Minimal Strongly Abelian Varieties

Kearnes, Kiss, Szendrei

PALS 2020

Part of a larger project

Part of a larger project

Our project is to classify all minimal abelian varieties.

Part of a larger project

Our project is to classify all minimal abelian varieties.

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian.

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian.

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties.

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties.

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties. (A manuscript exists.)

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties. (A manuscript exists.)

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties. (A manuscript exists.)
(3) Classify all minimal strongly abelian varieties of bounded essential arity.

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties. (A manuscript exists.)
(3) Classify all minimal strongly abelian varieties of bounded essential arity.

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties. (A manuscript exists.)
(3 Classify all minimal strongly abelian varieties of bounded essential arity. (This talk.

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties. (A manuscript exists.)
(3) Classify all minimal strongly abelian varieties of bounded essential arity. (This talk. Manuscript exists.)

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties. (A manuscript exists.)
(3) Classify all minimal strongly abelian varieties of bounded essential arity. (This talk. Manuscript exists.)

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties. (A manuscript exists.)

- Classify all minimal strongly abelian varieties of bounded essential arity. (This talk. Manuscript exists.)
(9) Classify all minimal strongly abelian varieties without bounding essential arity.

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties. (A manuscript exists.)

- Classify all minimal strongly abelian varieties of bounded essential arity. (This talk. Manuscript exists.)
(9) Classify all minimal strongly abelian varieties without bounding essential arity.

Part of a larger project

Our project is to classify all minimal abelian varieties.
We have divided the project into pieces:
(1) Show that every minimal variety is affine or strongly abelian. (Paper will appear in IJAC.)
(2) Classify all minimal affine varieties. (A manuscript exists.)

- Classify all minimal strongly abelian varieties of bounded essential arity. (This talk. Manuscript exists.)
(9) Classify all minimal strongly abelian varieties without bounding essential arity. (We don't know how to do this yet.)

Quick definitions

Quick definitions

Variety $=$

Quick definitions

Variety $=$ class of models of a set of equations

Quick definitions

Variety $=$ class of models of a set of equations
Essential arity $\varepsilon(\mathcal{V})=k$ means \ldots

Quick definitions

Variety $=$ class of models of a set of equations
Essential arity $\varepsilon(\mathcal{V})=k$ means \ldots
\mathbb{A} is abelian if $\mathbb{A} \times \mathbb{A}$ has a congruence

Quick definitions

Variety $=$ class of models of a set of equations
Essential arity $\varepsilon(\mathcal{V})=k$ means \ldots
\mathbb{A} is abelian if $\mathbb{A} \times \mathbb{A}$ has a congruence

Quick definitions

Variety $=$ class of models of a set of equations
Essential arity $\varepsilon(\mathcal{V})=k$ means \ldots
\mathbb{A} is abelian if $\mathbb{A} \times \mathbb{A}$ has a congruence

Quick definitions

Variety $=$ class of models of a set of equations
Essential arity $\varepsilon(\mathcal{V})=k$ means \ldots
\mathbb{A} is abelian if $\mathbb{A} \times \mathbb{A}$ has a congruence

Quick definitions

Variety $=$ class of models of a set of equations
Essential arity $\varepsilon(\mathcal{V})=k$ means \ldots
\mathbb{A} is abelian if $\mathbb{A} \times \mathbb{A}$ has a congruence

\mathbb{A} is strongly abelian if $\mathbb{A} \times \mathbb{A}$ also has a congruence

Quick definitions

Variety $=$ class of models of a set of equations
Essential arity $\varepsilon(\mathcal{V})=k$ means \ldots
\mathbb{A} is abelian if $\mathbb{A} \times \mathbb{A}$ has a congruence

\mathbb{A} is strongly abelian if $\mathbb{A} \times \mathbb{A}$ also has a congruence

Quick definitions

Variety $=$ class of models of a set of equations
Essential arity $\varepsilon(\mathcal{V})=k$ means \ldots
\mathbb{A} is abelian if $\mathbb{A} \times \mathbb{A}$ has a congruence

\mathbb{A} is strongly abelian if $\mathbb{A} \times \mathbb{A}$ also has a congruence

Quick definitions

Variety $=$ class of models of a set of equations
Essential arity $\varepsilon(\mathcal{V})=k$ means \ldots
\mathbb{A} is abelian if $\mathbb{A} \times \mathbb{A}$ has a congruence

\mathbb{A} is strongly abelian if $\mathbb{A} \times \mathbb{A}$ also has a congruence

Examples of strongly abelian varieties

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$. $\mathcal{V} \models d(x, x, \ldots, x) \approx x$ and d diagonalizes itself:

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$. $\mathcal{V} \models d(x, x, \ldots, x) \approx x$ and d diagonalizes itself:

$$
\mathcal{V} \vDash d\left(d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 n}
\end{array}\right], \cdots, d\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$. $\mathcal{V} \models d(x, x, \ldots, x) \approx x$ and d diagonalizes itself:

$$
\mathcal{V} \vDash d\left(d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 n}
\end{array}\right], \cdots, d\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

(4) The variety of Jónsson-Tarski algebras.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$. $\mathcal{V} \models d(x, x, \ldots, x) \approx x$ and d diagonalizes itself:

$$
\mathcal{V} \vDash d\left(d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 n}
\end{array}\right], \cdots, d\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

(4) The variety of Jónsson-Tarski algebras.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$. $\mathcal{V} \models d(x, x, \ldots, x) \approx x$ and d diagonalizes itself:

$$
\mathcal{V} \vDash d\left(d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 n}
\end{array}\right], \cdots, d\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

(4) The variety of Jónsson-Tarski algebras. Operations $x \otimes y, \ell(x), r(x)$.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$. $\mathcal{V} \models d(x, x, \ldots, x) \approx x$ and d diagonalizes itself:

$$
\mathcal{V} \vDash d\left(d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 n}
\end{array}\right], \cdots, d\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

(4) The variety of Jónsson-Tarski algebras.

