Locally finite Schreier varieties

Keith Kearnes Michael Kompatscher Andrew Moorhead Ágnes Szendrei

PALS September 19, 2023

Subgroups of free groups

Subgroups of free groups

Theorem.

Subgroups of free groups

Theorem. (R. Dedekind, ?)

Theorem.

Theorem. (J. Nielsen, 1921)

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem.

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (O. Schreier, 1927)

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (O. Schreier, 1927) A subgroup of a free group is free.

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (O. Schreier, 1927) A subgroup of a free group is free.

Theorem.

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (O. Schreier, 1927) A subgroup of a free group is free.

Theorem. (P. M. Neumann, J. Wiegold, 1964)

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (O. Schreier, 1927) A subgroup of a free group is free.

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (O. Schreier, 1927) A subgroup of a free group is free.

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (O. Schreier, 1927) A subgroup of a free group is free.

Theorem. (P. M. Neumann, J. Wiegold, 1964) Let \mathcal{V} be a variety of groups with the property that subgroups of \mathcal{V} -free groups are \mathcal{V} -free. \mathcal{V} must be

• the variety & of all groups,

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (O. Schreier, 1927) A subgroup of a free group is free.

Theorem. (P. M. Neumann, J. Wiegold, 1964) Let \mathcal{V} be a variety of groups with the property that subgroups of \mathcal{V} -free groups are \mathcal{V} -free. \mathcal{V} must be

• the variety & of all groups,

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (O. Schreier, 1927) A subgroup of a free group is free.

- the variety & of all groups,
- 2 the variety \mathfrak{A} of all abelian groups, or

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (O. Schreier, 1927) A subgroup of a free group is free.

- the variety & of all groups,
- 2 the variety \mathfrak{A} of all abelian groups, or

Theorem. (J. Nielsen, 1921) A *finitely generated* subgroup of a free group is free.

Theorem. (O. Schreier, 1927) A subgroup of a free group is free.

- the variety & of all groups,
- 2 the variety \mathfrak{A} of all abelian groups, or
- \bigcirc one of the varieties \mathfrak{A}_p of elementary abelian groups of exponent p.

Schreier varieties

Definition.

Definition. Call a variety \mathcal{V} a **Schreier** variety if the subalgebras of the \mathcal{V} -free algebras are \mathcal{V} -free.

Let's call an algebra A or a variety \mathcal{V} *trivial* if A or \mathcal{V} satisfy $x \approx y$, and nontrivial otherwise.

Let's call an algebra **A** or a variety \mathcal{V} *trivial* if **A** or \mathcal{V} satisfy $x \approx y$, and nontrivial otherwise. When speaking about Schreier varieties, I will always assume that the variety is nontrivial.

Let's call an algebra **A** or a variety \mathcal{V} *trivial* if **A** or \mathcal{V} satisfy $x \approx y$, and nontrivial otherwise. When speaking about Schreier varieties, I will always assume that the variety is nontrivial.

Theorem.

Let's call an algebra **A** or a variety \mathcal{V} *trivial* if **A** or \mathcal{V} satisfy $x \approx y$, and nontrivial otherwise. When speaking about Schreier varieties, I will always assume that the variety is nontrivial.

Theorem. (T. Evans, 1969)

Let's call an algebra **A** or a variety \mathcal{V} *trivial* if **A** or \mathcal{V} satisfy $x \approx y$, and nontrivial otherwise. When speaking about Schreier varieties, I will always assume that the variety is nontrivial.

Theorem. (T. Evans, 1969) A variety of semigroups is "Schreier" if and only if it is

Let's call an algebra **A** or a variety \mathcal{V} *trivial* if **A** or \mathcal{V} satisfy $x \approx y$, and nontrivial otherwise. When speaking about Schreier varieties, I will always assume that the variety is nontrivial.

Theorem. (T. Evans, 1969) A variety of semigroups is "Schreier" if and only if it is

 the variety of left zero (xy ≈ x), right zero (xy ≈ y), or 'constant' (xy ≈ uv) semigroups, or

Let's call an algebra **A** or a variety \mathcal{V} *trivial* if **A** or \mathcal{V} satisfy $x \approx y$, and nontrivial otherwise. When speaking about Schreier varieties, I will always assume that the variety is nontrivial.

Theorem. (T. Evans, 1969) A variety of semigroups is "Schreier" if and only if it is

- the variety of left zero $(xy \approx x)$, right zero $(xy \approx y)$, or 'constant' $(xy \approx uv)$ semigroups, or
- one of the varieties \mathfrak{A}_p of elementary abelian groups of exponent p considered as a variety of semigroups.

Evans' warning about $F_{\mathcal{V}}(0)$

I put quotes around "Schreier" in Evans' Theorem, since he calls a variety "Schreier" if the *nontrivial* subalgebras of V-free algebras are V-free.

I put quotes around "Schreier" in Evans' Theorem, since he calls a variety "Schreier" if the *nontrivial* subalgebras of \mathcal{V} -free algebras are \mathcal{V} -free. He explains his choice as follows:

I put quotes around "Schreier" in Evans' Theorem, since he calls a variety "Schreier" if the *nontrivial* subalgebras of \mathcal{V} -free algebras are \mathcal{V} -free. He explains his choice as follows:

There is a particular reason for inserting the word non-trivial in our definition of Schreier variety.

