Geometry of involutions in ranked groups

Joshua Wiscons

California State University, Sacramento

Panglobal Algebra and Logic Seminar University of Colorado, Boulder

November 2022

Joint work with A. Deloro (Sorbonne Université)

Based upon work supported by NSF grant No. DMS-1954127

$SO_3(\mathbb{R})$ vs $PGL_2(\mathbb{C})$ An inner-geometric dividing line

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

- Let $i \in G = SO_3(\mathbb{R})$ be an involution.
 - *i* corresponds to a half-turn of \mathbb{R}^3

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

• *i* corresponds to a half-turn of \mathbb{R}^3

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

- *i* corresponds to a half-turn of \mathbb{R}^3
- *i* determines a line: the axis *A_i*

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

- *i* corresponds to a half-turn of \mathbb{R}^3
- *i* determines a line: the axis A_i
- *i* determines a plane: A_i^{\perp}

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

- *i* corresponds to a half-turn of \mathbb{R}^3
- *i* determines a line: the axis A_i
- *i* determines a plane: A_i^{\perp}

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

- *i* corresponds to a half-turn of \mathbb{R}^3
- *i* determines a line: the axis A_i
- *i* determines a plane: A_i^{\perp}

•
$$\mathcal{P} = \{i : i \in I\}$$
 and $\mathcal{L} = \{\ell_i : i \in I\}$

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

- *i* corresponds to a half-turn of \mathbb{R}^3
- *i* determines a line: the axis A_i
- *i* determines a plane: A_i^{\perp}

The geometry:

•
$$\mathcal{P} = \{i : i \in I\}$$
 and $\mathcal{L} = \{\ell_i : i \in I\}$

• incidence (classically): $j \preccurlyeq \ell_i \iff A_j \subseteq A_i^{\perp}$

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

- *i* corresponds to a half-turn of \mathbb{R}^3
- *i* determines a line: the axis A_i
- *i* determines a plane: A_i^{\perp}

•
$$\mathcal{P} = \{i : i \in I\}$$
 and $\mathcal{L} = \{\ell_i : i \in I\}$

- incidence (classically): $j \preccurlyeq \ell_i \iff A_j \subseteq A_i^{\perp}$
- incidence (internally): $j \preccurlyeq \ell_i \iff$

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

- *i* corresponds to a half-turn of \mathbb{R}^3
- *i* determines a line: the axis A_i
- *i* determines a plane: A_i^{\perp}

•
$$\mathcal{P} = \{i : i \in I\}$$
 and $\mathcal{L} = \{\ell_i : i \in I\}$

- incidence (classically): $j \preccurlyeq \ell_i \iff A_j \subseteq A_i^{\perp}$
- incidence (internally): $j \preccurlyeq \ell_i \iff ij = ji \neq 1$

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

- *i* corresponds to a half-turn of \mathbb{R}^3
- *i* determines a line: the axis A_i
- *i* determines a plane: A_i^{\perp}

- $\mathcal{P} = \{i : i \in I\}$ and $\mathcal{L} = \{\ell_i : i \in I\}$
- incidence (classically): $j \preccurlyeq \ell_i \iff A_j \subseteq A_i^{\perp}$
- incidence (internally): $j \preccurlyeq \ell_i \iff ij = ji \neq 1$
- incidence (internally, again): $j \preccurlyeq \ell_i \iff$

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

- *i* corresponds to a half-turn of \mathbb{R}^3
- *i* determines a line: the axis A_i
- *i* determines a plane: A_i^{\perp}

- $\mathcal{P} = \{i : i \in I\}$ and $\mathcal{L} = \{\ell_i : i \in I\}$
- incidence (classically): $j \preccurlyeq \ell_i \iff A_j \subseteq A_i^{\perp}$
- incidence (internally): $j \preccurlyeq \ell_i \iff ij = ji \neq 1$
- incidence (internally, again): $j \preccurlyeq \ell_i \iff j \in C_G(i) C_i$ where

$$C_i := \{g \in G \mid A_g = A_i\}$$

Let $i \in G = SO_3(\mathbb{R})$ be an involution.

- *i* corresponds to a half-turn of \mathbb{R}^3
- *i* determines a line: the axis A_i
- *i* determines a plane: A_i^{\perp}

The geometry:

- $\mathcal{P} = \{i : i \in I\}$ and $\mathcal{L} = \{\ell_i : i \in I\}$
- incidence (classically): $j \preccurlyeq \ell_i \iff A_j \subseteq A_i^{\perp}$
- incidence (internally): $j \preccurlyeq \ell_i \iff ij = ji \neq 1$
- incidence (internally, again): $j \preccurlyeq \ell_i \iff j \in C_G(i) C_i$ where

$$C_i := \{g \in G \mid A_g = A_i\}$$

Fact (Geometry of involutions in $SO_3(\mathbb{R})$)

 $(\mathcal{P}, \mathcal{L}, \preccurlyeq)$ is a projective plane (namely $\mathbb{P}^2(\mathbb{R})$).

incidence: $j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff$

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = \{g \in G : A_g = A_i\}.$

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = \{g \in G : A_g = A_i\}.$

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = \{g \in G : A_g = A_i\}.$

Properties of *C* in $SO_3(\mathbb{R})$

1. C is TI: distinct conjugates of C intersect trivially

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = \{g \in G : A_g = A_i\}.$

- 1. C is TI: distinct conjugates of C intersect trivially
 - why: no nontrivial element has more than one axis

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = \{g \in G : A_g = A_i\}.$

- 1. C is TI: distinct conjugates of C intersect trivially
 - why: no nontrivial element has more than one axis
- 2. *C* is <u>quasi</u>-self-normalizing: $[N_G(C) : C]$ is finite

