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Part of a larger project

Our project is to classify all minimal abelian varieties.

We have divided the project into pieces:

1 Show that every minimal variety is affine or strongly abelian.
(Paper will appear in IJAC.)

2 Classify all minimal affine varieties.
(A manuscript exists.)

3 Classify all minimal strongly abelian varieties of
bounded essential arity. (This talk. Manuscript exists.)

4 Classify all minimal strongly abelian varieties without bounding
essential arity. (We don’t know how to do this yet.)
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Quick definitions

Variety = class of models of a set of equations

Essential arity ε(V) = k means . . .

A is abelian if A× A has a congruence

A

A

�
�

�
��

�
�
�
��

A is strongly abelian if A× A also has a congruence

A

A

aaaaaaaaa
aaaaaaaaa
aq
q
q
q
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Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.

E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.

E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.

Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.

Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.

V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.

V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.

Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.

Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).

Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x,

r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y,

`(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A.

This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Examples of strongly abelian varieties

1 Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

2 The variety of semigroups axiomatized by xyz = xz.
Inflations of rectangular bands.

3 The variety of diagonal algebras, 〈A; d(x1, . . . , xn)〉.
V |= d(x, x, . . . , x) ≈ x and d diagonalizes itself:

V |= d

(
d

[
x11

.

.

.
x1n

]
, · · · , d

[
xn1

.

.

.
xnn

])
≈ d

[
x11

.

.

.
xnn

]

4 The variety of Jónsson–Tarski algebras.
Operations x⊗ y, `(x), r(x).
Identities `(x⊗ y) = x, r(x⊗ y) = y, `(x)⊗ r(x) = x.

Models code bijections A× A
⊗−−−⇀↽−−−
(`,r)

A. This variety is minimal.

Kearnes, Kiss, Szendrei Minimal Strongly Abelian Varieties 4 / 14



Today’s Theorem

Thm.
TFAE:

1 V is a minimal strongly abelian variety of bounded essential arity.
2 V is categorically equivalent to a minimal unary variety.
3 V is a categorically equivalent to either

1 the variety of sets, or
2 there is a simple monoid M with zero such that V is categorically

equivalent to the subvariety of the variety of M-sets that is axiomatized by
0(x) ≈ 0(y).
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Yesterday’s Theorem

Thm. (Kearnes-Kiss-Valeriote, Szendrei)
TFAE for locally finite varieties:

1 V is a minimal strongly abelian variety.

2 V is categorically equivalent to the variety of sets or the variety of
pointed sets.

So for Today’s Theorem we only care about varieties that are not locally finite.
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Hamiltonian varieties

Thm. (Kiss, Valeriote)
If V is strongly abelian and ε(V) <∞, then V is Hamiltonian. That is, any
subalgebra of any A ∈ V is a congruence class.

Something that can be extracted from their proof: V is strongly abelian +
Hamiltonian iff for every term t(x1, . . . , xn) there is a term dt(x1, . . . , xn) that
diagonalizes t:

V |= dt

t

x11
...

x1n

 , · · · , t
xn1

...
xnn

 ≈ t

x11
...

xnn



dt does not have to be idempotent, but it will be idempotent restricted to the
range of t on any model.
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A consequence of the Hamiltonian property

Thm.
Assume that V is minimal, Hamiltonian, and u(x) is a unary term such that
V 6|= u(x) ≈ u(y). There exist terms ρ1(x), . . . , ρk(x) and a term λ(x1, . . . , xk)
such that

V |= λ(u(ρ1(x)), . . . , u(ρk(x))) ≈ x. (*)

Proof sketch. Let F = FV(x) be the 1-generated free algebra. Let S = 〈u(F)〉.
If S 6= F, there is a proper congruence θ of F such that S is a θ-class. F/θ is a
nontrivial algebra in V on which u is constant. Contradicts hypotheses. But if
S = F, equation (*) must hold. 2

Same argument works if u = u(x, y) and u is assumed to depend on x in V . If
V is assumed to be strongly abelian, then

V |= λ(u(ρ1(x), y), . . . , u(ρk(x), y)) ≈ x.
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One term to diagonalize them all

Thm. If V is minimal and strongly abelian
variety with ε(V) = k <∞, then V has an
idempotent term that diagonalizes every term. d(x1, . . . , xk)

Proof outline.

1 It suffices to find a ‘surjective’ term T(x1, . . . , xk) with ε(T) = k. Then,
any term that diagonalizes it will work.