I put quotes around "Schreier" in Evans' Theorem, since he calls a variety "Schreier" if the *nontrivial* subalgebras of \mathcal{V} -free algebras are \mathcal{V} -free. He explains his choice as follows:

There is a particular reason for inserting the word non-trivial in our definition of Schreier variety. Without it we would be forced to classify the variety of constant semigroups C as non-Schreier
I put quotes around "Schreier" in Evans' Theorem, since he calls a variety "Schreier" if the *nontrivial* subalgebras of \mathcal{V} -free algebras are \mathcal{V} -free. He explains his choice as follows:

There is a particular reason for inserting the word non-trivial in our definition of Schreier variety. Without it we would be forced to classify the variety of constant semigroups C as non-Schreier because any free semigroup $F_k(C)$ in this variety contains an idempotent element and this one-generator subsemigroup is not $F_1(C)$. I put quotes around "Schreier" in Evans' Theorem, since he calls a variety "Schreier" if the *nontrivial* subalgebras of \mathcal{V} -free algebras are \mathcal{V} -free. He explains his choice as follows:

There is a particular reason for inserting the word non-trivial in our definition of Schreier variety. Without it we would be forced to classify the variety of constant semigroups C as non-Schreier because any free semigroup $F_k(C)$ in this variety contains an idempotent element and this one-generator subsemigroup is not $F_1(C)$. However, all non-trivial subsemigroups of $F_k(C)$ are free in C. I put quotes around "Schreier" in Evans' Theorem, since he calls a variety "Schreier" if the *nontrivial* subalgebras of \mathcal{V} -free algebras are \mathcal{V} -free. He explains his choice as follows:

There is a particular reason for inserting the word non-trivial in our definition of Schreier variety. Without it we would be forced to classify the variety of constant semigroups C as non-Schreier because any free semigroup $F_k(C)$ in this variety contains an idempotent element and this one-generator subsemigroup is not $F_1(C)$. However, all non-trivial subsemigroups of $F_k(C)$ are free in C. What is worse, we would also have to classify the varieties \mathfrak{A}_p as non-Schreier since again as a semigroup, $F_k(\mathfrak{A}_p)$ contains a one-element subsemigroup. This difficulty is avoided in groups, of course, by regarding one-element groups as free groups on an empty set of generators.

Evans' warning, in more detail

Evans' warning, in more detail

If $\mathbf{A} \in \mathcal{V}$, call a unary term operation $\alpha(x)$ a *pseudoconstant* for \mathbf{A} if $\mathbf{A} \models \alpha(x) \approx \alpha(y)$.

If $\mathbf{A} \in \mathcal{V}$, call a unary term operation $\alpha(x)$ a *pseudoconstant* for \mathbf{A} if $\mathbf{A} \models \alpha(x) \approx \alpha(y)$. Let $P_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of ranges of pseudoconstant unary term operations.

If $\mathbf{A} \in \mathcal{V}$, call a unary term operation $\alpha(x)$ a *pseudoconstant* for \mathbf{A} if $\mathbf{A} \models \alpha(x) \approx \alpha(y)$. Let $P_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of ranges of pseudoconstant unary term operations. Let $C_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of interpretations of constant terms.

If $\mathbf{A} \in \mathcal{V}$, call a unary term operation $\alpha(x)$ a *pseudoconstant* for \mathbf{A} if $\mathbf{A} \models \alpha(x) \approx \alpha(y)$. Let $P_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of ranges of pseudoconstant unary term operations. Let $C_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of interpretations of constant terms. We always have $C_{\mathbf{A}} \subseteq P_{\mathbf{A}}$. If $\mathbf{A} \in \mathcal{V}$, call a unary term operation $\alpha(x)$ a *pseudoconstant* for \mathbf{A} if $\mathbf{A} \models \alpha(x) \approx \alpha(y)$. Let $P_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of ranges of pseudoconstant unary term operations. Let $C_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of interpretations of constant terms. We always have $C_{\mathbf{A}} \subseteq P_{\mathbf{A}}$. If $C_{\mathbf{A}} \neq \emptyset$, then $C_{\mathbf{A}} = P_{\mathbf{A}}$, If $\mathbf{A} \in \mathcal{V}$, call a unary term operation $\alpha(x)$ a *pseudoconstant* for \mathbf{A} if $\mathbf{A} \models \alpha(x) \approx \alpha(y)$. Let $P_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of ranges of pseudoconstant unary term operations. Let $C_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of interpretations of constant terms. We always have $C_{\mathbf{A}} \subseteq P_{\mathbf{A}}$. If $C_{\mathbf{A}} \neq \emptyset$, then $C_{\mathbf{A}} = P_{\mathbf{A}}$, but it is possible to have $C_{\mathbf{A}} = \emptyset$ and $P_{\mathbf{A}} \neq \emptyset$. If $\mathbf{A} \in \mathcal{V}$, call a unary term operation $\alpha(x)$ a *pseudoconstant* for \mathbf{A} if $\mathbf{A} \models \alpha(x) \approx \alpha(y)$. Let $P_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of ranges of pseudoconstant unary term operations. Let $C_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of interpretations of constant terms. We always have $C_{\mathbf{A}} \subseteq P_{\mathbf{A}}$. If $C_{\mathbf{A}} \neq \emptyset$, then $C_{\mathbf{A}} = P_{\mathbf{A}}$, but it is possible to have $C_{\mathbf{A}} = \emptyset$ and $P_{\mathbf{A}} \neq \emptyset$. If $\mathbf{A} = F_{\mathcal{V}}(X)$ If $\mathbf{A} \in \mathcal{V}$, call a unary term operation $\alpha(x)$ a *pseudoconstant* for \mathbf{A} if $\mathbf{A} \models \alpha(x) \approx \alpha(y)$. Let $P_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of ranges of pseudoconstant unary term operations. Let $C_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of interpretations of constant terms. We always have $C_{\mathbf{A}} \subseteq P_{\mathbf{A}}$. If $C_{\mathbf{A}} \neq \emptyset$, then $C_{\mathbf{A}} = P_{\mathbf{A}}$, but it is possible to have $C_{\mathbf{A}} = \emptyset$ and $P_{\mathbf{A}} \neq \emptyset$. If $\mathbf{A} = F_{\mathcal{V}}(X)$ and \mathbf{A} belongs to a Schreier variety, then $C_{\mathbf{A}}$ and $P_{\mathbf{A}}$ must be free. If $\mathbf{A} \in \mathcal{V}$, call a unary term operation $\alpha(x)$ a *pseudoconstant* for \mathbf{A} if $\mathbf{A} \models \alpha(x) \approx \alpha(y)$. Let $P_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of ranges of pseudoconstant unary term operations. Let $C_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of interpretations of constant terms. We always have $C_{\mathbf{A}} \subseteq P_{\mathbf{A}}$. If $C_{\mathbf{A}} \neq \emptyset$, then $C_{\mathbf{A}} = P_{\mathbf{A}}$, but it is possible to have $C_{\mathbf{A}} = \emptyset$ and $P_{\mathbf{A}} \neq \emptyset$. If $\mathbf{A} = F_{\mathcal{V}}(X)$ and \mathbf{A} belongs to a Schreier variety, then $C_{\mathbf{A}}$ and $P_{\mathbf{A}}$ must be free. But neither can be free of positive rank, If $\mathbf{A} \in \mathcal{V}$, call a unary term operation $\alpha(x)$ a *pseudoconstant* for \mathbf{A} if $\mathbf{A} \models \alpha(x) \approx \alpha(y)$. Let $P_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of ranges of pseudoconstant unary term operations. Let $C_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of interpretations of constant terms. We always have $C_{\mathbf{A}} \subseteq P_{\mathbf{A}}$. If $C_{\mathbf{A}} \neq \emptyset$, then $C_{\mathbf{A}} = P_{\mathbf{A}}$, but it is possible to have $C_{\mathbf{A}} = \emptyset$ and $P_{\mathbf{A}} \neq \emptyset$. If $\mathbf{A} = F_{\mathcal{V}}(X)$ and \mathbf{A} belongs to a Schreier variety, then $C_{\mathbf{A}}$ and $P_{\mathbf{A}}$ must be free. But neither can be free of positive rank, so