Operations $x \otimes y, \ell(x), r(x)$. Identities $\ell(x \otimes y)=x$,

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$. $\mathcal{V} \models d(x, x, \ldots, x) \approx x$ and d diagonalizes itself:

$$
\mathcal{V} \vDash d\left(d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 n}
\end{array}\right], \cdots, d\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

(4) The variety of Jónsson-Tarski algebras.

Operations $x \otimes y, \ell(x), r(x)$. Identities $\ell(x \otimes y)=x, r(x \otimes y)=y$,

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$. $\mathcal{V} \models d(x, x, \ldots, x) \approx x$ and d diagonalizes itself:

$$
\mathcal{V} \vDash d\left(d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 n}
\end{array}\right], \cdots, d\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

(4) The variety of Jónsson-Tarski algebras.

Operations $x \otimes y, \ell(x), r(x)$. Identities $\ell(x \otimes y)=x, r(x \otimes y)=y, \ell(x) \otimes r(x)=x$.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$. $\mathcal{V} \models d(x, x, \ldots, x) \approx x$ and d diagonalizes itself:

$$
\mathcal{V} \vDash d\left(d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 n}
\end{array}\right], \cdots, d\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

(4) The variety of Jónsson-Tarski algebras.

Operations $x \otimes y, \ell(x), r(x)$. Identities $\ell(x \otimes y)=x, r(x \otimes y)=y, \ell(x) \otimes r(x)=x$.
Models code bijections $A \times A \underset{(\ell, r)}{\stackrel{\otimes}{\rightleftharpoons}} A$.

Examples of strongly abelian varieties

(1) Any unary variety is strongly abelian.
E.g., the variety of M-sets for any monoid M.
(2) The variety of semigroups axiomatized by $x y z=x z$. Inflations of rectangular bands.
(3) The variety of diagonal algebras, $\left\langle A ; d\left(x_{1}, \ldots, x_{n}\right)\right\rangle$. $\mathcal{V} \models d(x, x, \ldots, x) \approx x$ and d diagonalizes itself:

$$
\mathcal{V} \vDash d\left(d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 n}
\end{array}\right], \cdots, d\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

(4) The variety of Jónsson-Tarski algebras.

Operations $x \otimes y, \ell(x), r(x)$. Identities $\ell(x \otimes y)=x, r(x \otimes y)=y, \ell(x) \otimes r(x)=x$.
Models code bijections $A \times A \underset{(\ell, r)}{\stackrel{\otimes}{\rightleftharpoons}} A$. This variety is minimal.

Today's Theorem

Today's Theorem

Thm.
TFAE:

Today's Theorem

Thm.

TFAE:
(1) \mathcal{V} is a minimal strongly abelian variety of bounded essential arity.

Today's Theorem

Thm.

TFAE:
(1) \mathcal{V} is a minimal strongly abelian variety of bounded essential arity.

Today's Theorem

Thm.

TFAE:

(1) \mathcal{V} is a minimal strongly abelian variety of bounded essential arity.
(2) \mathcal{V} is categorically equivalent to a minimal unary variety.

Today's Theorem

Thm.

TFAE:

(1) \mathcal{V} is a minimal strongly abelian variety of bounded essential arity.
(2) \mathcal{V} is categorically equivalent to a minimal unary variety.

Today's Theorem

Thm.

TFAE:

(1) \mathcal{V} is a minimal strongly abelian variety of bounded essential arity.
(2) \mathcal{V} is categorically equivalent to a minimal unary variety.
(3) \mathcal{V} is a categorically equivalent to either

Today's Theorem

Thm.

TFAE:

(1) \mathcal{V} is a minimal strongly abelian variety of bounded essential arity.
(2) \mathcal{V} is categorically equivalent to a minimal unary variety.
(3) \mathcal{V} is a categorically equivalent to either

Today's Theorem

Thm.

TFAE:

(1) \mathcal{V} is a minimal strongly abelian variety of bounded essential arity.
(2) \mathcal{V} is categorically equivalent to a minimal unary variety.
(\mathcal{V} is a categorically equivalent to either
(1) the variety of sets, or

Today's Theorem

Thm.

TFAE:

(1) \mathcal{V} is a minimal strongly abelian variety of bounded essential arity.
(2) \mathcal{V} is categorically equivalent to a minimal unary variety.
(\mathcal{V} is a categorically equivalent to either
(1) the variety of sets, or

Today’s Theorem

Thm.

TFAE:

(1) \mathcal{V} is a minimal strongly abelian variety of bounded essential arity.
(2) \mathcal{V} is categorically equivalent to a minimal unary variety.
(3) \mathcal{V} is a categorically equivalent to either
(1) the variety of sets, or
(2) there is a simple monoid M with zero

Today’s Theorem

Thm.

TFAE:

(1) \mathcal{V} is a minimal strongly abelian variety of bounded essential arity.
(2) \mathcal{V} is categorically equivalent to a minimal unary variety.
(3) \mathcal{V} is a categorically equivalent to either
(1) the variety of sets, or
(2) there is a simple monoid M with zero

Today’s Theorem

Thm.

TFAE:

(1) \mathcal{V} is a minimal strongly abelian variety of bounded essential arity.
(2) \mathcal{V} is categorically equivalent to a minimal unary variety.
(3) \mathcal{V} is a categorically equivalent to either
(1) the variety of sets, or
(2) there is a simple monoid M with zero such that \mathcal{V} is categorically equivalent to the subvariety of the variety of M-sets that is axiomatized by $0(x) \approx 0(y)$.

Yesterday's Theorem

Yesterday's Theorem

Thm. (Kearnes-Kiss-Valeriote, Szendrei)
TFAE for locally finite varieties:

Yesterday's Theorem

Thm. (Kearnes-Kiss-Valeriote, Szendrei)
 TFAE for locally finite varieties:

(1) \mathcal{V} is a minimal strongly abelian variety.

Yesterday's Theorem

Thm. (Kearnes-Kiss-Valeriote, Szendrei)
 TFAE for locally finite varieties:

(1) \mathcal{V} is a minimal strongly abelian variety.

