapsto \begin{cases} e & \text{if } x = y \text{ or } y = e, \\ y & \text{if } x = e, \\ x \cdot y & \text{if } x \neq y, \end{cases}$$ turns L_X into a discrete L-algebra (i.e. $x < y \implies y = e$). An *L*-algebra *X* is self-similar if for each $x,y\in X$ there exists an element $z=z(x,y)\in X$ such that $z\leq y$ and $y\cdot z=x$. Notation: z = xy. #### Facts: - 1. xy is uniquely determined by $xy \le y$ and $y \cdot (xy) = x$. - 2. The operation $X \times X \to X$, $(x, y) \mapsto xy$, is well-defined, associative and $$xe = ex = x$$, $(xy) \cdot z = x \cdot (y \cdot z)$ hold for all $x, y, z \in X$. # Theorem (Rump) Let X be an L-algebra X. Then there exists a unique (up to isomorphism) self-similar L-algebra S(X) generated (as a monoid) by X and there is an embedding $X \hookrightarrow S(X)$ of L-algebras. So X embedds into a "nicer" L-algebra S(X). Since S(X) is left Ore, it admits a left quotient group G(X), known as the structure group of X. There exists a canonical map $$X \hookrightarrow S(X) \rightarrow G(X)$$. ## Theorem (Rump) Let X be an L-algebra. Then G(X) is torsion-free. # Example Recall that the braid group \mathbb{B}_3 in three strands is the group with generators r and s and the relation relation rsr = srs. Generators: $$r =$$ $s =$ The defining relation rsr = srs is the Yang-Baxter equation: # Example Let $$X=\{e,x,y,xy,yx\}$$ with the L -algebra structure given by $$x\cdot y=xy,\quad y\cdot x=yx.$$ Then $G(X) \simeq \mathbb{B}_3$, the braid group in three strands. In particular, \mathbb{B}_3 is torsion-free. #### Fact: The braid group \mathbb{B}_n is the structure group of an L-algebra. One can use the connection between the YBE and L-algebras to construct finite L-algebras of small size. Let $X = \{1, ..., n\}$. The element n will be the logical unit. An L-algebra structure on X is a matrix $(M_{ij})_{1 \le i,j \le n} \in \mathbb{Z}^{n \times n}$ satisfying the following conditions: - 1. $M_{n,j} = j$ for all $j \in \{1, ..., n\}$. 2. $M_{i,n} = n$ for all $i \in \{1, ..., n\}$. - $2. \ W_{1,n} = H \text{ for all } I \in \{1, \dots, H\}.$ - 3. $M_{k,k} = n$ for all $k \in \{1, ..., n\}$. - 4. $M_{Mi,j,Mi,k} = M_{M_{j,i},M_{j,k}}$ for all $i,j,k \in \{1,\ldots,n\}$. - 5. $M_{i,j} = n = M_{j,i} \implies i = j$. There is a correspondence between finite L-algebras and matrices satisfying (1)–(5): $$X \rightsquigarrow M_X$$, where $(M_X)_{ij} = i \cdot j$. Over the set of $n \times n$ matrices satisfying conditions (1)–(5) we consider the following equivalence relation: $$M \sim N \iff \exists g \in \operatorname{Sym}_{n-1} : N_{i,j} = g^{-1}(M_{g(i),g(i)}) \ \forall i,j.$$ Then $$X \simeq Y \Longleftrightarrow M_X \sim M_Y$$. # Example Let $X = \{x, y, e\}$ with $$e \cdot y = y$$, $x \cdot y = y \cdot x = e \cdot x = x$. Then X is an L-algebra. Let us compute M_X . For this, we need to change the labelling of the elements of X: $$f: \{1,2,3\} \to \{x,y,e\}, \quad f(1) = x, \quad f(2) = y, \quad f(3) = e.$$ Then $$M_X = \begin{pmatrix} 3 & 1 & 3 \\ 1 & 3 & 3 \\ 1 & 2 & 3 \end{pmatrix}.