2 We look for T among λ’s appearing in

V |= λ(u(ρ1(x), y), . . . , u(ρm(x), y)) ≈ x (1)

where u(x1, . . . , xk) has essential arity ε(V) = k.
3 Assume ε(λ) < k for every such λ. Assemble terms from equations of

type (1) into a matrix equation L ◦M(x) ≈ x. Arrange so that
MA : Ak → Ak−1 is an equational encoding of k-tuples into
(k − 1)-tuples, with inverse LA : Ak−1 → Ak.

4 Derive a contradiction to ε(V) = k. 2
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2 We look for T among λ’s appearing in

V |= λ(u(ρ1(x), y), . . . , u(ρm(x), y)) ≈ x (1)

where u(x1, . . . , xk) has essential arity ε(V) = k.
3 Assume ε(λ) < k for every such λ. Assemble terms from equations of

type (1) into a matrix equation L ◦M(x) ≈ x.

Arrange so that
MA : Ak → Ak−1 is an equational encoding of k-tuples into
(k − 1)-tuples, with inverse LA : Ak−1 → Ak.

4 Derive a contradiction to ε(V) = k. 2
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A special form for term operations

Thm. If V is minimal and strongly abelian variety with ε(V) = k <∞,
diagonal term d, arbitrary term t(x), then for u(x) := t(x, x, . . . , x) we have

V |= t(x1, . . . , xk) ≈ d(u(xi1), . . . , u(xik)).

Proof. If d actually diagonalized t, then

V |= d(u(x1), . . . , u(xn)) ≈ d

t

x1
...

x1

 , · · · , t
xn

...
xn

 ≈ t

x1
...

xn

 2

In particular, the clone of V is generated by its monoid of unary terms and the
operation d.
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What can we get from a constant term?

Assume that V has a term 0 := 0(x) such that V |= 0(x) ≈ 0(y). Define
e(x) = d(x, 0, . . . , 0). Then

e(e(x)) ≈ d

d

x
...
0

 , · · · , d
0

...
0

 ≈ d

x
...
0

 ≈ e(x).

Also, for any t(x) = d(u(xi1), . . . , u(xik)) we have

et(x) ≈ d

d

u(xi1)
...

u(xik )

 , · · · , d
0

...
0

 ≈ d

u(xi1)
...
0

 , essentially unary.

The localization functor V 7→ e(V) : A 7→ 〈e(A); {et(x)}〉 is a categorical
equivalence from V to the essentially unary variety e(V).
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How do we get a constant term?

Case 1. Assume that the subalgebras FV(x) and FV(y) of FV(x, y) have nontrivial
intersection.

An intersection element can be represented as α(x) and β(y), so

V |= α(x) ≈ β(y) ≈ α(y).

We may choose 0(x) = α(x). 2

Case 2. Assume FV(x) ∩ FV(y) = ∅.

FV(x, y) �




�

	

�




�

	x y
Θ

W := FV(x, y)/Θ ∈ V will have
distinct singleton subalgebras,
p = x/Θ, q = y/Θ.
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Case 2 can’t happen

Let G = {p, q} ⊆W. 〈G〉 consists of all elements of the form
tW(Gm) as t(x) ranges over all terms.

But terms have special form, t(x1, . . . , xk) ≈ d(u(xi1), . . . , u(xik)).
Moreover, u(p) = p and u(q) = q for any unary u, hence 〈G〉
consists of all elements of the form dW(Gk) where d ranges over {d}.
This implies that

2 ≤ |〈G〉| ≤ 2k.

But we are only considering nonlocally finite minimal varieties. Such
varieties contain no nontrivial finite algebras. Case 2 cannot occur. Case 1
gives us a constant term. 2.
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An example

This is an example of a strongly abelian minimal variety of unbounded
essential arity.

Example

Let B be an infinite, homogeneous Boolean algebra. Let G = Aut(B). Define
an algebra structure on B from B and G by

B = 〈B; {γ(x) | γ ∈ G}, {x ∗a y | a ∈ B}〉

where b ∗a c := (a ∧ b) ∨ (a ∧ c).

V(B) is a minimal, strongly abelian variety of unbounded essential arity.

If {a1, . . . , an} is a partition of unity, then in B we have

(x ∗a1 (x2 ∗a2 (· · · (xn−1 ∗an−1 xn) · · · ))) = (a1 ∧ x1) ∨ · · · ∨ (an ∧ xn)
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