Yesterday's Theorem

Thm. (Kearnes-Kiss-Valeriote, Szendrei)
TFAE for locally finite varieties:
(1) \mathcal{V} is a minimal strongly abelian variety.
(2) \mathcal{V} is categorically equivalent to the variety of sets or the variety of pointed sets.

Yesterday's Theorem

Thm. (Kearnes-Kiss-Valeriote, Szendrei)
TFAE for locally finite varieties:
(1) \mathcal{V} is a minimal strongly abelian variety.
(2) \mathcal{V} is categorically equivalent to the variety of sets or the variety of pointed sets.

Yesterday's Theorem

Thm. (Kearnes-Kiss-Valeriote, Szendrei)
TFAE for locally finite varieties:
(1) \mathcal{V} is a minimal strongly abelian variety.
(2) \mathcal{V} is categorically equivalent to the variety of sets or the variety of pointed sets.

So for Today's Theorem we only care about varieties that are not locally finite.

Hamiltonian varieties

Hamiltonian varieties

Thm. (Kiss, Valeriote)

Hamiltonian varieties

Thm. (Kiss, Valeriote)
If \mathcal{V} is strongly abelian and $\varepsilon(\mathcal{V})<\infty$, then \mathcal{V} is Hamiltonian.

Hamiltonian varieties

Thm. (Kiss, Valeriote)
If \mathcal{V} is strongly abelian and $\varepsilon(\mathcal{V})<\infty$, then \mathcal{V} is Hamiltonian. That is, any subalgebra of any $\mathbb{A} \in \mathcal{V}$ is a congruence class.

Hamiltonian varieties

Thm. (Kiss, Valeriote)
If \mathcal{V} is strongly abelian and $\varepsilon(\mathcal{V})<\infty$, then \mathcal{V} is Hamiltonian. That is, any subalgebra of any $\mathbb{A} \in \mathcal{V}$ is a congruence class.

Something that can be extracted from their proof:

Hamiltonian varieties

Thm. (Kiss, Valeriote)
If \mathcal{V} is strongly abelian and $\varepsilon(\mathcal{V})<\infty$, then \mathcal{V} is Hamiltonian. That is, any subalgebra of any $\mathbb{A} \in \mathcal{V}$ is a congruence class.

Something that can be extracted from their proof: \mathcal{V} is strongly abelian + Hamiltonian iff

Hamiltonian varieties

Thm. (Kiss, Valeriote)
If \mathcal{V} is strongly abelian and $\varepsilon(\mathcal{V})<\infty$, then \mathcal{V} is Hamiltonian. That is, any subalgebra of any $\mathbb{A} \in \mathcal{V}$ is a congruence class.

Something that can be extracted from their proof: \mathcal{V} is strongly abelian + Hamiltonian iff for every term $t\left(x_{1}, \ldots, x_{n}\right)$ there is a term $d_{t}\left(x_{1}, \ldots, x_{n}\right)$ that diagonalizes t :

Hamiltonian varieties

Thm. (Kiss, Valeriote)
If \mathcal{V} is strongly abelian and $\varepsilon(\mathcal{V})<\infty$, then \mathcal{V} is Hamiltonian. That is, any subalgebra of any $\mathbb{A} \in \mathcal{V}$ is a congruence class.

Something that can be extracted from their proof: \mathcal{V} is strongly abelian + Hamiltonian iff for every term $t\left(x_{1}, \ldots, x_{n}\right)$ there is a term $d_{t}\left(x_{1}, \ldots, x_{n}\right)$ that diagonalizes t :

$$
\mathcal{V} \vDash d_{t}\left(t\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 n}
\end{array}\right], \cdots, t\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]\right) \approx t\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

Hamiltonian varieties

Thm. (Kiss, Valeriote)
If \mathcal{V} is strongly abelian and $\varepsilon(\mathcal{V})<\infty$, then \mathcal{V} is Hamiltonian. That is, any subalgebra of any $\mathbb{A} \in \mathcal{V}$ is a congruence class.

Something that can be extracted from their proof: \mathcal{V} is strongly abelian + Hamiltonian iff for every term $t\left(x_{1}, \ldots, x_{n}\right)$ there is a term $d_{t}\left(x_{1}, \ldots, x_{n}\right)$ that diagonalizes t :

$$
\mathcal{V} \vDash d_{t}\left(t\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 n}
\end{array}\right], \cdots, t\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]\right) \approx t\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

d_{t} does not have to be idempotent, but it will be idempotent restricted to the range of t on any model.

A consequence of the Hamiltonian property

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$.

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x \tag{*}
\end{equation*}
$$

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x . \tag{*}
\end{equation*}
$$

Proof sketch. Let $\mathbb{F}=\mathbb{F}_{\mathcal{V}}(x)$ be the 1-generated free algebra.

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \models u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x . \tag{*}
\end{equation*}
$$

Proof sketch. Let $\mathbb{F}=\mathbb{F}_{\mathcal{V}}(x)$ be the 1-generated free algebra. Let $S=\langle u(F)\rangle$.

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x . \tag{*}
\end{equation*}
$$

Proof sketch. Let $\mathbb{F}=\mathbb{F}_{\mathcal{V}}(x)$ be the 1 -generated free algebra. Let $S=\langle u(F)\rangle$. If $S \neq F$, there is a proper congruence θ of \mathbb{F} such that S is a θ-class.

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x \tag{*}
\end{equation*}
$$

Proof sketch. Let $\mathbb{F}=\mathbb{F}_{\mathcal{V}}(x)$ be the 1-generated free algebra. Let $S=\langle u(F)\rangle$. If $S \neq F$, there is a proper congruence θ of \mathbb{F} such that S is a θ-class. \mathbb{F} / θ is a nontrivial algebra in \mathcal{V} on which u is constant.