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = \{g \in G : A_g = A_i\}.$

- 1. C is TI: distinct conjugates of C intersect trivially
 - why: no nontrivial element has more than one axis
- 2. *C* is <u>quasi</u>-self-normalizing: $[N_G(C) : C]$ is finite
 - *here* [*N*_{*G*}(*C*) : *C*] = 2

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = \{g \in G : A_g = A_i\}.$

Properties of *C* in $SO_3(\mathbb{R})$

- 1. C is TI: distinct conjugates of C intersect trivially
 - why: no nontrivial element has more than one axis
- 2. *C* is <u>quasi</u>-self-normalizing: $[N_G(C) : C]$ is finite

• why: g normalizes $C_i \iff$

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = \{g \in G : A_g = A_i\}.$

Properties of *C* in $SO_3(\mathbb{R})$

1. C is TI: distinct conjugates of C intersect trivially

• why: no nontrivial element has more than one axis

2. *C* is <u>quasi</u>-self-normalizing: $[N_G(C) : C]$ is finite

• why: g normalizes $C_i \iff g$ fixes $A_i \iff$

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = \{g \in G : A_g = A_i\}.$

- 1. C is TI: distinct conjugates of C intersect trivially
 - why: no nontrivial element has more than one axis
- 2. *C* is <u>quasi</u>-self-normalizing: $[N_G(C) : C]$ is finite
 - *here* [*N*_{*G*}(*C*) : *C*] = 2
 - why: g normalizes $C_i \iff g$ fixes $A_i \iff (A_g = A_i \text{ OR } g \text{ is a half turn with } A_g \in A_i^{\perp})$

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = \{g \in G : A_g = A_i\}.$

Properties of C in SO₃(\mathbb{R})

- 1. C is TI: distinct conjugates of C intersect trivially
 - why: no nontrivial element has more than one axis
- 2. *C* is <u>quasi</u>-self-normalizing: $[N_G(C) : C]$ is finite
 - *here* [*N*_{*G*}(*C*) : *C*] = 2
 - why: g normalizes $C_i \iff g$ fixes $A_i \iff (A_g = A_i \text{ OR } g \text{ is a half turn with } A_g \in A_i^{\perp})$

3. The conjugates of C (exactly) cover G: $G = \bigcup_{g \in G - N_G(C)} C^g$

incidence:
$$j \preccurlyeq \ell_i \iff j \in C_G(i) - C_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = \{g \in G : A_g = A_i\}.$

Properties of C in SO₃(\mathbb{R})

- 1. C is TI: distinct conjugates of C intersect trivially
 - why: no nontrivial element has more than one axis
- 2. *C* is <u>quasi</u>-self-normalizing: $[N_G(C) : C]$ is finite
 - *here* [*N*_{*G*}(*C*) : *C*] = 2
 - why: g normalizes $C_i \iff g$ fixes $A_i \iff (A_g = A_i \text{ OR } g \text{ is a half turn with } A_g \in A_i^{\perp})$
- 3. The conjugates of C (exactly) cover G: $G = \bigcup_{g \in G N_G(C)} C^g$
 - why: every nontrivial $g \in G$ has a unique axis

Now we consider $G = PGL_2(\mathbb{C})$.

Now we consider $G = PGL_2(\mathbb{C})$.

Question

What if we consider the same (group theoretic) geometry as before?

•
$$\mathcal{P} = \{i : i \in I\}$$
 and $\mathcal{L} = \{\ell_i : i \in I\}$

• $j \preccurlyeq \ell_i \iff ij = ji \neq 1$

Now we consider $G = PGL_2(\mathbb{C})$.

Question

What if we consider the same (group theoretic) geometry as before?

•
$$\mathcal{P} = \{i : i \in I\}$$
 and $\mathcal{L} = \{\ell_i : i \in I\}$

• $j \preccurlyeq \ell_i \iff ij = ji \neq 1$

Fact (Geometry of involutions in $PGL_2(\mathbb{C})$)

 $(\mathcal{P}, \mathcal{L}, \preccurlyeq)$ is a generically defined projective plane:

Now we consider $G = PGL_2(\mathbb{C})$.

Question

What if we consider the same (group theoretic) geometry as before?

•
$$\mathcal{P} = \{i : i \in I\}$$
 and $\mathcal{L} = \{\ell_i : i \in I\}$

• $j \preccurlyeq \ell_i \iff ij = ji \neq 1$

Fact (Geometry of involutions in $PGL_2(\mathbb{C})$)

 $(\mathcal{P}, \mathcal{L}, \preccurlyeq)$ is a generically defined projective plane:

generic pairs of points (but not all) are connected by a unique line

Now we consider $G = PGL_2(\mathbb{C})$.

Question

What if we consider the same (group theoretic) geometry as before?

•
$$\mathcal{P} = \{i : i \in I\}$$
 and $\mathcal{L} = \{\ell_i : i \in I\}$

• $j \preccurlyeq \ell_i \iff ij = ji \neq 1$

Fact (Geometry of involutions in $PGL_2(\mathbb{C})$)

 $(\mathcal{P}, \mathcal{L}, \preccurlyeq)$ is a generically defined projective plane:

- generic pairs of points (but not all) are connected by a unique line
- and dually for lines

incidence:
$$j \preccurlyeq \ell_i \iff ij = ji \neq 1$$

Fix $i \in I$.

