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The Yang–Baxter equation

Problem (Drinfeld)

Study set-theoretic solutions (to the YBE).

A set-theoretic solution (to the YBE) is a pair (X , r), where X is a
set and r : X × X → X × X is a bijective map such that

(r × id)(id× r)(r × id) = (id× r)(r × id)(id× r).

First works: Gateva–Ivanova and Van den Bergh and Etingof,
Schedler and Soloviev.



Examples:

▶ The flip: r(x , y) = (y , x).

▶ Let X be a set and σ, τ : X → X be bijections such that
στ = τσ. Then

r(x , y) = (σ(y), τ(x))

is a solution.

▶ Let X = Z/n. Then

r(x , y) = (2x − y , x) and r(x , y) = (y − 1, x + 1)

are solutions.



More examples:
If X is a group, then

r(x , y) = (xyx−1, x) and r(x , y) = (xy−1x−1, xy2)

are solutions.



Problem

Construct (finite) set-theoretical solutions.

We deal with non-degenerate solutions, i.e. solutions

r(x , y) = (σx(y), τy (x)),

where all maps σx : X → X and τx : X → X are bijective. We
consider involutive solutions, i.e. r2 = id.

Convention:
A solution will be a non-degenerate involutive solution.



How many involutive solutions are there?

The number of solutions (up to isomorphism).

size 4 5 6 7 8 9 10

23 88 595 3456 34530 321931 4895272

These solutions were constructed with Akgün and Mereb using con-
straint programming techniques.

Constraint programming is a paradigm for solving combinatorial
problems. The idea is to search for variables that satisfy a cer-
tain number of constraints.



Involutive solutions are easier to construct than arbitrary solutions.
Let us write

r(x , y) = (σx(y), τy (x)).

Assume that r2 = id. Then

σy (x) = τ−1
τx (y)

(x)

for all x , y .

This means that to construct involutive solutions over a set X , one
needs, only the set {τx : x ∈ X}.



Which conditions on the set {τx : x ∈ X} are needed to construct
involutive solutions?

This is how you find cycle sets!



Cycle sets

A cycle set is a pair (X , ·), where X is a set and X × X → X ,
(x , y) 7→ x · y , is a binary operation such that

1. The cycloid equation

(x · y) · (x · z) = (y · x) · (y · z)

holds for all x , y , z ∈ X , and

2. the maps φx : X → X , y 7→ x · y , are bijective for all x ∈ X .



Theorem (Rump)

There exists a bijective correspondence between finite cycle sets
and finite non-degenerate involutive solutions to the YBE.

The correspondence is given as follows: If (X , ·) is a cycle set, then

r(x , y) = ((y ∗ x) · y , y ∗ x),

where y ∗ x = z if and only if y · z = x , is a solution. Conversely, if
(X , r) is a solution, then X with x · y = τ−1

x (y) is a cycle set.



The cycloid equation is relevant in extensions of classical logic, like
the Birkhoff and Von Neumann approach1 to quantum logic.

Cycloid equation

The YBE
Algebraic logic:

L-algebras

1Ann. Math. 37(4) (1936), 823–843.



L-algebras

A set X with a binary operation X × X → X , (x , y) 7→ x · y , is an
L-algebra if there exists an element e ∈ X such that

e · x = x and x · e = x · x = e for all x ∈ X , (1)

x · y = y · x = e =⇒ x = y , (2)

and the cycloid equation

(x · y) · (x · z) = (y · x) · (y · z) (3)

holds for all x , y , z ∈ X .

The element e ∈ X is the logical unit.



Let X be an L-algebra. Then

x ≤ y ⇐⇒ x · y = e

defines a partial order on X with greatest element e.



If you like algebraic logic, maybe you should write the binary opera-
tion · with an arrow (e.g. →) for “implication”. The logical unit is
the “truth”.

Moreover, x ≤ y means that x entails y . (This means strong impli-
cation: x is true, so y is also true.)



Example

For a cycle set X and a formal symbol e, let LX = X ∪ {e}. The
binary operation

LX × LX → LX , (x , y) 7→


e if x = y or y = e,

y if x = e,

x · y if x ̸= y ,

turns LX into a discrete L-algebra (i.e. x < y =⇒ y = e).



An L-algebra X is self-similar if for each x , y ∈ X there exists an
element z = z(x , y) ∈ X such that z ≤ y and y · z = x .

Notation: z = xy .

Facts:

1. xy is uniquely determined by xy ≤ y and y · (xy) = x .

2. The operation X × X → X , (x , y) 7→ xy , is well-defined,
associative and

xe = ex = x , (xy) · z = x · (y · z)

hold for all x , y , z ∈ X .



Theorem (Rump)

Let X be an L-algebra X . Then there exists a unique (up to
isomorphism) self-similar L-algebra S(X ) generated (as a monoid)
by X and there is an embedding X ↪→ S(X ) of L-algebras.

So X embedds into a “nicer” L-algebra S(X ).



Since S(X ) is left Ore, it admits a left quotient group G (X ), known
as the structure group of X . There there exists a canonical map

X ↪→ S(X ) → G (X ).

Theorem (Rump)

Let X be an L-algebra. Then G (X ) is torsion-free.



Example

Recall that the braid group B3 in three strands is the group with
generators r and s and the relation relation rsr = srs.