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x \tag{*}
\end{equation*}
$$

Proof sketch. Let $\mathbb{F}=\mathbb{F}_{\mathcal{V}}(x)$ be the 1-generated free algebra. Let $S=\langle u(F)\rangle$. If $S \neq F$, there is a proper congruence θ of \mathbb{F} such that S is a θ-class. \mathbb{F} / θ is a nontrivial algebra in \mathcal{V} on which u is constant. Contradicts hypotheses.

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x \tag{*}
\end{equation*}
$$

Proof sketch. Let $\mathbb{F}=\mathbb{F}_{\mathcal{V}}(x)$ be the 1-generated free algebra. Let $S=\langle u(F)\rangle$. If $S \neq F$, there is a proper congruence θ of \mathbb{F} such that S is a θ-class. \mathbb{F} / θ is a nontrivial algebra in \mathcal{V} on which u is constant. Contradicts hypotheses. But if $S=F$, equation (*) must hold. \square

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x \tag{*}
\end{equation*}
$$

Proof sketch. Let $\mathbb{F}=\mathbb{F}_{\mathcal{V}}(x)$ be the 1-generated free algebra. Let $S=\langle u(F)\rangle$. If $S \neq F$, there is a proper congruence θ of \mathbb{F} such that S is a θ-class. \mathbb{F} / θ is a nontrivial algebra in \mathcal{V} on which u is constant. Contradicts hypotheses. But if $S=F$, equation (*) must hold. \square

Same argument works if $u=u(x, \bar{y})$

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x \tag{*}
\end{equation*}
$$

Proof sketch. Let $\mathbb{F}=\mathbb{F}_{\mathcal{V}}(x)$ be the 1-generated free algebra. Let $S=\langle u(F)\rangle$. If $S \neq F$, there is a proper congruence θ of \mathbb{F} such that S is a θ-class. \mathbb{F} / θ is a nontrivial algebra in \mathcal{V} on which u is constant. Contradicts hypotheses. But if $S=F$, equation $\left({ }^{*}\right)$ must hold. \square

Same argument works if $u=u(x, \bar{y})$ and u is assumed to depend on x in \mathcal{V}.

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x \tag{*}
\end{equation*}
$$

Proof sketch. Let $\mathbb{F}=\mathbb{F}_{\mathcal{V}}(x)$ be the 1-generated free algebra. Let $S=\langle u(F)\rangle$. If $S \neq F$, there is a proper congruence θ of \mathbb{F} such that S is a θ-class. \mathbb{F} / θ is a nontrivial algebra in \mathcal{V} on which u is constant. Contradicts hypotheses. But if $S=F$, equation (*) must hold. \square

Same argument works if $u=u(x, \bar{y})$ and u is assumed to depend on x in \mathcal{V}. If \mathcal{V} is assumed to be strongly abelian, then

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x . \tag{*}
\end{equation*}
$$

Proof sketch. Let $\mathbb{F}=\mathbb{F}_{\mathcal{V}}(x)$ be the 1-generated free algebra. Let $S=\langle u(F)\rangle$. If $S \neq F$, there is a proper congruence θ of \mathbb{F} such that S is a θ-class. \mathbb{F} / θ is a nontrivial algebra in \mathcal{V} on which u is constant. Contradicts hypotheses. But if $S=F$, equation (*) must hold. \square

Same argument works if $u=u(x, \bar{y})$ and u is assumed to depend on x in \mathcal{V}. If \mathcal{V} is assumed to be strongly abelian, then

$$
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x), \bar{y}\right), \ldots, u\left(\rho_{k}(x), \bar{y}\right)\right) \approx x
$$

A consequence of the Hamiltonian property

Thm.

Assume that \mathcal{V} is minimal, Hamiltonian, and $u(x)$ is a unary term such that $\mathcal{V} \not \vDash u(x) \approx u(y)$. There exist terms $\rho_{1}(x), \ldots, \rho_{k}(x)$ and a term $\lambda\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x)\right), \ldots, u\left(\rho_{k}(x)\right)\right) \approx x . \tag{*}
\end{equation*}
$$

Proof sketch. Let $\mathbb{F}=\mathbb{F}_{\mathcal{V}}(x)$ be the 1-generated free algebra. Let $S=\langle u(F)\rangle$. If $S \neq F$, there is a proper congruence θ of \mathbb{F} such that S is a θ-class. \mathbb{F} / θ is a nontrivial algebra in \mathcal{V} on which u is constant. Contradicts hypotheses. But if $S=F$, equation (*) must hold. \square

Same argument works if $u=u(x, \bar{y})$ and u is assumed to depend on x in \mathcal{V}. If \mathcal{V} is assumed to be strongly abelian, then

$$
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x), \bar{y}\right), \ldots, u\left(\rho_{k}(x), \bar{y}\right)\right) \approx x
$$

One term to diagonalize them all

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$,

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.
C We look for T among λ 's appearing in

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.
C We look for T among λ 's appearing in

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.
(2) We look for T among λ 's appearing in

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x), \bar{y}\right), \ldots, u\left(\rho_{m}(x), \bar{y}\right)\right) \approx x \tag{1}
\end{equation*}
$$

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.
(2) We look for T among λ 's appearing in

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x), \bar{y}\right), \ldots, u\left(\rho_{m}(x), \bar{y}\right)\right) \approx x \tag{1}
\end{equation*}
$$

where $u\left(x_{1}, \ldots, x_{k}\right)$ has essential arity $\varepsilon(\mathcal{V})=k$.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.
(2) We look for T among λ 's appearing in

$$
\begin{equation*}
\mathcal{V} \vDash \lambda\left(u\left(\rho_{1}(x), \bar{y}\right), \ldots, u\left(\rho_{m}(x), \bar{y}\right)\right) \approx x \tag{1}
\end{equation*}
$$

where $u\left(x_{1}, \ldots, x_{k}\right)$ has essential arity $\varepsilon(\mathcal{V})=k$.
(3) Assume $\varepsilon(\lambda)<k$ for every such λ.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.
(2) We look for T among λ 's appearing in

$$
\begin{equation*}
\mathcal{V} \vDash \lambda\left(u\left(\rho_{1}(x), \bar{y}\right), \ldots, u\left(\rho_{m}(x), \bar{y}\right)\right) \approx x \tag{1}
\end{equation*}
$$

where $u\left(x_{1}, \ldots, x_{k}\right)$ has essential arity $\varepsilon(\mathcal{V})=k$.
(3) Assume $\varepsilon(\lambda)<k$ for every such λ.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.
(2) We look for T among λ 's appearing in