incidence:
$$j \preccurlyeq \ell_i \iff ij = ji \neq 1$$

Fix $i \in I$. Then *i* is determined by two fixed points, say *x* and *y*, when acting naturally on the projective line. Set

$$C_i := G_{x,y}$$

incidence:
$$j \preccurlyeq \ell_i \iff ij = ji \neq 1$$

Fix $i \in I$. Then *i* is determined by two fixed points, say *x* and *y*, when acting naturally on the projective line. Set

$$C_i := G_{x,y}$$

 $g \in C_G(i)$
incidence:
$$j \preccurlyeq \ell_i \iff ij = ji \neq 1$$

Fix $i \in I$. Then *i* is determined by two fixed points, say *x* and *y*, when acting naturally on the projective line. Set

$$C_i := G_{x,y}$$

 $g \in C_G(i) \iff g$ fixes $\{x, y\}$ setwise (i.e. $C_G(i) = G_{\{x, y\}})$

incidence:
$$j \preccurlyeq \ell_i \iff ij = ji \neq 1$$

Fix $i \in I$. Then *i* is determined by two fixed points, say *x* and *y*, when acting naturally on the projective line. Set

$$C_i := G_{x,y}$$

$$g \in C_G(i) \iff g \text{ fixes } \{x, y\} \text{ setwise (i.e. } C_G(i) = G_{\{x, y\}})$$

 $\iff g \in G_{x, y} \text{ OR } g \text{ swaps } x \text{ and } y$

incidence:
$$j \preccurlyeq \ell_i \iff ij = ji \neq 1$$

Fix $i \in I$. Then *i* is determined by two fixed points, say *x* and *y*, when acting naturally on the projective line. Set

$$C_i := G_{x,y}$$

$$g \in C_G(i) \iff g \text{ fixes } \{x, y\} \text{ setwise (i.e. } C_G(i) = G_{\{x, y\}})$$

 $\iff g \in G_{x, y} \text{ OR } g \text{ swaps } x \text{ and } y$
 $\iff g \in C_i \text{ OR } g \in G_{\{x, y\}} - C_i$

incidence:
$$j \preccurlyeq \ell_i \iff ij = ji \neq 1$$

Fix $i \in I$. Then *i* is determined by two fixed points, say *x* and *y*, when acting naturally on the projective line. Set

$$C_i := G_{x,y}$$

$$g \in C_G(i) \iff g \text{ fixes } \{x, y\} \text{ setwise (i.e. } C_G(i) = G_{\{x, y\}})$$

 $\iff g \in G_{x, y} \text{ OR } g \text{ swaps } x \text{ and } y$
 $\iff g \in C_i \text{ OR } g \in G_{\{x, y\}} - C_i$

As before, $C_G(i) = N_G(C_i)$, so we find...

incidence:
$$j \preccurlyeq \ell_i \iff ij = ji \neq 1$$

Fix $i \in I$. Then *i* is determined by two fixed points, say *x* and *y*, when acting naturally on the projective line. Set

$$C_i := G_{x,y}$$

$$g \in C_G(i) \iff g \text{ fixes } \{x, y\} \text{ setwise (i.e. } C_G(i) = G_{\{x, y\}})$$

 $\iff g \in G_{x, y} \text{ OR } g \text{ swaps } x \text{ and } y$
 $\iff g \in C_i \text{ OR } g \in G_{\{x, y\}} - C_i$

As before, $C_G(i) = N_G(C_i)$, so we find...

incidence:
$$j \preccurlyeq \ell_i \iff j \in N_G(C_i) - C_i$$

incidence:
$$j \preccurlyeq \ell_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = G_{x,y}$.

incidence:
$$j \preccurlyeq \ell_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = G_{x,y}$.

Properties of *C* in $PGL_2(\mathbb{C})$

incidence:
$$j \preccurlyeq \ell_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = G_{x,y}$.

1. C is TI

incidence:
$$j \preccurlyeq \ell_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = G_{x,y}$.

Properties of C in $PGL_2(\mathbb{C})$

- 1. C is TI
 - why: no nontrivial element has more than two fixed points

incidence:
$$j \preccurlyeq \ell_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = G_{x,y}$.

Properties of C in $PGL_2(\mathbb{C})$

- 1. C is TI
 - why: no nontrivial element has more than two fixed points
- 2. C is quasi-self-normalizing

incidence:
$$j \preccurlyeq \ell_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = G_{x,y}$.

Properties of C in $PGL_2(\mathbb{C})$

1. C is TI

- why: no nontrivial element has more than two fixed points
- 2. C is quasi-self-normalizing
 - *again* [*N_G*(*C*) : *C*] = 2

incidence:
$$j \preccurlyeq \ell_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = G_{x,y}$.

Properties of *C* in $PGL_2(\mathbb{C})$

1. C is TI

• why: no nontrivial element has more than two fixed points

2. C is quasi-self-normalizing

• again
$$[N_G(C) : C] = 2$$

• why: g normalizes $C_i \iff (g \text{ fixes } x \text{ and } y \text{ } OR g \text{ swaps } x \text{ and } y)$

incidence:
$$j \preccurlyeq \ell_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = G_{x,y}$.

Properties of C in $PGL_2(\mathbb{C})$

1. C is TI

• why: no nontrivial element has more than two fixed points

2. C is quasi-self-normalizing

- *again* [*N_G*(*C*) : *C*] = 2
- why: g normalizes $C_i \iff (g \text{ fixes } x \text{ and } y \text{ } OR g \text{ swaps } x \text{ and } y)$
- 3. The conjugates of C generically cover $G: \bigcup_{q \in G-N_G(C)} C^g$ is generic in G

incidence:
$$j \preccurlyeq \ell_i \iff j \in N_G(C_i) - C_i$$

Fix $C := C_i = G_{x,y}$.