$$P_{\mathbf{A}} \neq \emptyset \Longleftrightarrow C_{\mathbf{A}} \neq \emptyset \Longleftrightarrow C_{\mathbf{A}} = P_{\mathbf{A}}.$$

If $\mathbf{A} \in \mathcal{V}$, call a unary term operation $\alpha(x)$ a *pseudoconstant* for \mathbf{A} if $\mathbf{A} \models \alpha(x) \approx \alpha(y)$. Let $P_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of ranges of pseudoconstant unary term operations. Let $C_{\mathbf{A}}$ be the subalgebra of \mathbf{A} consisting of interpretations of constant terms. We always have $C_{\mathbf{A}} \subseteq P_{\mathbf{A}}$. If $C_{\mathbf{A}} \neq \emptyset$, then $C_{\mathbf{A}} = P_{\mathbf{A}}$, but it is possible to have $C_{\mathbf{A}} = \emptyset$ and $P_{\mathbf{A}} \neq \emptyset$. If $\mathbf{A} = F_{\mathcal{V}}(X)$ and \mathbf{A} belongs to a Schreier variety, then $C_{\mathbf{A}}$ and $P_{\mathbf{A}}$ must be free. But neither can be free of positive rank, so

$$P_{\mathbf{A}} \neq \emptyset \Longleftrightarrow C_{\mathbf{A}} \neq \emptyset \Longleftrightarrow C_{\mathbf{A}} = P_{\mathbf{A}}.$$

That is, the range of any pseudoconstant is the interpretation of a constant in a Schreier variety.

Main Theorem

Theorem.

Theorem. Assume that \mathcal{V} is a nontrivial locally finite variety.

• \mathcal{V} is a Schreier variety.

• \mathcal{V} is a Schreier variety.

- \mathcal{V} is a Schreier variety.
- **2** \mathcal{V} is a Nielsen variety.

- \mathcal{V} is a Schreier variety.
- **2** \mathcal{V} is a Nielsen variety.

- \mathcal{V} is a Schreier variety.
- **2** \mathcal{V} is a Nielsen variety.
- Every finite algebra in V is 0, 1-minimal algebra in the sense of Tame Congruence Theory.

- \mathcal{V} is a Schreier variety.
- **2** \mathcal{V} is a Nielsen variety.
- Every finite algebra in V is 0, 1-minimal algebra in the sense of Tame Congruence Theory.

- \mathcal{V} is a Schreier variety.
- **2** \mathcal{V} is a Nielsen variety.
- Every finite algebra in V is 0, 1-minimal algebra in the sense of Tame Congruence Theory.
- \bigcirc V is generated by a single finite 0, 1-minimal of more than two elements.

- \mathcal{V} is a Schreier variety.
- **2** \mathcal{V} is a Nielsen variety.
- Every finite algebra in V is 0, 1-minimal algebra in the sense of Tame Congruence Theory.
- \bigcirc V is generated by a single finite 0, 1-minimal of more than two elements.

- \mathcal{V} is a Schreier variety.
- **2** \mathcal{V} is a Nielsen variety.
- Every finite algebra in V is 0, 1-minimal algebra in the sense of Tame Congruence Theory.
- \bigcirc V is generated by a single finite 0, 1-minimal of more than two elements.

0, 1-minimal algebras

0, 1-minimal algebras

Definition.

0, 1-minimal algebras

Definition. An algebra A is 0, 1-minimal (or permutational)

Theorem.

Theorem. (P. P. Pálfy, 1984)

Theorem. (P. P. Pálfy, 1984) A finite algebra A is 0, 1-minimal if and only if
0, 1-minimal algebras

Definition. An algebra \mathbf{A} is 0, 1-*minimal* (or *permutational*) if every nonconstant unary polynomial function of \mathbf{A} is a permutation of A.