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x), \bar{y}\right), \ldots, u\left(\rho_{m}(x), \bar{y}\right)\right) \approx x \tag{1}
\end{equation*}
$$

where $u\left(x_{1}, \ldots, x_{k}\right)$ has essential arity $\varepsilon(\mathcal{V})=k$.
(3) Assume $\varepsilon(\lambda)<k$ for every such λ. Assemble terms from equations of type (1) into a matrix equation $\mathcal{L} \circ \mathcal{M}(\bar{x}) \approx \bar{x}$.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.
(2) We look for T among λ 's appearing in

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x), \bar{y}\right), \ldots, u\left(\rho_{m}(x), \bar{y}\right)\right) \approx x \tag{1}
\end{equation*}
$$

where $u\left(x_{1}, \ldots, x_{k}\right)$ has essential arity $\varepsilon(\mathcal{V})=k$.
(3) Assume $\varepsilon(\lambda)<k$ for every such λ. Assemble terms from equations of type (1) into a matrix equation $\mathcal{L} \circ \mathcal{M}(\bar{x}) \approx \bar{x}$. Arrange so that $\mathcal{M}^{\mathbb{A}}: A^{k} \rightarrow A^{k-1}$ is an equational encoding of k-tuples into $(k-1)$-tuples, with inverse $\mathcal{L}^{\mathbb{A}}: A^{k-1} \rightarrow A^{k}$.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.
(2) We look for T among λ 's appearing in

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x), \bar{y}\right), \ldots, u\left(\rho_{m}(x), \bar{y}\right)\right) \approx x \tag{1}
\end{equation*}
$$

where $u\left(x_{1}, \ldots, x_{k}\right)$ has essential arity $\varepsilon(\mathcal{V})=k$.
(3) Assume $\varepsilon(\lambda)<k$ for every such λ. Assemble terms from equations of type (1) into a matrix equation $\mathcal{L} \circ \mathcal{M}(\bar{x}) \approx \bar{x}$. Arrange so that $\mathcal{M}^{\mathbb{A}}: A^{k} \rightarrow A^{k-1}$ is an equational encoding of k-tuples into $(k-1)$-tuples, with inverse $\mathcal{L}^{\mathbb{A}}: A^{k-1} \rightarrow A^{k}$.
(1) Derive a contradiction to $\varepsilon(\mathcal{V})=k$.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.
(2) We look for T among λ 's appearing in

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x), \bar{y}\right), \ldots, u\left(\rho_{m}(x), \bar{y}\right)\right) \approx x \tag{1}
\end{equation*}
$$

where $u\left(x_{1}, \ldots, x_{k}\right)$ has essential arity $\varepsilon(\mathcal{V})=k$.
(3) Assume $\varepsilon(\lambda)<k$ for every such λ. Assemble terms from equations of type (1) into a matrix equation $\mathcal{L} \circ \mathcal{M}(\bar{x}) \approx \bar{x}$. Arrange so that $\mathcal{M}^{\mathbb{A}}: A^{k} \rightarrow A^{k-1}$ is an equational encoding of k-tuples into $(k-1)$-tuples, with inverse $\mathcal{L}^{\mathbb{A}}: A^{k-1} \rightarrow A^{k}$.
(1) Derive a contradiction to $\varepsilon(\mathcal{V})=k$.

One term to diagonalize them all

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, then \mathcal{V} has an idempotent term that diagonalizes every term.

Proof outline.
(1) It suffices to find a 'surjective' term $T\left(x_{1}, \ldots, x_{k}\right)$ with $\varepsilon(T)=k$. Then, any term that diagonalizes it will work.
(2) We look for T among λ 's appearing in

$$
\begin{equation*}
\mathcal{V} \models \lambda\left(u\left(\rho_{1}(x), \bar{y}\right), \ldots, u\left(\rho_{m}(x), \bar{y}\right)\right) \approx x \tag{1}
\end{equation*}
$$

where $u\left(x_{1}, \ldots, x_{k}\right)$ has essential arity $\varepsilon(\mathcal{V})=k$.
(3) Assume $\varepsilon(\lambda)<k$ for every such λ. Assemble terms from equations of type (1) into a matrix equation $\mathcal{L} \circ \mathcal{M}(\bar{x}) \approx \bar{x}$. Arrange so that $\mathcal{M}^{\mathbb{A}}: A^{k} \rightarrow A^{k-1}$ is an equational encoding of k-tuples into $(k-1)$-tuples, with inverse $\mathcal{L}^{\mathbb{A}}: A^{k-1} \rightarrow A^{k}$.
(9) Derive a contradiction to $\varepsilon(\mathcal{V})=k$.

A special form for term operations

A special form for term operations

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$,

A special form for term operations

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, diagonal term d,

A special form for term operations

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, diagonal term d, arbitrary term $t(\bar{x})$,

A special form for term operations

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, diagonal term d, arbitrary term $t(\bar{x})$, then for $u(x):=t(x, x, \ldots, x)$ we have

A special form for term operations

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, diagonal term d, arbitrary term $t(\bar{x})$, then for $u(x):=t(x, x, \ldots, x)$ we have

$$
\mathcal{V} \models t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right) .
$$

A special form for term operations

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, diagonal term d, arbitrary term $t(\bar{x})$, then for $u(x):=t(x, x, \ldots, x)$ we have

$$
\mathcal{V} \models t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right) .
$$

Proof. If d actually diagonalized t, then

A special form for term operations

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, diagonal term d, arbitrary term $t(\bar{x})$, then for $u(x):=t(x, x, \ldots, x)$ we have

$$
\mathcal{V} \models t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right) .
$$