Properties of *C* in
$$PGL_2(\mathbb{C})$$

1. *С іs* ті

- why: no nontrivial element has more than two fixed points
- 2. C is quasi-self-normalizing
 - *again* [*N_G*(*C*) : *C*] = 2
 - why: g normalizes $C_i \iff (g \text{ fixes } x \text{ and } y \text{ } OR g \text{ swaps } x \text{ and } y)$
- 3. The conjugates of C generically cover $G: \bigcup_{q \in G-N_G(C)} C^g$ is generic in G
 - why: generic $g \in G$ fix two points (unipotent elements are missed)

Joshua Wiscons

• Geometric similarities might not be unexpected: $PGL_2(\mathbb{C}) = SO_3(\mathbb{C})$.

- Geometric similarities might not be unexpected: $PGL_2(\mathbb{C}) = SO_3(\mathbb{C})$.
- Differences are not unexpected either:

- Geometric similarities might not be unexpected: $PGL_2(\mathbb{C}) = SO_3(\mathbb{C})$.
- Differences are not unexpected either:
 - $PGL_2(\mathbb{C})$ is stable...and of finite Morley rank.

- Geometric similarities might not be unexpected: $PGL_2(\mathbb{C}) = SO_3(\mathbb{C})$.
- Differences are not unexpected either:
 - $PGL_2(\mathbb{C})$ is stable... and of finite Morley rank.
 - $SO_3(\mathbb{R})$ is not.

- Geometric similarities might not be unexpected: PGL₂(ℂ) = SO₃(ℂ).
- Differences are not unexpected either:
 - $PGL_2(\mathbb{C})$ is stable...and of finite Morley rank.
 - $SO_3(\mathbb{R})$ is not.
- Weisfeiler¹ magic: the generically defined projective plane associated to $PGL_2(\mathbb{C})$ can be completed to a genuine plane.

¹The tragic story of Boris Weisfeiler's disappearance while hiking in Chile in 1985 is a must read.

- Geometric similarities might not be unexpected: PGL₂(ℂ) = SO₃(ℂ).
- Differences are not unexpected either:
 - $PGL_2(\mathbb{C})$ is stable...and of finite Morley rank.
 - $SO_3(\mathbb{R})$ is not.
- Weisfeiler¹ magic: the generically defined projective plane associated to $PGL_2(\mathbb{C})$ can be completed to a genuine plane.
 - The points of the (uncompleted plane) can be identified with the tori *C_i*. The missing points are the unipotent subgroups.

¹The tragic story of Boris Weisfeiler's disappearance while hiking in Chile in 1985 is a must read.

- Geometric similarities might not be unexpected: PGL₂(ℂ) = SO₃(ℂ).
- Differences are not unexpected either:
 - $PGL_2(\mathbb{C})$ is stable...and of finite Morley rank.
 - $SO_3(\mathbb{R})$ is not.
- Weisfeiler¹ magic: the generically defined projective plane associated to $PGL_2(\mathbb{C})$ can be completed to a genuine plane.
 - The points of the (uncompleted plane) can be identified with the tori *C_i*. The missing points are the unipotent subgroups.
 - The action of $PGL_2(\mathbb{C})$ on the completed plane is in fact isomorphic to the one obtained from projectivizing the adjoint representation.

¹The tragic story of Boris Weisfeiler's disappearance while hiking in Chile in 1985 is a must read.

- Geometric similarities might not be unexpected: PGL₂(ℂ) = SO₃(ℂ).
- Differences are not unexpected either:
 - $PGL_2(\mathbb{C})$ is stable...and of finite Morley rank.
 - $SO_3(\mathbb{R})$ is not.
- Weisfeiler¹ magic: the generically defined projective plane associated to $PGL_2(\mathbb{C})$ can be completed to a genuine plane.
 - The points of the (uncompleted plane) can be identified with the tori *C_i*. The missing points are the unipotent subgroups.
 - The action of $PGL_2(\mathbb{C})$ on the completed plane is in fact isomorphic to the one obtained from projectivizing the adjoint representation.
- The geometries can more-or-less be reconstructed from the properties of the subgroup *C*. This is the main point we want to explore.

¹The tragic story of Boris Weisfeiler's disappearance while hiking in Chile in 1985 is a must read.

$SO_3(\mathbb{R})$ vs $PGL_2(\mathbb{C})$ A model-theoretic dividing line

Algebraicity Conjecture

Algebraicity Conjecture

Algebraicity Conjecture

Algebraicity Conjecture:

Algebraicity Conjecture: the gap, \uparrow , does not exist.

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Joshua Wiscons

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Theorem (Altınel-Borovik-Cherlin—2008)

The Algebraicity Conjecture is true for those groups with an infinite elementary abelian 2-subgroup.

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Theorem (Altınel-Borovik-Cherlin—2008)

The Algebraicity Conjecture is true for those groups with an infinite elementary abelian 2-subgroup.

• Thus, a counterexample to the conjecture has $m_2(G) < \infty$.

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Theorem (Altınel-Borovik-Cherlin—2008)

The Algebraicity Conjecture is true for those groups with an infinite elementary abelian 2-subgroup.

- Thus, a counterexample to the conjecture has $m_2(G) < \infty$.
- In fact, a minimal counterexample to the conjecture has pr₂(G) ≤ 3.
 - $\operatorname{pr}_2(G)$ is the maximal k such that $\bigoplus_k Z(2^\infty) \leq G$

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Theorem (Altınel-Borovik-Cherlin—2008)

The Algebraicity Conjecture is true for those groups with an infinite elementary abelian 2-subgroup.

- Thus, a counterexample to the conjecture has m₂(G) < ∞.
- In fact, a minimal counterexample to the conjecture has pr₂(G) ≤ 3.