Theorem. (P. P. Pálfy, 1984) A finite algebra **A** is 0, 1-minimal if and only if $|A| \le 2$,

0, 1-minimal algebras

Definition. An algebra \mathbf{A} is 0, 1-*minimal* (or *permutational*) if every nonconstant unary polynomial function of \mathbf{A} is a permutation of A.

Theorem. (P. P. Pálfy, 1984) A finite algebra \mathbf{A} is 0, 1-minimal if and only if

- $\ \, |A|\leq 2,$
- **2** A is polynomially equivalent to a G-set for some finite group G, or

0, 1-minimal algebras

Definition. An algebra \mathbf{A} is 0, 1-*minimal* (or *permutational*) if every nonconstant unary polynomial function of \mathbf{A} is a permutation of A.

Theorem. (P. P. Pálfy, 1984) A finite algebra A is 0, 1-minimal if and only if

- $\bullet |A| \le 2,$
- **2** A is polynomially equivalent to a G-set for some finite group G, or
- **(a)** A is polynomially equivalent to an \mathbb{F} -vector space for some finite field \mathbb{F} .

Main Claim.

Main Claim. Assume that \mathcal{V} is locally finite and Schreier.

Main Claim. Assume that \mathcal{V} is locally finite and Schreier. If $t(x_1, \ldots, x_n)$ is an *n*-ary \mathcal{V} -term that depends on its first variable in \mathcal{V} ,

Main Claim. Assume that \mathcal{V} is locally finite and Schreier. If $t(x_1, \ldots, x_n)$ is an *n*-ary \mathcal{V} -term that depends on its first variable in \mathcal{V} , then there is a \mathcal{V} -term $s(x_1, \ldots, x_n)$ such that

Main Claim. Assume that \mathcal{V} is locally finite and Schreier. If $t(x_1, \ldots, x_n)$ is an *n*-ary \mathcal{V} -term that depends on its first variable in \mathcal{V} , then there is a \mathcal{V} -term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

Main Claim. Assume that \mathcal{V} is locally finite and Schreier. If $t(x_1, \ldots, x_n)$ is an *n*-ary \mathcal{V} -term that depends on its first variable in \mathcal{V} , then there is a \mathcal{V} -term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

Justification.

Main Claim. Assume that \mathcal{V} is locally finite and Schreier. If $t(x_1, \ldots, x_n)$ is an *n*-ary \mathcal{V} -term that depends on its first variable in \mathcal{V} , then there is a \mathcal{V} -term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

Justification.

Let $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x_1, \dots, x_n) = \mathbf{F}_{\mathcal{V}}(n)$ be the \mathcal{V} -free algebra generated by the finite set $X_n := \{x_1, \dots, x_n\}$.

Main Claim. Assume that \mathcal{V} is locally finite and Schreier. If $t(x_1, \ldots, x_n)$ is an *n*-ary \mathcal{V} -term that depends on its first variable in \mathcal{V} , then there is a \mathcal{V} -term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

Justification.

Let $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x_1, \dots, x_n) = \mathbf{F}_{\mathcal{V}}(n)$ be the \mathcal{V} -free algebra generated by the finite set $X_n := \{x_1, \dots, x_n\}$. Necessarily $t = t^{\mathbf{F}}(x_1, \dots, x_n) \in F$.

Main Claim. Assume that \mathcal{V} is locally finite and Schreier. If $t(x_1, \ldots, x_n)$ is an *n*-ary \mathcal{V} -term that depends on its first variable in \mathcal{V} , then there is a \mathcal{V} -term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

Justification.

Let $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x_1, \dots, x_n) = \mathbf{F}_{\mathcal{V}}(n)$ be the \mathcal{V} -free algebra generated by the finite set $X_n := \{x_1, \dots, x_n\}$. Necessarily $t = t^{\mathbf{F}}(x_1, \dots, x_n) \in F$. Let $\mathbf{S} \leq \mathbf{F}$ be the subalgebra of \mathbf{F} generated by $X_{n-1} := \{x_2, \dots, x_n\}$.

Main Claim. Assume that \mathcal{V} is locally finite and Schreier. If $t(x_1, \ldots, x_n)$ is an *n*-ary \mathcal{V} -term that depends on its first variable in \mathcal{V} , then there is a \mathcal{V} -term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

Justification.

Let $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x_1, \ldots, x_n) = \mathbf{F}_{\mathcal{V}}(n)$ be the \mathcal{V} -free algebra generated by the finite set $X_n := \{x_1, \ldots, x_n\}$. Necessarily $t = t^{\mathbf{F}}(x_1, \ldots, x_n) \in F$. Let $\mathbf{S} \leq \mathbf{F}$ be the subalgebra of \mathbf{F} generated by $X_{n-1} := \{x_2, \ldots, x_n\}$. Since \mathbf{S} is generated by the subset X_{n-1} of the free generating set X_n for \mathbf{F} , \mathbf{S} is free in \mathcal{V} over X_{n-1} .

Main Claim. Assume that \mathcal{V} is locally finite and Schreier. If $t(x_1, \ldots, x_n)$ is an *n*-ary \mathcal{V} -term that depends on its first variable in \mathcal{V} , then there is a \mathcal{V} -term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

Justification.

Let $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x_1, \ldots, x_n) = \mathbf{F}_{\mathcal{V}}(n)$ be the \mathcal{V} -free algebra generated by the finite set $X_n := \{x_1, \ldots, x_n\}$. Necessarily $t = t^{\mathbf{F}}(x_1, \ldots, x_n) \in F$. Let $\mathbf{S} \leq \mathbf{F}$ be the subalgebra of \mathbf{F} generated by $X_{n-1} := \{x_2, \ldots, x_n\}$. Since \mathbf{S} is generated by the subset X_{n-1} of the free generating set X_n for \mathbf{F} , \mathbf{S} is free in \mathcal{V} over X_{n-1} . The fact that the term $t(x_1, \ldots, x_n)$ depends on its first variable in \mathcal{V} is equivalent to the statement that $t \notin S$.

