Geometry of involutions in ranked groups

Joshua Wiscons

California State University, Sacramento

Panglobal Algebra and Logic Seminar University of Colorado, Boulder

November 2022

Joint work with A. Deloro (Sorbonne Université)
Based upon work supported by NSF grant No. DMS-1954127

$\mathrm{SO}_{3}(\mathbb{R})$ vs $\mathrm{PGL}_{2}(\mathbb{C})$

An inner-geometric dividing line

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}
- i determines a line: the axis A_{i}

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}
- i determines a line: the axis A_{i}
- i determines a plane: A_{i}^{\perp}

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}
- i determines a line: the axis A_{i}
- i determines a plane: A_{i}^{\perp}

The geometry:

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}
- i determines a line: the axis A_{i}
- i determines a plane: A_{i}^{\perp}

The geometry:

- $\mathcal{P}=\{i: i \in I\}$ and $\mathcal{L}=\left\{\ell_{i}: i \in I\right\}$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}
- i determines a line: the axis A_{i}
- i determines a plane: A_{i}^{\perp}

The geometry:

- $\mathcal{P}=\{i: i \in I\}$ and $\mathcal{L}=\left\{\ell_{i}: i \in I\right\}$
- incidence (classically): $j \preccurlyeq \ell_{i} \Longleftrightarrow A_{j} \subseteq A_{i}^{\perp}$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}
- i determines a line: the axis A_{i}
- i determines a plane: A_{i}^{\perp}

The geometry:

- $\mathcal{P}=\{i: i \in I\}$ and $\mathcal{L}=\left\{\ell_{i}: i \in I\right\}$
- incidence (classically): $j \preccurlyeq \ell_{i} \Longleftrightarrow A_{j} \subseteq A_{i}^{\perp}$
- incidence (internally): $j \preccurlyeq \ell_{i} \Longleftrightarrow$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}
- i determines a line: the axis A_{i}
- i determines a plane: A_{i}^{\perp}

The geometry:

- $\mathcal{P}=\{i: i \in I\}$ and $\mathcal{L}=\left\{\ell_{i}: i \in I\right\}$
- incidence (classically): $j \preccurlyeq \ell_{i} \Longleftrightarrow A_{j} \subseteq A_{i}^{\perp}$
- incidence (internally): $j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}
- i determines a line: the axis A_{i}
- i determines a plane: A_{i}^{\perp}

The geometry:

- $\mathcal{P}=\{i: i \in I\}$ and $\mathcal{L}=\left\{\ell_{i}: i \in I\right\}$
- incidence (classically): $j \preccurlyeq \ell_{i} \Longleftrightarrow A_{j} \subseteq A_{i}^{\perp}$
- incidence (internally): $j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1$
- incidence (internally, again): $j \preccurlyeq \ell_{i} \Longleftrightarrow$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}
- i determines a line: the axis A_{i}
- i determines a plane: A_{i}^{\perp}

The geometry:

- $\mathcal{P}=\{i: i \in I\}$ and $\mathcal{L}=\left\{\ell_{i}: i \in I\right\}$
- incidence (classically): $j \preccurlyeq \ell_{i} \Longleftrightarrow A_{j} \subseteq A_{i}^{\perp}$
- incidence (internally): $j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1$
- incidence (internally, again): $j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i}$ where

$$
C_{i}:=\left\{g \in G \mid A_{g}=A_{i}\right\}
$$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

Let $i \in G=\mathrm{SO}_{3}(\mathbb{R})$ be an involution.

- i corresponds to a half-turn of \mathbb{R}^{3}
- i determines a line: the axis A_{i}
- i determines a plane: A_{i}^{\perp}

The geometry:

- $\mathcal{P}=\{i: i \in I\}$ and $\mathcal{L}=\left\{\ell_{i}: i \in I\right\}$
- incidence (classically): $j \preccurlyeq \ell_{i} \Longleftrightarrow A_{j} \subseteq A_{i}^{\perp}$
- incidence (internally): $j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1$
- incidence (internally, again): $j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i}$ where

$$
C_{i}:=\left\{g \in G \mid A_{g}=A_{i}\right\}
$$

Fact (Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$)

$(\mathcal{P}, \mathcal{L}, \preccurlyeq)$ is a projective plane (namely $\mathbb{P}^{2}(\mathbb{R})$).