• $\operatorname{pr}_2(G)$ is the maximal *k* such that $\bigoplus_k Z(2^\infty) \leq G$

• Our focus—though not evident at the outset—will be on groups with $pr_2(G) = 1$, similar to $PGL_2(\mathbb{C})$ (and $SO_3(\mathbb{R})$). This includes a particularly persistent potential counterexample to the Algebraicity Conjecture.

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Theorem (Altınel-Borovik-Cherlin—2008)

The Algebraicity Conjecture is true for those groups with an infinite elementary abelian 2-subgroup.

- Thus, a counterexample to the conjecture has m₂(G) < ∞.
- In fact, a minimal counterexample to the conjecture has pr₂(G) ≤ 3.

• $\operatorname{pr}_2(G)$ is the maximal k such that $\bigoplus_k Z(2^\infty) \leq G$

- Our focus—though not evident at the outset—will be on groups with $pr_2(G) = 1$, similar to $PGL_2(\mathbb{C})$ (and $SO_3(\mathbb{R})$). This includes a particularly persistent potential counterexample to the Algebraicity Conjecture.
- In general, the less 2-torsion a group has, the harder it becomes to analyze by "standard/generic" methods.

Geometry of involutions in quasi-Frobenius groups

Joshua Wiscons

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**:

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

1. C is TI (disjoint from its distinct conjugates)

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

- 1. C is TI (disjoint from its distinct conjugates)
- 2. C is quasi-self-normalizing (finite index in its normalizer)

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

1. C is TI (disjoint from its distinct conjugates)

2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1. + 2.) \implies 2$.' conjugates of *C* generically cover *G*.

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

1. C is TI (disjoint from its distinct conjugates)

2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1. + 2.) \implies 2.$ conjugates of *C* generically cover *G*.

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

1. C is TI (disjoint from its distinct conjugates)

2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1. + 2.) \implies 2.$ conjugates of *C* generically cover *G*.

$$\mathsf{rk}\left(igsqcup_{g\in G-N_G(\mathcal{C})}\mathcal{C}^g
ight)=$$

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

1. C is TI (disjoint from its distinct conjugates)

2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1. + 2.) \implies 2$.' conjugates of *C* generically cover *G*.

$$\operatorname{\mathsf{rk}}\left(\bigsqcup_{g\in G-N_G(C)}C^g
ight)=\operatorname{\mathsf{rk}}\left(G/N_G(C)
ight)+\operatorname{\mathsf{rk}} C=$$

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

1. C is TI (disjoint from its distinct conjugates)

2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1. + 2.) \implies 2$.' conjugates of *C* generically cover *G*.

$$\mathsf{rk}\left(\bigsqcup_{g\in G-N_G(C)} C^g
ight) = \,\mathsf{rk}\left(G/N_G(C)
ight) + \mathsf{rk}\,C = \,\mathsf{rk}\,G - \mathsf{rk}\,N_G(C) + \mathsf{rk}\,C$$

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

1. C is TI (disjoint from its distinct conjugates)

2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1. + 2.) \implies 2$.' conjugates of *C* generically cover *G*.

$$\operatorname{rk}\left(\bigsqcup_{g\in G-N_G(C)}C^g\right) = \operatorname{rk}\left(G/N_G(C)\right) + \operatorname{rk}C = \operatorname{rk}G - \operatorname{rk}N_G(C) + \operatorname{rk}C$$
$$= \operatorname{rk}G - \operatorname{rk}\left(N_G(C)/C\right) =$$

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

1. C is TI (disjoint from its distinct conjugates)

2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1. + 2.) \implies 2$.' conjugates of *C* generically cover *G*.

$$\mathsf{rk}\left(\bigsqcup_{g\in G-N_G(C)} C^g\right) = \mathsf{rk}\left(G/N_G(C)\right) + \mathsf{rk}\,C = \mathsf{rk}\,G - \mathsf{rk}\,N_G(C) + \mathsf{rk}\,C$$
$$= \mathsf{rk}\,G - \mathsf{rk}\left(N_G(C)/C\right) = \mathsf{rk}\,G + 0$$

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

- 1. C is TI (disjoint from its distinct conjugates)
- 2. C is quasi-self-normalizing (finite index in its normalizer)

In fact,

$$\operatorname{rk}\left(\bigsqcup_{g\in G-N_G(C)}C^g\right) = \operatorname{rk}\left(G/N_G(C)\right) + \operatorname{rk}C = \operatorname{rk}G - \operatorname{rk}N_G(C) + \operatorname{rk}C$$
$$= \operatorname{rk}G - \operatorname{rk}\left(N_G(C)/C\right) = \operatorname{rk}G + 0$$

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is **quasi-Frobenius**: *G* has a connected subgroup *C* such that

1. C is TI (disjoint from its distinct conjugates)

2. C is quasi-self-normalizing (finite index in its normalizer)

In fact, 1. \implies (2. \iff 2.' conjugates of *C* generically cover *G*.)

$$\operatorname{rk}\left(\bigsqcup_{g\in G-N_G(C)} C^g\right) = \operatorname{rk}\left(G/N_G(C)\right) + \operatorname{rk} C = \operatorname{rk} G - \operatorname{rk} N_G(C) + \operatorname{rk} C$$
$$= \operatorname{rk} G - \operatorname{rk}\left(N_G(C)/C\right) = \operatorname{rk} G + 0$$

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is quasi-Frobenius with respect to C < G, i.e.

- 1. *С* із ті
- 2. C is almost self-normalizing

2.' conjugates of C generically cover G

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is quasi-Frobenius with respect to C < G, i.e.

- 1. *С* із ті
- 2. C is almost self-normalizing
- 2.' conjugates of C generically cover G

Main Alternative

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is quasi-Frobenius with respect to C < G, i.e.