Main Claim. Assume that \mathcal{V} is locally finite and Schreier. If $t(x_1, \ldots, x_n)$ is an *n*-ary \mathcal{V} -term that depends on its first variable in \mathcal{V} , then there is a \mathcal{V} -term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

Justification.

Let $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x_1, \ldots, x_n) = \mathbf{F}_{\mathcal{V}}(n)$ be the \mathcal{V} -free algebra generated by the finite set $X_n := \{x_1, \ldots, x_n\}$. Necessarily $t = t^{\mathbf{F}}(x_1, \ldots, x_n) \in F$. Let $\mathbf{S} \leq \mathbf{F}$ be the subalgebra of \mathbf{F} generated by $X_{n-1} := \{x_2, \ldots, x_n\}$. Since \mathbf{S} is generated by the subset X_{n-1} of the free generating set X_n for \mathbf{F} , \mathbf{S} is free in \mathcal{V} over X_{n-1} . The fact that the term $t(x_1, \ldots, x_n)$ depends on its first variable in \mathcal{V} is equivalent to the statement that $t \notin S$.

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \dots, x_n\}$ properly extends \mathbf{S} ,

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \dots, x_n\}$ properly extends \mathbf{S} , so

$$|\mathbf{F}_{\mathcal{V}}(n-1)| = |\mathbf{S}| < |\mathbf{T}| \le |\mathbf{F}| = |\mathbf{F}_{\mathcal{V}}(n)|.$$

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \dots, x_n\}$ properly extends \mathbf{S} , so

$$|\mathbf{F}_{\mathcal{V}}(n-1)| = |\mathbf{S}| < |\mathbf{T}| \le |\mathbf{F}| = |\mathbf{F}_{\mathcal{V}}(n)|.$$

Since \mathbf{T} is a subalgebra of the \mathcal{V} -free algebra \mathbf{F} , \mathbf{T} is free in \mathcal{V} .

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \dots, x_n\}$ properly extends \mathbf{S} , so

$$|\mathbf{F}_{\mathcal{V}}(n-1)| = |\mathbf{S}| < |\mathbf{T}| \le |\mathbf{F}| = |\mathbf{F}_{\mathcal{V}}(n)|.$$

Since T is a subalgebra of the \mathcal{V} -free algebra F, T is free in \mathcal{V} . Since the sizes of the free algebras in a nontrivial locally finite variety strictly increase as as the rank of the algebra increases,

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \dots, x_n\}$ properly extends \mathbf{S} , so

$$|\mathbf{F}_{\mathcal{V}}(n-1)| = |\mathbf{S}| < |\mathbf{T}| \le |\mathbf{F}| = |\mathbf{F}_{\mathcal{V}}(n)|.$$

Since T is a subalgebra of the \mathcal{V} -free algebra F, T is free in \mathcal{V} . Since the sizes of the free algebras in a nontrivial locally finite variety strictly increase as as the rank of the algebra increases, and T is a free algebra satisfying

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \dots, x_n\}$ properly extends \mathbf{S} , so

$$|\mathbf{F}_{\mathcal{V}}(n-1)| = |\mathbf{S}| < |\mathbf{T}| \le |\mathbf{F}| = |\mathbf{F}_{\mathcal{V}}(n)|.$$

Since T is a subalgebra of the \mathcal{V} -free algebra F, T is free in \mathcal{V} . Since the sizes of the free algebras in a nontrivial locally finite variety strictly increase as as the rank of the algebra increases, and T is a free algebra satisfying

$$|\mathbf{F}_{\mathcal{V}}(n-1)| < |\mathbf{T}| \le |\mathbf{F}_{\mathcal{V}}(n)|,$$

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \dots, x_n\}$ properly extends \mathbf{S} , so

$$|\mathbf{F}_{\mathcal{V}}(n-1)| = |\mathbf{S}| < |\mathbf{T}| \le |\mathbf{F}| = |\mathbf{F}_{\mathcal{V}}(n)|.$$

Since T is a subalgebra of the \mathcal{V} -free algebra F, T is free in \mathcal{V} . Since the sizes of the free algebras in a nontrivial locally finite variety strictly increase as as the rank of the algebra increases, and T is a free algebra satisfying

$$|\mathbf{F}_{\mathcal{V}}(n-1)| < |\mathbf{T}| \le |\mathbf{F}_{\mathcal{V}}(n)|,$$

we derive that $|\mathbf{T}| = |\mathbf{F}|$.

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \dots, x_n\}$ properly extends \mathbf{S} , so

$$|\mathbf{F}_{\mathcal{V}}(n-1)| = |\mathbf{S}| < |\mathbf{T}| \le |\mathbf{F}| = |\mathbf{F}_{\mathcal{V}}(n)|.$$

Since T is a subalgebra of the \mathcal{V} -free algebra F, T is free in \mathcal{V} . Since the sizes of the free algebras in a nontrivial locally finite variety strictly increase as as the rank of the algebra increases, and T is a free algebra satisfying

$$|\mathbf{F}_{\mathcal{V}}(n-1)| < |\mathbf{T}| \le |\mathbf{F}_{\mathcal{V}}(n)|,$$

we derive that $|\mathbf{T}| = |\mathbf{F}|$. Since $\mathbf{T} \leq \mathbf{F}$, we derive that $\mathbf{T} = \mathbf{F}$.

