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Subgroups of free groups

Theorem. (R. Dedekind, ?) A subgroup of a free abelian group is a free
abelian group.

Theorem. (J. Nielsen, 1921) A finitely generated subgroup of a free group is
free.

Theorem. (O. Schreier, 1927) A subgroup of a free group is free.

Theorem. (P. M. Neumann, J. Wiegold, 1964) Let V be a variety of groups
with the property that subgroups of V-free groups are V-free. V must be

1 the variety G of all groups,
2 the variety A of all abelian groups, or
3 one of the varieties Ap of elementary abelian groups of exponent p.
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Schreier varieties

Definition. Call a variety V a Schreier variety if the subalgebras of the V-free
algebras are V-free. Call V a Nielsen variety if the finitely generated
subalgebras of the V-free algebras are V-free.

Let’s call an algebra A or a variety V trivial if A or V satisfy x ≈ y, and
nontrivial otherwise. When speaking about Schreier varieties, I will always
assume that the variety is nontrivial.

Theorem. (T. Evans, 1969) A variety of semigroups is “Schreier” if and only
if it is

1 the variety of left zero (xy ≈ x), right zero (xy ≈ y), or ‘constant’
(xy ≈ uv) semigroups, or

2 one of the varieties Ap of elementary abelian groups of exponent p
considered as a variety of semigroups.
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Evans’ warning about FV(0)

I put quotes around “Schreier” in Evans’ Theorem, since he calls a variety
“Schreier” if the nontrivial subalgebras of V-free algebras are V-free. He
explains his choice as follows:

There is a particular reason for inserting the word non-trivial in our definition
of Schreier variety. Without it we would be forced to classify the variety of
constant semigroups C as non-Schreier because any free semigroup Fk(C) in
this variety contains an idempotent element and this one-generator
subsemigroup is not F1(C). However, all non-trivial subsemigroups of Fk(C)
are free in C. What is worse, we would also have to classify the varieties Ap

as non-Schreier since again as a semigroup, Fk(Ap) contains a one-element
subsemigroup. This difficulty is avoided in groups, of course, by regarding
one-element groups as free groups on an empty set of generators.
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this variety contains an idempotent element and this one-generator
subsemigroup is not F1(C). However, all non-trivial subsemigroups of Fk(C)
are free in C.

What is worse, we would also have to classify the varieties Ap

as non-Schreier since again as a semigroup, Fk(Ap) contains a one-element
subsemigroup. This difficulty is avoided in groups, of course, by regarding
one-element groups as free groups on an empty set of generators.

Keith KearnesMichael KompatscherAndrew Moorhead Ágnes Szendrei Locally finite Schreier varieties 4 / 12



Evans’ warning about FV(0)

I put quotes around “Schreier” in Evans’ Theorem, since he calls a variety
“Schreier” if the nontrivial subalgebras of V-free algebras are V-free. He
explains his choice as follows:

There is a particular reason for inserting the word non-trivial in our definition
of Schreier variety. Without it we would be forced to classify the variety of
constant semigroups C as non-Schreier because any free semigroup Fk(C) in
this variety contains an idempotent element and this one-generator
subsemigroup is not F1(C). However, all non-trivial subsemigroups of Fk(C)
are free in C. What is worse, we would also have to classify the varieties Ap

as non-Schreier since again as a semigroup, Fk(Ap) contains a one-element
subsemigroup. This difficulty is avoided in groups, of course, by regarding
one-element groups as free groups on an empty set of generators.

Keith KearnesMichael KompatscherAndrew Moorhead Ágnes Szendrei Locally finite Schreier varieties 4 / 12



Evans’ warning, in more detail

If A ∈ V , call a unary term operation α(x) a pseudoconstant for A if
A |= α(x) ≈ α(y). Let PA be the subalgebra of A consisting of ranges of
pseudoconstant unary term operations. Let CA be the subalgebra of A
consisting of interpretations of constant terms. We always have CA ⊆ PA. If
CA ̸= ∅, then CA = PA, but it is possible to have CA = ∅ and PA ̸= ∅. If
A = FV(X) and A belongs to a Schreier variety, then CA and PA must be
free. But neither can be free of positive rank, so

PA ̸= ∅ ⇐⇒ CA ̸= ∅ ⇐⇒ CA = PA.

That is, the range of any pseudoconstant is the interpretation of a constant in a
Schreier variety.
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Main Theorem

Theorem. Assume that V is a nontrivial locally finite variety. If V has a
pseudoconstant, then assume that V also has a constant term. The following
are equivalent.