- 1. *С* із ті
- 2. C is almost self-normalizing
- 2.' conjugates of C generically cover G

Main Alternative

Precisely one of the following occurs:

• $[N_G(C) : C]$ is odd (possibly 1)

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is quasi-Frobenius with respect to C < G, i.e.

- 1. *С* із ті
- 2. C is almost self-normalizing
- 2.' conjugates of C generically cover G

Main Alternative

- $[N_G(C) : C]$ is odd (possibly 1)
- $[N_G(C): C] = 2$

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is quasi-Frobenius with respect to C < G, i.e.

- 1. *С* із ті
- 2. C is almost self-normalizing
- 2.' conjugates of C generically cover G

Main Alternative

- $[N_G(C) : C]$ is odd (possibly 1)
- $[N_G(C): C] = 2$
 - this implies C = C[◦]_G(i), N_G(C) = C_G(i), and N_G(C) = C ⋊ ω with ω inverting C

Global Hypotheses

Let *G* be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose *G* is quasi-Frobenius with respect to C < G, i.e.

- 1. *С* із ті
- 2. C is almost self-normalizing
- 2.' conjugates of C generically cover G

Main Alternative

- $[N_G(C) : C]$ is odd (possibly 1)
- $[N_G(C): C] = 2$
 - this implies C = C[◦]_G(i), N_G(C) = C_G(i), and N_G(C) = C ⋊ ω with ω inverting C (as in SO₃(ℝ) and PGL₂(ℂ))

Both SO₃(\mathbb{R}) and PGL₂(\mathbb{C}) satisfy all of the <u>group-theoretic</u> conditions in our Global Hypotheses (as well as [$N_G(C) : C$] = 2). However, there is a difference:

Both SO₃(\mathbb{R}) and PGL₂(\mathbb{C}) satisfy all of the <u>group-theoretic</u> conditions in our Global Hypotheses (as well as [$N_G(C) : C$] = 2). However, there is a difference:

• the conjugates of *C* genuinely cover $SO_3(\mathbb{R})$

Both SO₃(\mathbb{R}) and PGL₂(\mathbb{C}) satisfy all of the <u>group-theoretic</u> conditions in our Global Hypotheses (as well as [$N_G(C) : C$] = 2). However, there is a difference:

- the conjugates of C genuinely cover SO₃(ℝ)
- the conjugates of C generically but not genuinely cover PGL₂(C)

Both SO₃(\mathbb{R}) and PGL₂(\mathbb{C}) satisfy all of the <u>group-theoretic</u> conditions in our Global Hypotheses (as well as [$N_G(C) : C$] = 2). However, there is a difference:

- the conjugates of C genuinely cover SO₃(ℝ)
- the conjugates of *C* generically but <u>not genuinely</u> cover PGL₂(ℂ)

We reframe this dividing line using the following notion.

Both SO₃(\mathbb{R}) and PGL₂(\mathbb{C}) satisfy all of the <u>group-theoretic</u> conditions in our Global Hypotheses (as well as [$N_G(C) : C$] = 2). However, there is a difference:

- the conjugates of C genuinely cover SO₃(ℝ)
- the conjugates of C generically but <u>not genuinely</u> cover PGL₂(C)

We reframe this dividing line using the following notion.

Definition

An element is strongly real (SR) if it is inverted by some involution.
Both SO₃(\mathbb{R}) and PGL₂(\mathbb{C}) satisfy all of the <u>group-theoretic</u> conditions in our Global Hypotheses (as well as [$N_G(C) : C$] = 2). However, there is a difference:

- the conjugates of C genuinely cover SO₃(ℝ)
- the conjugates of C generically but <u>not genuinely</u> cover PGL₂(C)

We reframe this dividing line using the following notion.

Definition

An element is strongly real (SR) if it is inverted by some involution.

Example

All elements of $SO_3(\mathbb{R})$ are strongly real.

Both SO₃(\mathbb{R}) and PGL₂(\mathbb{C}) satisfy all of the <u>group-theoretic</u> conditions in our Global Hypotheses (as well as [$N_G(C) : C$] = 2). However, there is a difference:

- the conjugates of C genuinely cover SO₃(ℝ)
- the conjugates of C generically but not genuinely cover PGL₂(C)

We reframe this dividing line using the following notion.

Definition

An element is strongly real (SR) if it is inverted by some involution.

Example

All elements of $SO_3(\mathbb{R})$ are strongly real. The same is true in $PGL_2(\mathbb{C})$.

Both SO₃(\mathbb{R}) and PGL₂(\mathbb{C}) satisfy all of the <u>group-theoretic</u> conditions in our Global Hypotheses (as well as [$N_G(C) : C$] = 2). However, there is a difference:

- the conjugates of C genuinely cover SO₃(ℝ)
- the conjugates of C generically but not genuinely cover PGL₂(C)

We reframe this dividing line using the following notion.

Definition

An element is strongly real (SR) if it is inverted by some involution.

Example

All elements of $SO_3(\mathbb{R})$ are strongly real. The same is true in $PGL_2(\mathbb{C})$.

• the conjugates of *C* contain all SR elements of $SO_3(\mathbb{R})$

Both SO₃(\mathbb{R}) and PGL₂(\mathbb{C}) satisfy all of the <u>group-theoretic</u> conditions in our Global Hypotheses (as well as [$N_G(C) : C$] = 2). However, there is a difference:

- the conjugates of C genuinely cover SO₃(ℝ)
- the conjugates of C generically but <u>not genuinely</u> cover PGL₂(C)

We reframe this dividing line using the following notion.

Definition

An element is strongly real (SR) if it is inverted by some involution.