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow
$$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=\left\{g \in G: A_{g}=A_{i}\right\}$.

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=\left\{g \in G: A_{g}=A_{i}\right\}$.

Properties of C in $\mathrm{SO}_{3}(\mathbb{R})$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=\left\{g \in G: A_{g}=A_{i}\right\}$.

Properties of C in $\mathrm{SO}_{3}(\mathbb{R})$

1. C is tו: distinct conjugates of C intersect trivially

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=\left\{g \in G: A_{g}=A_{i}\right\}$.

Properties of C in $\mathrm{SO}_{3}(\mathbb{R})$

1. C is tו: distinct conjugates of C intersect trivially

- why: no nontrivial element has more than one axis

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=\left\{g \in G: A_{g}=A_{i}\right\}$.

Properties of C in $\mathrm{SO}_{3}(\mathbb{R})$

1. C is tו: distinct conjugates of C intersect trivially

- why: no nontrivial element has more than one axis

2. C is quasi-self-normalizing: $\left[N_{G}(C): C\right]$ is finite

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=\left\{g \in G: A_{g}=A_{i}\right\}$.

Properties of C in $\mathrm{SO}_{3}(\mathbb{R})$

1. C is tו: distinct conjugates of C intersect trivially

- why: no nontrivial element has more than one axis

2. C is quasi-self-normalizing: $\left[N_{G}(C): C\right]$ is finite

- here $\left[N_{G}(C): C\right]=2$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=\left\{g \in G: A_{g}=A_{i}\right\}$.

Properties of C in $\mathrm{SO}_{3}(\mathbb{R})$

1. C is tו: distinct conjugates of C intersect trivially

- why: no nontrivial element has more than one axis

2. C is quasi-self-normalizing: $\left[N_{G}(C): C\right]$ is finite

- here $\left[N_{G}(C): C\right]=2$
- why: g normalizes C_{i} \qquad

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=\left\{g \in G: A_{g}=A_{i}\right\}$.

Properties of C in $\mathrm{SO}_{3}(\mathbb{R})$

1. C is tו: distinct conjugates of C intersect trivially

- why: no nontrivial element has more than one axis

2. C is quasi-self-normalizing: $\left[N_{G}(C): C\right]$ is finite

- here $\left[N_{G}(C): C\right]=2$
- why: g normalizes $C_{i} \Longleftrightarrow g$ fixes $A_{i} \Longleftrightarrow$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=\left\{g \in G: A_{g}=A_{i}\right\}$.

Properties of C in $\mathrm{SO}_{3}(\mathbb{R})$

1. C is TI : distinct conjugates of C intersect trivially

- why: no nontrivial element has more than one axis

2. C is quasi-self-normalizing: $\left[N_{G}(C): C\right]$ is finite

- here $\left[N_{G}(C): C\right]=2$
- why: g normalizes $C_{i} \Longleftrightarrow g$ fixes $A_{i} \Longleftrightarrow\left(A_{g}=A_{i}\right.$ OR g is a half turn with $A_{g} \in A_{i}^{\perp}$)

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=\left\{g \in G: A_{g}=A_{i}\right\}$.

Properties of C in $\mathrm{SO}_{3}(\mathbb{R})$

1. C is tו: distinct conjugates of C intersect trivially

- why: no nontrivial element has more than one axis

2. C is quasi-self-normalizing: $\left[N_{G}(C): C\right]$ is finite

- here $\left[N_{G}(C): C\right]=2$
- why: g normalizes $C_{i} \Longleftrightarrow g$ fixes $A_{i} \Longleftrightarrow\left(A_{g}=A_{i}\right.$ OR g is a half turn with $A_{g} \in A_{i}^{\perp}$)

3. The conjugates of C (exactly) cover $G: G=\bigcup_{g \in G-N_{G}(C)} C^{g}$

Geometry of involutions in $\mathrm{SO}_{3}(\mathbb{R})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in C_{G}(i)-C_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=\left\{g \in G: A_{g}=A_{i}\right\}$.