Proof. If d actually diagonalized t, then

$$
\mathcal{V} \models d\left(u\left(x_{1}\right), \ldots, u\left(x_{n}\right)\right) \approx d\left(t\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{1}
\end{array}\right], \cdots, t\left[\begin{array}{c}
x_{n} \\
\vdots \\
x_{n}
\end{array}\right]\right) \approx t\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A special form for term operations

Thm. If \mathcal{V} is minimal and strongly abelian variety with $\varepsilon(\mathcal{V})=k<\infty$, diagonal term d, arbitrary term $t(\bar{x})$, then for $u(x):=t(x, x, \ldots, x)$ we have

$$
\mathcal{V} \models t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right) .
$$

Proof. If d actually diagonalized t, then

$$
\mathcal{V} \vDash d\left(u\left(x_{1}\right), \ldots, u\left(x_{n}\right)\right) \approx d\left(t\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{1}
\end{array}\right], \cdots, t\left[\begin{array}{c}
x_{n} \\
\vdots \\
x_{n}
\end{array}\right]\right) \approx t\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

In particular, the clone of \mathcal{V} is generated by its monoid of unary terms and the operation d.

What can we get from a constant term?

What can we get from a constant term?

Assume that \mathcal{V} has a term $0:=0(x)$ such that $\mathcal{V} \models 0(x) \approx 0(y)$.

What can we get from a constant term?

Assume that \mathcal{V} has a term $0:=0(x)$ such that $\mathcal{V} \models 0(x) \approx 0(y)$. Define $e(x)=d(x, 0, \ldots, 0)$.

What can we get from a constant term?

Assume that \mathcal{V} has a term $0:=0(x)$ such that $\mathcal{V} \models 0(x) \approx 0(y)$. Define $e(x)=d(x, 0, \ldots, 0)$. Then

What can we get from a constant term?

Assume that \mathcal{V} has a term $0:=0(x)$ such that $\mathcal{V} \models 0(x) \approx 0(y)$. Define $e(x)=d(x, 0, \ldots, 0)$. Then

$$
e(e(x)) \approx d\left(d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right], \cdots, d\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right] \approx e(x) .
$$

What can we get from a constant term?

Assume that \mathcal{V} has a term $0:=0(x)$ such that $\mathcal{V} \models 0(x) \approx 0(y)$. Define $e(x)=d(x, 0, \ldots, 0)$. Then

$$
e(e(x)) \approx d\left(d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right], \cdots, d\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right] \approx e(x) .
$$

Also, for any $t(\bar{x})=d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$ we have

What can we get from a constant term?

Assume that \mathcal{V} has a term $0:=0(x)$ such that $\mathcal{V} \models 0(x) \approx 0(y)$. Define $e(x)=d(x, 0, \ldots, 0)$. Then

$$
e(e(x)) \approx d\left(d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right], \cdots, d\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right] \approx e(x) .
$$

Also, for any $t(\bar{x})=d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$ we have

$$
e t(\bar{x}) \approx
$$

What can we get from a constant term?

Assume that \mathcal{V} has a term $0:=0(x)$ such that $\mathcal{V} \models 0(x) \approx 0(y)$. Define $e(x)=d(x, 0, \ldots, 0)$. Then

$$
e(e(x)) \approx d\left(d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right], \cdots, d\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right] \approx e(x) .
$$

Also, for any $t(\bar{x})=d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$ we have

$$
e t(\bar{x}) \approx d\left(d\left[\begin{array}{c}
u\left(x_{i_{1}}\right) \\
\vdots \\
u\left(x_{i_{k}}\right)
\end{array}\right], \cdots, d\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right) \approx
$$

What can we get from a constant term?

Assume that \mathcal{V} has a term $0:=0(x)$ such that $\mathcal{V} \models 0(x) \approx 0(y)$. Define $e(x)=d(x, 0, \ldots, 0)$. Then

$$
e(e(x)) \approx d\left(d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right], \cdots, d\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right] \approx e(x) .
$$

Also, for any $t(\bar{x})=d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$ we have

$$
e t(\bar{x}) \approx d\left(d\left[\begin{array}{c}
u\left(x_{i_{1}}\right) \\
\vdots \\
u\left(x_{i_{k}}\right)
\end{array}\right], \cdots, d\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right) \approx d\left[\begin{array}{c}
u\left(x_{i_{1}}\right) \\
\vdots \\
0
\end{array}\right], \text { essentially unary. }
$$

What can we get from a constant term?

Assume that \mathcal{V} has a term $0:=0(x)$ such that $\mathcal{V} \models 0(x) \approx 0(y)$. Define $e(x)=d(x, 0, \ldots, 0)$. Then

$$
e(e(x)) \approx d\left(d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right], \cdots, d\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right] \approx e(x) .
$$

Also, for any $t(\bar{x})=d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$ we have

$$
e t(\bar{x}) \approx d\left(d\left[\begin{array}{c}
u\left(x_{i_{1}}\right) \\
\vdots \\
u\left(x_{i_{k}}\right)
\end{array}\right], \cdots, d\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right) \approx d\left[\begin{array}{c}
u\left(x_{i_{1}}\right) \\
\vdots \\
0
\end{array}\right], \text { essentially unary. }
$$

The localization functor $\mathcal{V} \mapsto e(\mathcal{V}): \mathbb{A} \mapsto\langle e(A) ;\{e t(\bar{x})\}\rangle$

What can we get from a constant term?