Example

All elements of $SO_3(\mathbb{R})$ are strongly real. The same is true in $PGL_2(\mathbb{C})$.

- the conjugates of *C* contain all SR elements of $SO_3(\mathbb{R})$
- the conjugates of C do not contain all SR elements of PGL₂(C)

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Corollary

Let G be a connected group of fMr with $m_2(G) < \infty$. If G has a definable, connected subgroup C whose conjugates <u>partition</u> G, then $m_2(G) = 0$.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Corollary

Let G be a connected group of fMr with $m_2(G) < \infty$. If G has a definable, connected subgroup C whose conjugates partition G, then $m_2(G) = 0$.

Corollary (Nesin; Borovik-Poizat; Corredor)

A simple "bad group" of fMr has no involutions.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Corollary

Let G be a connected group of fMr with $m_2(G) < \infty$. If G has a definable, connected subgroup C whose conjugates partition G, then $m_2(G) = 0$.

Corollary (Nesin; Borovik-Poizat; Corredor)

A simple "bad group" of fMr has no involutions.

Corollary (Borovik-Burdges)

If $G \leq GL_n(K)$ is simple, definable, but not Zariski closed for K of fMr in characteristic 0, then G has no involutions.

Joshua Wiscons

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Assume the conjugates of C do contain all SR elements of G.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Assume the conjugates of $C \underline{do}$ contain all SR elements of G.

Step 1: $[N_G(C) : C]$ is even (so $[N_G(C) : C] = 2$ with all consequences)

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Assume the conjugates of $C \underline{do}$ contain all SR elements of G.

Step 1: $[N_G(C) : C]$ is even (so $[N_G(C) : C] = 2$ with all consequences)

Step 2: the conjugates of C genuinely cover G

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Assume the conjugates of $C \underline{do}$ contain all SR elements of G.

Step 1: $[N_G(C) : C]$ is even (so $[N_G(C) : C] = 2$ with all consequences)

Step 2: the conjugates of C genuinely cover G

Step 3: the geometry—but not just a plane: a 3-space

Motivation: in SO₃(\mathbb{R}) and PGL₂(\mathbb{C}), the set of involutions incident with *i* was the coset $N_G(C_i) - C_i$. This should be a line.

Motivation: in SO₃(\mathbb{R}) and PGL₂(\mathbb{C}), the set of involutions incident with *i* was the coset $N_G(C_i) - C_i$. This should be a line.

Points: all elements of G (not just I)

Motivation: in SO₃(\mathbb{R}) and PGL₂(\mathbb{C}), the set of involutions incident with *i* was the coset $N_G(C_i) - C_i$. This should be a line.

Points: all elements of *G* (not just *I*)

Lines: all translates of all conjugates of C (not just $N_G(C^g) - C^g$)

● i.e. {*gCh* : *g*, *h* ∈ *G*}

Motivation: in SO₃(\mathbb{R}) and PGL₂(\mathbb{C}), the set of involutions incident with *i* was the coset $N_G(C_i) - C_i$. This should be a line.

Points: all elements of *G* (not just *I*) Lines: all translates of all conjugates of *C* (not just $N_G(C^g) - C^g$) • i.e. {*gCh* : *g*, *h* \in *G*} Planes: all translates of *I* (not just *I*) • i.e. {*glh* : *g*, *h* \in *G*}

Motivation: in SO₃(\mathbb{R}) and PGL₂(\mathbb{C}), the set of involutions incident with *i* was the coset $N_G(C_i) - C_i$. This should be a line.

Points: all elements of G (not just I)

Lines: all translates of all conjugates of C (not just $N_G(C^g) - C^g$)

● i.e. {*gCh* : *g*, *h* ∈ *G*}

Planes: all translates of I (not just I)

● i.e. {*glh* : *g*, *h* ∈ *G*}

This defines a (genuine!) 3-dimensional projective space Γ .

Motivation: in SO₃(\mathbb{R}) and PGL₂(\mathbb{C}), the set of involutions incident with *i* was the coset $N_G(C_i) - C_i$. This should be a line.

Points: all elements of *G* (not just *I*)

Lines: all translates of all conjugates of C (not just $N_G(C^g) - C^g$)

● i.e. {*gCh* : *g*, *h* ∈ *G*}

Planes: all translates of I (not just I)

● i.e. {*glh* : *g*, *h* ∈ *G*}

This defines a (genuine!) 3-dimensional projective space Γ . And, Γ carries an action of *G* on the left and right.

Motivation: in SO₃(\mathbb{R}) and PGL₂(\mathbb{C}), the set of involutions incident with *i* was the coset $N_G(C_i) - C_i$. This should be a line.

Points: all elements of *G* (not just *I*)

Lines: all translates of all conjugates of C (not just $N_G(C^g) - C^g$)

● i.e. {*gCh* : *g*, *h* ∈ *G*}

Planes: all translates of I (not just I)

● i.e. {*glh* : *g*, *h* ∈ *G*}

This defines a (genuine!) 3-dimensional projective space Γ . And, Γ carries an action of *G* on the left and right.

That it is genuine hinges on the conjugates of C genuinely covering G.

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

• It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

Step 4: Contradiction.

• Hilbert: $\Gamma \simeq \mathbb{P}^3(\mathbb{K})$ with \mathbb{K} definable,

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

Step 4: Contradiction.