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \dots, x_n\}$ properly extends \mathbf{S} , so

$$|\mathbf{F}_{\mathcal{V}}(n-1)| = |\mathbf{S}| < |\mathbf{T}| \le |\mathbf{F}| = |\mathbf{F}_{\mathcal{V}}(n)|.$$

Since T is a subalgebra of the \mathcal{V} -free algebra F, T is free in \mathcal{V} . Since the sizes of the free algebras in a nontrivial locally finite variety strictly increase as as the rank of the algebra increases, and T is a free algebra satisfying

$$|\mathbf{F}_{\mathcal{V}}(n-1)| < |\mathbf{T}| \le |\mathbf{F}_{\mathcal{V}}(n)|,$$

we derive that $|\mathbf{T}| = |\mathbf{F}|$. Since $\mathbf{T} \leq \mathbf{F}$, we derive that $\mathbf{T} = \mathbf{F}$. Hence $x_1 \in \mathbf{F}$ belongs to the subalgebra \mathbf{T} of \mathbf{F} generated by $\{t, x_2, \ldots, x_n\}$.

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \ldots, x_n\}$ properly extends \mathbf{S} , so

$$|\mathbf{F}_{\mathcal{V}}(n-1)| = |\mathbf{S}| < |\mathbf{T}| \le |\mathbf{F}| = |\mathbf{F}_{\mathcal{V}}(n)|.$$

Since T is a subalgebra of the \mathcal{V} -free algebra F, T is free in \mathcal{V} . Since the sizes of the free algebras in a nontrivial locally finite variety strictly increase as as the rank of the algebra increases, and T is a free algebra satisfying

$$|\mathbf{F}_{\mathcal{V}}(n-1)| < |\mathbf{T}| \le |\mathbf{F}_{\mathcal{V}}(n)|,$$

we derive that $|\mathbf{T}| = |\mathbf{F}|$. Since $\mathbf{T} \leq \mathbf{F}$, we derive that $\mathbf{T} = \mathbf{F}$. Hence $x_1 \in \mathbf{F}$ belongs to the subalgebra \mathbf{T} of \mathbf{F} generated by $\{t, x_2, \ldots, x_n\}$. This fact yields a term s such that $s^{\mathbf{F}}(t, x_2, \ldots, x_n) = x_1$.

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \ldots, x_n\}$ properly extends \mathbf{S} , so

$$|\mathbf{F}_{\mathcal{V}}(n-1)| = |\mathbf{S}| < |\mathbf{T}| \le |\mathbf{F}| = |\mathbf{F}_{\mathcal{V}}(n)|.$$

Since T is a subalgebra of the \mathcal{V} -free algebra F, T is free in \mathcal{V} . Since the sizes of the free algebras in a nontrivial locally finite variety strictly increase as as the rank of the algebra increases, and T is a free algebra satisfying

$$|\mathbf{F}_{\mathcal{V}}(n-1)| < |\mathbf{T}| \le |\mathbf{F}_{\mathcal{V}}(n)|,$$

we derive that $|\mathbf{T}| = |\mathbf{F}|$. Since $\mathbf{T} \leq \mathbf{F}$, we derive that $\mathbf{T} = \mathbf{F}$. Hence $x_1 \in \mathbf{F}$ belongs to the subalgebra \mathbf{T} of \mathbf{F} generated by $\{t, x_2, \ldots, x_n\}$. This fact yields a term s such that $s^{\mathbf{F}}(t, x_2, \ldots, x_n) = x_1$. The relation $s^{\mathbf{F}}(t^{\mathbf{F}}(x_1, x_2, \ldots, x_n), x_2, \ldots, x_n) = x_1$, which holds among the free generators of \mathbf{F} , implies that the identity

$$s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1$$

holds throughout \mathcal{V} .

Since $t \notin S = \langle X_{n-1} \rangle$, the subalgebra $\mathbf{T} \leq \mathbf{F}$ generated by $\{t, x_2, \ldots, x_n\}$ properly extends \mathbf{S} , so

$$|\mathbf{F}_{\mathcal{V}}(n-1)| = |\mathbf{S}| < |\mathbf{T}| \le |\mathbf{F}| = |\mathbf{F}_{\mathcal{V}}(n)|.$$

Since T is a subalgebra of the \mathcal{V} -free algebra F, T is free in \mathcal{V} . Since the sizes of the free algebras in a nontrivial locally finite variety strictly increase as as the rank of the algebra increases, and T is a free algebra satisfying

$$|\mathbf{F}_{\mathcal{V}}(n-1)| < |\mathbf{T}| \le |\mathbf{F}_{\mathcal{V}}(n)|,$$

we derive that $|\mathbf{T}| = |\mathbf{F}|$. Since $\mathbf{T} \leq \mathbf{F}$, we derive that $\mathbf{T} = \mathbf{F}$. Hence $x_1 \in \mathbf{F}$ belongs to the subalgebra \mathbf{T} of \mathbf{F} generated by $\{t, x_2, \ldots, x_n\}$. This fact yields a term s such that $s^{\mathbf{F}}(t, x_2, \ldots, x_n) = x_1$. The relation $s^{\mathbf{F}}(t^{\mathbf{F}}(x_1, x_2, \ldots, x_n), x_2, \ldots, x_n) = x_1$, which holds among the free generators of \mathbf{F} , implies that the identity

$$s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1$$

holds throughout \mathcal{V} . \Box

Next we explain why the Main Claim implies that every finite algebra in \mathcal{V} is 0, 1-minimal.

Next we explain why the Main Claim implies that every finite algebra in \mathcal{V} is 0, 1-minimal. Choose finite $\mathbf{A} \in \mathcal{V}$.