Assume that \mathcal{V} has a term $0:=0(x)$ such that $\mathcal{V} \models 0(x) \approx 0(y)$. Define $e(x)=d(x, 0, \ldots, 0)$. Then

$$
e(e(x)) \approx d\left(d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right], \cdots, d\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right) \approx d\left[\begin{array}{c}
x \\
\vdots \\
0
\end{array}\right] \approx e(x) .
$$

Also, for any $t(\bar{x})=d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$ we have

$$
e t(\bar{x}) \approx d\left(d\left[\begin{array}{c}
u\left(x_{i_{1}}\right) \\
\vdots \\
u\left(x_{i_{k}}\right)
\end{array}\right], \cdots, d\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right) \approx d\left[\begin{array}{c}
u\left(x_{i_{1}}\right) \\
\vdots \\
0
\end{array}\right], \text { essentially unary. }
$$

The localization functor $\mathcal{V} \mapsto e(\mathcal{V}): \mathbb{A} \mapsto\langle e(A) ;\{e t(\bar{x})\}\rangle$ is a categorical equivalence from \mathcal{V} to the essentially unary variety $e(\mathcal{V})$.

How do we get a constant term?

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$,

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y)
$$

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y) \approx \alpha(y) .
$$

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y) \approx \alpha(y) .
$$

We may choose $0(x)=\alpha(x)$.

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y) \approx \alpha(y) .
$$

We may choose $0(x)=\alpha(x)$.

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y) \approx \alpha(y) .
$$

We may choose $0(x)=\alpha(x)$.
Case 2. Assume $\mathbb{F}_{\mathcal{V}}(x) \cap \mathbb{F}_{\mathcal{V}}(y)=\emptyset$.

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y) \approx \alpha(y)
$$

We may choose $0(x)=\alpha(x)$. \square

$$
\mathbb{F}_{\mathcal{V}}(x, y)
$$

Case 2. Assume $\mathbb{F}_{\mathcal{V}}(x) \cap \mathbb{F}_{\mathcal{V}}(y)=\emptyset$.

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y) \approx \alpha(y)
$$

We may choose $0(x)=\alpha(x) . \square$

Case 2. Assume $\mathbb{F}_{\mathcal{V}}(x) \cap \mathbb{F}_{\mathcal{V}}(y)=\emptyset$. \square

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y) \approx \alpha(y)
$$

We may choose $0(x)=\alpha(x) . \square$

Case 2. Assume $\mathbb{F}_{\mathcal{V}}(x) \cap \mathbb{F}_{\mathcal{V}}(y)=\emptyset$.

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y) \approx \alpha(y)
$$

We may choose $0(x)=\alpha(x) . \square$

Case 2. Assume $\mathbb{F}_{\mathcal{V}}(x) \cap \mathbb{F}_{\mathcal{V}}(y)=\emptyset$.

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y) \approx \alpha(y)
$$

We may choose $0(x)=\alpha(x)$. \square
Case 2. Assume $\mathbb{F}_{\mathcal{V}}(x) \cap \mathbb{F}_{\mathcal{V}}(y)=\emptyset$.

$$
\mathbb{W}:=\mathbb{F}_{\mathcal{V}}(x, y) / \Theta \in \mathcal{V}
$$

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y) \approx \alpha(y) .
$$

We may choose $0(x)=\alpha(x)$. \square
Case 2. Assume $\mathbb{F}_{\mathcal{V}}(x) \cap \mathbb{F}_{\mathcal{V}}(y)=\emptyset$.
$\mathbb{W}:=\mathbb{F}_{\mathcal{V}}(x, y) / \Theta \in \mathcal{V}$ will have distinct singleton subalgebras,

How do we get a constant term?

Case 1. Assume that the subalgebras $\mathbb{F}_{\mathcal{V}}(x)$ and $\mathbb{F}_{\mathcal{V}}(y)$ of $\mathbb{F}_{\mathcal{V}}(x, y)$ have nontrivial intersection.

An intersection element can be represented as $\alpha(x)$ and $\beta(y)$, so

$$
\mathcal{V} \models \alpha(x) \approx \beta(y) \approx \alpha(y)
$$

We may choose $0(x)=\alpha(x)$. \square
Case 2. Assume $\mathbb{F}_{\mathcal{V}}(x) \cap \mathbb{F}_{\mathcal{V}}(y)=\emptyset$.
$\mathbb{W}:=\mathbb{F}_{\mathcal{V}}(x, y) / \Theta \in \mathcal{V}$ will have distinct singleton subalgebras,
$p=x / \Theta, q=y / \Theta$.

Case 2 can't happen

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W}$.

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form $t^{\mathbb{W}}\left(G^{m}\right)$ as $t(\bar{x})$ ranges over all terms.

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form $t^{\mathbb{W}}\left(G^{m}\right)$ as $t(\bar{x})$ ranges over all terms.

But terms have special form,

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form $t^{\mathbb{W}}\left(G^{m}\right)$ as $t(\bar{x})$ ranges over all terms.

But terms have special form, $t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$.

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form $t^{\mathbb{W}}\left(G^{m}\right)$ as $t(\bar{x})$ ranges over all terms.

But terms have special form, $t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$. Moreover, $u(p)=p$ and $u(q)=q$ for any unary u,

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form $t^{\mathbb{W}}\left(G^{m}\right)$ as $t(\bar{x})$ ranges over all terms.

But terms have special form, $t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$. Moreover, $u(p)=p$ and $u(q)=q$ for any unary u, hence $\langle G\rangle$ consists of all elements of the form $d^{\mathbb{W}}\left(G^{k}\right)$

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form $t^{\mathbb{W}}\left(G^{m}\right)$ as $t(\bar{x})$ ranges over all terms.

But terms have special form, $t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$.
Moreover, $u(p)=p$ and $u(q)=q$ for any unary u, hence $\langle G\rangle$ consists of all elements of the form $d^{\mathbb{W}}\left(G^{k}\right)$ where d ranges over $\{d\}$.

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form $t^{\mathbb{W}}\left(G^{m}\right)$ as $t(\bar{x})$ ranges over all terms.

But terms have special form, $t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$.
Moreover, $u(p)=p$ and $u(q)=q$ for any unary u, hence $\langle G\rangle$ consists of all elements of the form $d^{\mathbb{W}}\left(G^{k}\right)$ where d ranges over $\{d\}$. This implies that

$$
2 \leq|\langle G\rangle| \leq 2^{k} .
$$

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form $t^{\mathbb{W}}\left(G^{m}\right)$ as $t(\bar{x})$ ranges over all terms.