• Hilbert: $\Gamma \simeq \mathbb{P}^3(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

- Hilbert: $\Gamma \simeq \mathbb{P}^3(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication,

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

- Hilbert: $\Gamma \simeq \mathbb{P}^3(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so G ≤ Aut(Γ) = PGL₃(K)

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

- Hilbert: $\Gamma \simeq \mathbb{P}^3(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so G ≤ Aut(Γ) = PGL₃(K)
- Note: C is abelian,

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

- Hilbert: $\Gamma \simeq \mathbb{P}^3(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so G ≤ Aut(Γ) = PGL₃(K)
- Note: *C* is abelian, so \overline{C} (its closure in $PGL_3(\mathbb{K})$) is as well

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

- Hilbert: $\Gamma \simeq \mathbb{P}^3(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so G ≤ Aut(Γ) = PGL₃(K)
- Note: *C* is abelian, so \overline{C} (its closure in PGL₃(\mathbb{K})) is as well
- **Borel:** \overline{C} (hence *C*) has a fixed point in it's action on $\mathbb{P}^3(\mathbb{K})$

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

- Hilbert: $\Gamma \simeq \mathbb{P}^3(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so G ≤ Aut(Γ) = PGL₃(K)
- Note: *C* is abelian, so \overline{C} (its closure in PGL₃(\mathbb{K})) is as well
- Borel: \overline{C} (hence C) has a fixed point in it's action on $\mathbb{P}^3(\mathbb{K})$
- But the action is regular.
Proof sketch

Aside

This construction works in both $SO_3(\mathbb{R})$ and $PGL_2(\mathbb{C})$.

- It turns $SO_3(\mathbb{R})$ into a 3-dimensional projective space.
- It turns PGL₂(C) into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

Step 4: Contradiction.

- Hilbert: $\Gamma \simeq \mathbb{P}^3(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so G ≤ Aut(Γ) = PGL₃(K)
- Note: *C* is abelian, so \overline{C} (its closure in PGL₃(K)) is as well
- Borel: \overline{C} (hence C) has a fixed point in it's action on $\mathbb{P}^3(\mathbb{K})$
- But the action is regular. Contradiction.

Final thoughts

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

Remarks

• The theorem says (slightly more than): the geometry of involutions of such a *G*, in a ranked context, can not be a <u>genuine</u> projective space.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

- The theorem says (slightly more than): the geometry of involutions of such a *G*, in a ranked context, can not be a <u>genuine</u> projective space.
- We can certainly ask for more: actual recognition.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

- The theorem says (slightly more than): the geometry of involutions of such a *G*, in a ranked context, can not be a <u>genuine</u> projective space.
- We can certainly ask for more: actual recognition.
 - Recognition of PGL₂(K) in a ranked context

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

- The theorem says (slightly more than): the geometry of involutions of such a *G*, in a ranked context, can not be a <u>genuine</u> projective space.
- We can certainly ask for more: actual recognition.
 - Recognition of PGL₂(K) in a ranked context
 - Recognition of PGL₂(*K*), SO₃(*R*), and other 'forms of type *A*₁' in a suitable dimensional context

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

- The theorem says (slightly more than): the geometry of involutions of such a *G*, in a ranked context, can not be a <u>genuine</u> projective space.
- We can certainly ask for more: actual recognition.
 - Recognition of PGL₂(K) in a ranked context
 - Recognition of PGL₂(*K*), SO₃(*R*), and other 'forms of type *A*₁' in a suitable dimensional context
 - To be precise, we need to assume *G* is nonsolvable

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is quasi-Frobenius with respect to C < G. Then the conjugates of C do <u>not</u> contain all SR elements of G.

- The theorem says (slightly more than): the geometry of involutions of such a *G*, in a ranked context, can not be a <u>genuine</u> projective space.
- We can certainly ask for more: actual recognition.
 - Recognition of PGL₂(K) in a ranked context
 - Recognition of PGL₂(*K*), SO₃(*R*), and other 'forms of type *A*₁' in a suitable dimensional context
 - To be precise, we need to assume G is nonsolvable
 - To be realistic, we need to assume G is not honestly Frobenius

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to C < G. If C is solvable and $[N_G(C) : C] = 2$, then either C is a maximal connected solvable of G or $G \cong PGL_2(K)$.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to C < G. If C is solvable and $[N_G(C) : C] = 2$, then either C is a maximal connected solvable of G or $G \cong PGL_2(K)$.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to C < G. If C is solvable and $[N_G(C) : C] = 2$, then either C is a maximal connected solvable of G or $G \cong PGL_2(K)$.

Remarks

• Corredor and Deloro have shown that the hypothesis that $[N_G(C) : C] = 2$ can be removed from the previous theorem.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to C < G. If C is solvable and $[N_G(C) : C] = 2$, then either C is a maximal connected solvable of G or $G \cong PGL_2(K)$.

- Corredor and Deloro have shown that the hypothesis that $[N_G(C) : C] = 2$ can be removed from the previous theorem.
- Zamour and separately Deloro and Onshuus have related results in an o-minimal context.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to C < G. If C is solvable and $[N_G(C) : C] = 2$, then either C is a maximal connected solvable of G or $G \cong PGL_2(K)$.

- Corredor and Deloro have shown that the hypothesis that $[N_G(C) : C] = 2$ can be removed from the previous theorem.
- Zamour and separately Deloro and Onshuus have related results in an o-minimal context.
- So what might this be working towards...

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to C < G.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to C < G. Also assume a level of modesty: $[N_G(C) : C]$ is even.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to C < G. Also assume a level of modesty: $[N_G(C) : C]$ is even. Then $G \cong PGL_2(K)$.

Let G be a connected group of fMr with $0 < m_2(G) < \infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to C < G. Also assume a level of modesty: $[N_G(C) : C]$ is even. Then $G \cong PGL_2(K)$.

Moreover, in a suitable 'dimensional' setting (generalizing the fMr and o-minimal contexts), one still finds nice recognition of G, including now $PGL_2(K)$, $SO_3(\mathcal{R})$, and other related groups.

Thank You