1 V is a Schreier variety.
2 V is a Nielsen variety.
3 Every finite algebra in V is 0, 1-minimal algebra in the sense of Tame

Congruence Theory.
4 V is generated by a single finite 0, 1-minimal of more than two elements.
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0, 1-minimal algebras

Definition. An algebra A is 0, 1-minimal (or permutational ) if every
nonconstant unary polynomial function of A is a permutation of A.

Theorem. (P. P. Pálfy, 1984) A finite algebra A is 0, 1-minimal if and only if

1 |A| ≤ 2,
2 A is polynomially equivalent to a G-set for some finite group G, or
3 A is polynomially equivalent to an F-vector space for some finite field F.
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Why local finiteness+Schreier implies 0, 1-minimality

Main Claim. Assume that V is locally finite and Schreier. If t(x1, . . . , xn) is
an n-ary V-term that depends on its first variable in V , then there is a V-term
s(x1, . . . , xn) such that

V |= s(t(x1, x2, . . . , xn), x2, . . . , xn) ≈ x1.

Justification.
Let F = FV(x1, . . . , xn) = FV(n) be the V-free algebra generated by the
finite set Xn := {x1, . . . , xn}. Necessarily t = tF(x1, . . . , xn) ∈ F . Let
S ≤ F be the subalgebra of F generated by Xn−1 := {x2, . . . , xn}. Since S
is generated by the subset Xn−1 of the free generating set Xn for F, S is free
in V over Xn−1. The fact that the term t(x1, . . . , xn) depends on its first
variable in V is equivalent to the statement that t /∈ S.
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continuation

Since t /∈ S = ⟨Xn−1⟩, the subalgebra T ≤ F generated by {t, x2, . . . , xn}
properly extends S, so

|FV(n − 1)| = |S| < |T| ≤ |F| = |FV(n)|.

Since T is a subalgebra of the V-free algebra F, T is free in V . Since the sizes of the
free algebras in a nontrivial locally finite variety strictly increase as as the rank of the
algebra increases, and T is a free algebra satisfying

|FV(n − 1)| < |T| ≤ |FV(n)|,

we derive that |T| = |F|. Since T ≤ F, we derive that T = F. Hence x1 ∈ F
belongs to the subalgebra T of F generated by {t, x2, . . . , xn}. This fact yields a
term s such that sF(t, x2, . . . , xn) = x1. The relation
sF(tF(x1, x2 . . . , xn), x2, . . . , xn) = x1, which holds among the free generators of
F, implies that the identity

s(t(x1, x2, . . . , xn), x2, . . . , xn) ≈ x1

holds throughout V . 2
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Next we explain why the Main Claim implies that every finite algebra in V is
0, 1-minimal. Choose finite A ∈ V . If p(x) is a nonconstant unary polynomial
of A, then there exists a term t(x1, . . . , xn) which depends on its first variable
in V and a tuple a = (a2, . . . , an) ∈ An−1 such that p(x) = tA(x, a).By the
Main Claim, there exists a term s(x1, . . . , xn) such that

V |= s(t(x1, x2, . . . , xn), x2, . . . , xn) ≈ x1.

From this we get sA(tA(x, a), a) = x, so p(x) = tA(x, a) is a left-invertible
self-map of the finite set A. The finiteness of A forces p(x) to be a
permutation of A, so every unary polynomial must be a constant or a
permutation of A. 2
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There is more

We have seen why any finite algebra in a locally finite Schreier variety must
be 0, 1-minimal. What is involved in proving the converse? Why is it the case
that if every finite algebra in a variety is 0, 1-minimal, then the variety is
Schreier?

Assume that every finite algebra in V is 0, 1-minimal. This means that each
algebra in V satisfies |A| ≤ 2, A is polynomially equivalent to a G-set, or A
is polynomially equivalent to a vector space.

Stage 1. Show that only one of these cases occurs in V . I.e.,

1 there is a finite group G, such that every finite algebra in V is
polynomially equivalent to a G-set, or

2 there is a finite field F, such that every finite algebra in V is polynomially
equivalent to an F-vector space.

Stage 2. Examine the structure of the free algebras in varieties of these types
and show that subalgebras of free algebras are free.
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Another (potential) unexpected appearance of TCT

With a slight variation in the argument of the Main Claim, one can prove

Claim. If V is a locally finite variety in which every (finitely generated)
projective algebra is free, then all finite algebras in V are E-minimal.

A finite algebra A is E-minimal in the sense of Tame Congruence Theory if
and only if it is α, β-minimal whenever α ≺ β in Con(A). Typical examples
include nilpotent semigroups, p-groups, or modules over finite local rings.

It would be interesting to prove the converse of this Claim: If V is a locally
finite variety in which every finite algebra in V is E-minimal, then every
projective V-algebra is free. To do this, we (probably) need to know more
about the structure of free algebras in varieties generated by E-minimal
algebras.
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