Next we explain why the Main Claim implies that every finite algebra in \mathcal{V} is 0, 1-minimal. Choose finite $\mathbf{A} \in \mathcal{V}$. If p(x) is a nonconstant unary polynomial of \mathbf{A} , then there exists a term $t(x_1, \ldots, x_n)$ which depends on its first variable in \mathcal{V} and a tuple $\mathbf{a} = (a_2, \ldots, a_n) \in A^{n-1}$ such that $p(x) = t^{\mathbf{A}}(x, \mathbf{a})$.

Next we explain why the Main Claim implies that every finite algebra in \mathcal{V} is 0, 1-minimal. Choose finite $\mathbf{A} \in \mathcal{V}$. If p(x) is a nonconstant unary polynomial of \mathbf{A} , then there exists a term $t(x_1, \ldots, x_n)$ which depends on its first variable in \mathcal{V} and a tuple $\mathbf{a} = (a_2, \ldots, a_n) \in A^{n-1}$ such that $p(x) = t^{\mathbf{A}}(x, \mathbf{a})$.By the Main Claim, there exists a term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

Next we explain why the Main Claim implies that every finite algebra in \mathcal{V} is 0, 1-minimal. Choose finite $\mathbf{A} \in \mathcal{V}$. If p(x) is a nonconstant unary polynomial of \mathbf{A} , then there exists a term $t(x_1, \ldots, x_n)$ which depends on its first variable in \mathcal{V} and a tuple $\mathbf{a} = (a_2, \ldots, a_n) \in A^{n-1}$ such that $p(x) = t^{\mathbf{A}}(x, \mathbf{a})$.By the Main Claim, there exists a term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

From this we get $s^{\mathbf{A}}(t^{\mathbf{A}}(x, \mathbf{a}), \mathbf{a}) = x$, so $p(x) = t^{\mathbf{A}}(x, \mathbf{a})$ is a left-invertible self-map of the finite set A.

Next we explain why the Main Claim implies that every finite algebra in \mathcal{V} is 0, 1-minimal. Choose finite $\mathbf{A} \in \mathcal{V}$. If p(x) is a nonconstant unary polynomial of \mathbf{A} , then there exists a term $t(x_1, \ldots, x_n)$ which depends on its first variable in \mathcal{V} and a tuple $\mathbf{a} = (a_2, \ldots, a_n) \in A^{n-1}$ such that $p(x) = t^{\mathbf{A}}(x, \mathbf{a})$.By the Main Claim, there exists a term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

From this we get $s^{\mathbf{A}}(t^{\mathbf{A}}(x, \mathbf{a}), \mathbf{a}) = x$, so $p(x) = t^{\mathbf{A}}(x, \mathbf{a})$ is a left-invertible self-map of the finite set A. The finiteness of A forces p(x) to be a permutation of A,
Next we explain why the Main Claim implies that every finite algebra in \mathcal{V} is 0, 1-minimal. Choose finite $\mathbf{A} \in \mathcal{V}$. If p(x) is a nonconstant unary polynomial of \mathbf{A} , then there exists a term $t(x_1, \ldots, x_n)$ which depends on its first variable in \mathcal{V} and a tuple $\mathbf{a} = (a_2, \ldots, a_n) \in A^{n-1}$ such that $p(x) = t^{\mathbf{A}}(x, \mathbf{a})$.By the Main Claim, there exists a term $s(x_1, \ldots, x_n)$ such that

$$\mathcal{V} \models s(t(x_1, x_2, \dots, x_n), x_2, \dots, x_n) \approx x_1.$$

From this we get $s^{\mathbf{A}}(t^{\mathbf{A}}(x, \mathbf{a}), \mathbf{a}) = x$, so $p(x) = t^{\mathbf{A}}(x, \mathbf{a})$ is a left-invertible self-map of the finite set A. The finiteness of A forces p(x) to be a permutation of A, so every unary polynomial must be a constant or a permutation of A. \Box

There is more

We have seen why any finite algebra in a locally finite Schreier variety must be 0, 1-minimal.

We have seen why any finite algebra in a locally finite Schreier variety must be 0, 1-minimal. What is involved in proving the converse?

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal.

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal. This means that each algebra in \mathcal{V} satisfies $|\mathbf{A}| \leq 2$,

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal. This means that each algebra in \mathcal{V} satisfies $|\mathbf{A}| \leq 2$, \mathbf{A} is polynomially equivalent to a *G*-set,

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal. This means that each algebra in \mathcal{V} satisfies $|\mathbf{A}| \leq 2$, \mathbf{A} is polynomially equivalent to a *G*-set, or \mathbf{A} is polynomially equivalent to a vector space.

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal. This means that each algebra in \mathcal{V} satisfies $|\mathbf{A}| \leq 2$, \mathbf{A} is polynomially equivalent to a *G*-set, or \mathbf{A} is polynomially equivalent to a vector space.

Stage 1.

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal. This means that each algebra in \mathcal{V} satisfies $|\mathbf{A}| \leq 2$, \mathbf{A} is polynomially equivalent to a *G*-set, or \mathbf{A} is polynomially equivalent to a vector space.

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal. This means that each algebra in \mathcal{V} satisfies $|\mathbf{A}| \leq 2$, \mathbf{A} is polynomially equivalent to a *G*-set, or \mathbf{A} is polynomially equivalent to a vector space.

Stage 1. Show that only one of these cases occurs in \mathcal{V} . I.e.,

• there is a finite group G, such that every finite algebra in V is polynomially equivalent to a G-set, or

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal. This means that each algebra in \mathcal{V} satisfies $|\mathbf{A}| \leq 2$, \mathbf{A} is polynomially equivalent to a *G*-set, or \mathbf{A} is polynomially equivalent to a vector space.

Stage 1. Show that only one of these cases occurs in \mathcal{V} . I.e.,

• there is a finite group G, such that every finite algebra in V is polynomially equivalent to a G-set, or

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal. This means that each algebra in \mathcal{V} satisfies $|\mathbf{A}| \leq 2$, \mathbf{A} is polynomially equivalent to a *G*-set, or \mathbf{A} is polynomially equivalent to a vector space.