$$ The number of L-algebras (up to isomorphism). | size | 3 | 4 | 5 | 6 | 7 | 8 | |------|---|----|-----|-------|--------|-----------| | | 5 | 44 | 632 | 15582 | 907806 | 377322225 | The L-algebras were constructed with Dietzel and Menchón. The calculations use constraint programming techniques. The enumeration for size eight requires other ideas, like the underlying poset structure of the L-algebras. An L-algebra is then said to be linear if the partial order $$x \le y \iff x \cdot y = e$$ is a total order. ## Theorem (with Dietzel and Menchón) There are B(n-1) isomorphism classes of linear L-algebras of size n, where B(n) denotes the n-th Bell number. The first Bell numbers are 1,1,2,5,15,52,203,877,4140... This is the sequence A000110 in the OEIS. Bell numbers count the number of partitions of sets. For example, the set $\{a, b, c\}$ admits five partitions: ``` \{\{a,b,c\}\},\ \{\{a,b\},\{c\}\},\ \{\{b,c\},\{a\}\},\ \{\{a,c\},\{b\}\},\ \{\{a\},\{b\},\{c\}\}. ``` Thus B(3) = 5. #### Problem Let n be a positive integer. Find an explicit bijection between the L-algebras on the ordered set $$L$$ -algebras on the ordered set $$\{1 < 2 < \cdots < n\},$$ where *n* is the logical unit, and partitions of the set $\{1, \ldots, n-1\}$. An L-algebra X is of type (F) if it satisfies $$x \cdot y = x \cdot (x \cdot y)$$ and $x \cdot y = y \iff y \cdot x = x$ for all $x, y \in X$; this class of (symmetric) L-algebras appears in the literature. #### Conjecture The number of L-algebras of type (F) and size n is F_n , the n-th Fibonacci number. # Hilbert algebras An important family of L-algebras is that of Hilbert algebras. This is an L-algebra X such that $$x \cdot (y \cdot z) = (x \cdot y) \cdot (x \cdot z)$$ for all $x, y, z \in X$. The number of Hilbert algebras (up to isomorphism). | : | size | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |---|------|---|---|----|----|-----|------|-------|---------| | | | 2 | 6 | 21 | 95 | 550 | 4036 | 37602 | 1043328 | An ideal is an L-algebra X is a subset I of X such that the following conditions hold: - 1. $e \in I$. - 2. $x \in I$ and $x \cdot y \in I \implies y \in I$. - 3. $x \in I \implies (x \cdot y) \cdot y \in I$. - 4. $x \in I \implies y \cdot x \in I \text{ and } y \cdot (x \cdot y) \in I$. #### **Examples:** $\{e\}$ and X are ideals. The intersection of ideals is an ideal. # Theorem (Rump) Let X be an L-algebra. There exists a bijective correspondence between ideals of X and congruences \sim on X for which the quotient X/\sim is an L-algebra. The correspondence is given as follows $x \sim y \iff x \cdot y \in I$ and $y \cdot x \in I$. Conversely, if \sim is a congruence, then $I = \{x \in X : x \sim e\}$ is an ideal of X. As usual, a congruence \sim on X is an equivalence relation on X compatible with the binary operation, i.e. $$x \sim x_1$$ and $y \sim y_1 \implies x \cdot y \sim x_1 \cdot y_1$. An L-algebra X is said to be distributive if $$I \cap (J \vee K) = (I \cap J) \vee (I \cap K)$$ for all ideals I, J and K, where $A \lor B$ denotes the ideal of X generated by $A \cup B$. **Example:** Hilbert algebras are distributive. ## Theorem (with Rump) Finite *L*-algebras are distributive. The ideals of an L-algebra X can be identified with the open sets of a topological space $\operatorname{Spec} X$, the spectrum of X. #### General problem Study the spectrum of L-algebras. #### Some questions: - 1. Determine the spectrum in particular classes (e.g. linear). - 2. What about simple *L*-algebras?