But terms have special form, $t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$.
Moreover, $u(p)=p$ and $u(q)=q$ for any unary u, hence $\langle G\rangle$ consists of all elements of the form $d^{\mathbb{W}}\left(G^{k}\right)$ where d ranges over $\{d\}$. This implies that

$$
2 \leq|\langle G\rangle| \leq 2^{k}
$$

But we are only considering nonlocally finite minimal varieties.

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form $t^{\mathbb{W}}\left(G^{m}\right)$ as $t(\bar{x})$ ranges over all terms.

But terms have special form, $t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$.
Moreover, $u(p)=p$ and $u(q)=q$ for any unary u, hence $\langle G\rangle$ consists of all elements of the form $d^{\mathbb{W}}\left(G^{k}\right)$ where d ranges over $\{d\}$. This implies that

$$
2 \leq|\langle G\rangle| \leq 2^{k}
$$

But we are only considering nonlocally finite minimal varieties. Such varieties contain no nontrivial finite algebras.

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form $t^{\mathbb{W}}\left(G^{m}\right)$ as $t(\bar{x})$ ranges over all terms.

But terms have special form, $t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$.
Moreover, $u(p)=p$ and $u(q)=q$ for any unary u, hence $\langle G\rangle$ consists of all elements of the form $d^{\mathbb{W}}\left(G^{k}\right)$ where d ranges over $\{d\}$. This implies that

$$
2 \leq|\langle G\rangle| \leq 2^{k} .
$$

But we are only considering nonlocally finite minimal varieties. Such varieties contain no nontrivial finite algebras. Case 2 cannot occur.

Case 2 can't happen

Let $G=\{p, q\} \subseteq \mathbb{W} .\langle G\rangle$ consists of all elements of the form $t^{\mathbb{W}}\left(G^{m}\right)$ as $t(\bar{x})$ ranges over all terms.

But terms have special form, $t\left(x_{1}, \ldots, x_{k}\right) \approx d\left(u\left(x_{i_{1}}\right), \ldots, u\left(x_{i_{k}}\right)\right)$.
Moreover, $u(p)=p$ and $u(q)=q$ for any unary u, hence $\langle G\rangle$ consists of all elements of the form $d^{\mathbb{W}}\left(G^{k}\right)$ where d ranges over $\{d\}$. This implies that

$$
2 \leq|\langle G\rangle| \leq 2^{k} .
$$

But we are only considering nonlocally finite minimal varieties. Such varieties contain no nontrivial finite algebras. Case 2 cannot occur. Case 1 gives us a constant term. \square.

An example

An example

This is an example of a strongly abelian minimal variety of unbounded essential arity.

An example

This is an example of a strongly abelian minimal variety of unbounded essential arity.

Example

Let \mathbb{B} be an infinite, homogeneous Boolean algebra.

An example

This is an example of a strongly abelian minimal variety of unbounded essential arity.

Example

Let \mathbb{B} be an infinite, homogeneous Boolean algebra.

An example

This is an example of a strongly abelian minimal variety of unbounded essential arity.

Example

Let \mathbb{B} be an infinite, homogeneous Boolean algebra. Let $\mathbb{G}=\operatorname{Aut}(\mathbb{B})$.

An example

This is an example of a strongly abelian minimal variety of unbounded essential arity.

Example

Let \mathbb{B} be an infinite, homogeneous Boolean algebra. Let $\mathbb{G}=\operatorname{Aut}(\mathbb{B})$. Define an algebra structure on B from \mathbb{B} and \mathbb{G} by

An example

This is an example of a strongly abelian minimal variety of unbounded essential arity.

Example

Let \mathbb{B} be an infinite, homogeneous Boolean algebra. Let $\mathbb{G}=A u t(\mathbb{B})$. Define an algebra structure on B from \mathbb{B} and \mathbb{G} by

$$
\mathcal{B}=\left\langle B ;\{\gamma(x) \mid \gamma \in G\},\left\{x *_{a} y \mid a \in B\right\}\right\rangle
$$

where $b *_{a} c:=(a \wedge b) \vee(\bar{a} \wedge c)$.

An example

This is an example of a strongly abelian minimal variety of unbounded essential arity.

Example

Let \mathbb{B} be an infinite, homogeneous Boolean algebra. Let $\mathbb{G}=A u t(\mathbb{B})$. Define an algebra structure on B from \mathbb{B} and \mathbb{G} by

$$
\mathcal{B}=\left\langle B ;\{\gamma(x) \mid \gamma \in G\},\left\{x *_{a} y \mid a \in B\right\}\right\rangle
$$

where $b *_{a} c:=(a \wedge b) \vee(\bar{a} \wedge c)$.
$\mathcal{V}(\mathcal{B})$ is a minimal, strongly abelian variety of unbounded essential arity.

An example

This is an example of a strongly abelian minimal variety of unbounded essential arity.

Example

Let \mathbb{B} be an infinite, homogeneous Boolean algebra. Let $\mathbb{G}=A u t(\mathbb{B})$. Define an algebra structure on B from \mathbb{B} and \mathbb{G} by

$$
\mathcal{B}=\left\langle B ;\{\gamma(x) \mid \gamma \in G\},\left\{x *_{a} y \mid a \in B\right\}\right\rangle
$$

where $b *_{a} c:=(a \wedge b) \vee(\bar{a} \wedge c)$.
$\mathcal{V}(\mathcal{B})$ is a minimal, strongly abelian variety of unbounded essential arity.

If $\left\{a_{1}, \ldots, a_{n}\right\}$ is a partition of unity, then in \mathcal{B} we have

$$
\left(x *_{a_{1}}\left(x_{2} *_{a_{2}}\left(\cdots\left(x_{n-1} *_{a_{n-1}} x_{n}\right) \cdots\right)\right)\right)=\left(a_{1} \wedge x_{1}\right) \vee \cdots \vee\left(a_{n} \wedge x_{n}\right)
$$