- there is a finite group G, such that every finite algebra in V is polynomially equivalent to a G-set, or
- **e** there is a finite field \mathbb{F} , such that every finite algebra in \mathcal{V} is polynomially equivalent to an \mathbb{F} -vector space.

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal. This means that each algebra in \mathcal{V} satisfies $|\mathbf{A}| \leq 2$, \mathbf{A} is polynomially equivalent to a *G*-set, or \mathbf{A} is polynomially equivalent to a vector space.

- there is a finite group G, such that every finite algebra in V is polynomially equivalent to a G-set, or
- **e** there is a finite field \mathbb{F} , such that every finite algebra in \mathcal{V} is polynomially equivalent to an \mathbb{F} -vector space.

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal. This means that each algebra in \mathcal{V} satisfies $|\mathbf{A}| \leq 2$, \mathbf{A} is polynomially equivalent to a *G*-set, or \mathbf{A} is polynomially equivalent to a vector space.

- there is a finite group G, such that every finite algebra in V is polynomially equivalent to a G-set, or
- **e** there is a finite field \mathbb{F} , such that every finite algebra in \mathcal{V} is polynomially equivalent to an \mathbb{F} -vector space.

Assume that every finite algebra in \mathcal{V} is 0, 1-minimal. This means that each algebra in \mathcal{V} satisfies $|\mathbf{A}| \leq 2$, \mathbf{A} is polynomially equivalent to a *G*-set, or \mathbf{A} is polynomially equivalent to a vector space.

Stage 1. Show that only one of these cases occurs in \mathcal{V} . I.e.,

- there is a finite group G, such that every finite algebra in V is polynomially equivalent to a G-set, or
- **e** there is a finite field \mathbb{F} , such that every finite algebra in \mathcal{V} is polynomially equivalent to an \mathbb{F} -vector space.

Stage 2. Examine the structure of the free algebras in varieties of these types and show that subalgebras of free algebras are free.

With a slight variation in the argument of the Main Claim, one can prove

With a slight variation in the argument of the Main Claim, one can prove

Claim.

With a slight variation in the argument of the Main Claim, one can prove

Claim. If \mathcal{V} is a locally finite variety in which every (finitely generated) projective algebra is free,

With a slight variation in the argument of the Main Claim, one can prove

Claim. If \mathcal{V} is a locally finite variety in which every (finitely generated) projective algebra is free, then all finite algebras in \mathcal{V} are <u>*E*-minimal</u>.

With a slight variation in the argument of the Main Claim, one can prove

Claim. If \mathcal{V} is a locally finite variety in which every (finitely generated) projective algebra is free, then all finite algebras in \mathcal{V} are <u>*E*-minimal</u>.

A finite algebra **A** is *E*-minimal in the sense of Tame Congruence Theory if and only if it is α , β -minimal whenever $\alpha \prec \beta$ in Con(**A**).

With a slight variation in the argument of the Main Claim, one can prove

Claim. If \mathcal{V} is a locally finite variety in which every (finitely generated) projective algebra is free, then all finite algebras in \mathcal{V} are <u>*E*-minimal</u>.

A finite algebra **A** is *E*-minimal in the sense of Tame Congruence Theory if and only if it is α , β -minimal whenever $\alpha \prec \beta$ in Con(**A**). Typical examples include nilpotent semigroups, *p*-groups, or modules over finite local rings.

With a slight variation in the argument of the Main Claim, one can prove

Claim. If \mathcal{V} is a locally finite variety in which every (finitely generated) projective algebra is free, then all finite algebras in \mathcal{V} are <u>*E*-minimal</u>.

A finite algebra **A** is *E*-minimal in the sense of Tame Congruence Theory if and only if it is α , β -minimal whenever $\alpha \prec \beta$ in Con(**A**). Typical examples include nilpotent semigroups, *p*-groups, or modules over finite local rings.

It would be interesting to prove the converse of this Claim: If \mathcal{V} is a locally finite variety in which every finite algebra in \mathcal{V} is *E*-minimal, then every projective \mathcal{V} -algebra is free.

With a slight variation in the argument of the Main Claim, one can prove

Claim. If \mathcal{V} is a locally finite variety in which every (finitely generated) projective algebra is free, then all finite algebras in \mathcal{V} are <u>*E*-minimal</u>.

A finite algebra **A** is *E*-minimal in the sense of Tame Congruence Theory if and only if it is α , β -minimal whenever $\alpha \prec \beta$ in Con(**A**). Typical examples include nilpotent semigroups, *p*-groups, or modules over finite local rings.

It would be interesting to prove the converse of this Claim: If \mathcal{V} is a locally finite variety in which every finite algebra in \mathcal{V} is *E*-minimal, then every projective \mathcal{V} -algebra is free. To do this, we (probably) need to know more about the structure of free algebras in varieties generated by *E*-minimal algebras.

With a slight variation in the argument of the Main Claim, one can prove

Claim. If \mathcal{V} is a locally finite variety in which every (finitely generated) projective algebra is free, then all finite algebras in \mathcal{V} are <u>*E*-minimal</u>.

A finite algebra **A** is *E*-minimal in the sense of Tame Congruence Theory if and only if it is α , β -minimal whenever $\alpha \prec \beta$ in Con(**A**). Typical examples include nilpotent semigroups, *p*-groups, or modules over finite local rings.

It would be interesting to prove the converse of this Claim: If \mathcal{V} is a locally finite variety in which every finite algebra in \mathcal{V} is *E*-minimal, then every projective \mathcal{V} -algebra is free. To do this, we (probably) need to know more about the structure of free algebras in varieties generated by *E*-minimal algebras.