Generators:

r = s =

The defining relation rsr = srs is the Yang–Baxter equation:

=



Example

Let X = {e, x , y , xy , yx} with the L-algebra structure given by

x · y = xy , y · x = yx .

Then G (X ) ≃ B3, the braid group in three strands. In particular,
B3 is torsion-free.

Fact:
The braid group Bn is the structure group of an L-algebra.



One can use the connection between the YBE and L-algebras to
construct finite L-algebras of small size.



Let X = {1, . . . , n}. The element n will be the logical unit. An
L-algebra structure on X is a matrix (Mij)1≤i ,j≤n ∈ Zn×n satisfying
the following conditions:

1. Mn,j = j for all j ∈ {1, . . . , n}.
2. Mi ,n = n for all i ∈ {1, . . . , n}.
3. Mk,k = n for all k ∈ {1, . . . , n}.
4. MMi ,j ,Mi ,k = MMj,i ,Mj,k

for all i , j , k ∈ {1, . . . , n}.
5. Mi ,j = n = Mj ,i =⇒ i = j .

There is a correspondence between finite L-algebras and matrices
satisfying (1)–(5):

X ⇝ MX ,

where (MX )ij = i · j .



Over the set of n× n matrices satisfying conditions (1)–(5) we con-
sider the following equivalence relation:

M ∼ N ⇐⇒ ∃g ∈ Symn−1 : Ni ,j = g−1(Mg(i),g(j)) ∀i , j .

Then
X ≃ Y ⇐⇒ MX ∼ MY .



Example

Let X = {x , y , e} with

e · y = y , x · y = y · x = e · x = x .

Then X is an L-algebra.

Let us compute MX . For this, we need to change the labelling of
the elements of X :

f : {1, 2, 3} → {x , y , e}, f (1) = x , f (2) = y , f (3) = e.

Then

MX =

3 1 3
1 3 3
1 2 3

 .



The number of L-algebras (up to isomorphism).

size 3 4 5 6 7 8

5 44 632 15582 907806 377322225

The L-algebras were constructed with Dietzel and Menchón. The
calculations use constraint programming techniques. The enumer-
ation for size eight requires other ideas, like the underlying poset
structure of the L-algebras.



What can you do with the database?



An L-algebra is then said to be linear if the partial order

x ≤ y ⇐⇒ x · y = e

is a total order.

Theorem (with Dietzel and Menchón)

There are B(n − 1) isomorphism classes of linear L-algebras of size
n, where B(n) denotes the n-th Bell number.

The first Bell numbers are 1,1,2,5,15,52,203,877,4140. . . This is the
sequence A000110 in the OEIS.



Bell numbers count the number of partitions of sets. For example,
the set {a, b, c} admits five partitions:

{{a, b, c}},
{{a, b}, {c}},
{{b, c}, {a}},
{{a, c}, {b}},
{{a}, {b}, {c}}.

Thus B(3) = 5.



Problem

Let n be a positive integer. Find an explicit bijection between the
L-algebras on the ordered set

{1 < 2 < · · · < n},

where n is the logical unit, and partitions of the set {1, . . . , n− 1}.



An L-algebra X is of type (F) if it satisfies

x · y = x · (x · y) and x · y = y ⇐⇒ y · x = x

for all x , y ∈ X ; this class of (symmetric) L-algebras appears in the
literature.

Conjecture

The number of L-algebras of type (F) and size n is Fn, the n-th
Fibonacci number.



Hilbert algebras

An important family of L-algebras is that of Hilbert algebras. This
is an L-algebra X such that

x · (y · z) = (x · y) · (x · z)

for all x , y , z ∈ X .

The number of Hilbert algebras (up to isomorphism).

size 3 4 5 6 7 8 9 10

2 6 21 95 550 4036 37602 1043328



A geometric theory of L-algebras?



An ideal is an L-algebra X is a subset I of X such that the following
conditions hold:

1. e ∈ I .

2. x ∈ I and x · y ∈ I =⇒ y ∈ I .

3. x ∈ I =⇒ (x · y) · y ∈ I .

4. x ∈ I =⇒ y · x ∈ I and y · (x · y) ∈ I .

Examples:
{e} and X are ideals. The intersection of ideals is an ideal.



Theorem (Rump)

Let X be an L-algebra. There exists a bijective correspondence
between ideals of X and congruences ∼ on X for which the
quotient X/∼ is an L-algebra.

The correspondence is given as follows x ∼ y ⇐⇒ x · y ∈ I and
y ·x ∈ I . Conversely, if ∼ is a congruence, then I = {x ∈ X : x ∼ e}
is an ideal of X .

As usual, a congruence ∼ on X is an equivalence relation on X
compatible with the binary operation, i.e.

x ∼ x1 and y ∼ y1 =⇒ x · y ∼ x1 · y1.



An L-algebra X is said to be distributive if

I ∩ (J ∨ K ) = (I ∩ J) ∨ (I ∩ K )

for all ideals I , J and K , where A∨B denotes the ideal of X generated
by A ∪ B.

Example: Hilbert algebras are distributive.

Theorem (with Rump)

Finite L-algebras are distributive.



What now?



The ideals of an L-algebra X can be identified with the open sets of
a topological space SpecX , the spectrum of X .

General problem

Study the spectrum of L-algebras.

Some questions:

1. Determine the spectrum in particular classes (e.g. linear).

2. What about simple L-algebras?