Properties of C in $\mathrm{SO}_{3}(\mathbb{R})$

1. C is tו: distinct conjugates of C intersect trivially

- why: no nontrivial element has more than one axis

2. C is quasi-self-normalizing: $\left[N_{G}(C): C\right]$ is finite

- here $\left[N_{G}(C): C\right]=2$
- why: g normalizes $C_{i} \Longleftrightarrow g$ fixes $A_{i} \Longleftrightarrow\left(A_{g}=A_{i}\right.$ OR g is a half turn with $A_{g} \in A_{i}^{\perp}$)

3. The conjugates of C (exactly) cover $G: G=\bigcup_{g \in G-N_{G}(C)} C^{g}$

- why: every nontrivial $g \in G$ has a unique axis

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

Now we consider $G=\mathrm{PGL}_{2}(\mathbb{C})$.

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

Now we consider $G=\mathrm{PGL}_{2}(\mathbb{C})$.

Question

What if we consider the same (group theoretic) geometry as before?

- $\mathcal{P}=\{i: i \in I\}$ and $\mathcal{L}=\left\{\ell_{i}: i \in I\right\}$
$\bullet j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1$

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

Now we consider $G=\mathrm{PGL}_{2}(\mathbb{C})$.

Question

What if we consider the same (group theoretic) geometry as before?

- $\mathcal{P}=\{i: i \in I\}$ and $\mathcal{L}=\left\{\ell_{i}: i \in I\right\}$
$\bullet j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1$

Fact (Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$)

$(\mathcal{P}, \mathcal{L}, \preccurlyeq)$ is a generically defined projective plane:

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

Now we consider $G=\mathrm{PGL}_{2}(\mathbb{C})$.

Question

What if we consider the same (group theoretic) geometry as before?

- $\mathcal{P}=\{i: i \in I\}$ and $\mathcal{L}=\left\{\ell_{i}: i \in I\right\}$
$\bullet j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1$

Fact (Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$)

($\mathcal{P}, \mathcal{L}, \preccurlyeq$) is a generically defined projective plane:

- generic pairs of points (but not all) are connected by a unique line

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

Now we consider $G=\mathrm{PGL}_{2}(\mathbb{C})$.

Question

What if we consider the same (group theoretic) geometry as before?

- $\mathcal{P}=\{i: i \in I\}$ and $\mathcal{L}=\left\{\ell_{i}: i \in I\right\}$
$\bullet j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1$

Fact (Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$)

($\mathcal{P}, \mathcal{L}, \preccurlyeq$) is a generically defined projective plane:

- generic pairs of points (but not all) are connected by a unique line
- and dually for lines

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1
$$

Fix $i \in I$.

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1
$$

Fix $i \in I$. Then i is determined by two fixed points, say x and y, when acting naturally on the projective line. Set

$$
C_{i}:=G_{x, y}
$$

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1
$$

Fix $i \in I$. Then i is determined by two fixed points, say x and y, when acting naturally on the projective line. Set

$$
C_{i}:=G_{x, y}
$$

$$
g \in C_{G}(i)
$$

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1
$$

Fix $i \in I$. Then i is determined by two fixed points, say x and y, when acting naturally on the projective line. Set

$$
\begin{gathered}
C_{i}:=G_{x, y} \\
\left.g \in C_{G}(i) \Longleftrightarrow g \text { fixes }\{x, y\} \text { setwise (i.e. } C_{G}(i)=G_{\{x, y\}}\right)
\end{gathered}
$$

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1
$$

Fix $i \in I$. Then i is determined by two fixed points, say x and y, when acting naturally on the projective line. Set

$$
\begin{gathered}
C_{i}:=G_{x, y} \\
\left.g \in C_{G}(i) \Longleftrightarrow g \text { fixes }\{x, y\} \text { setwise (i.e. } C_{G}(i)=G_{\{x, y\}}\right) \\
\Longleftrightarrow g \in G_{x, y} \text { OR } g \text { swaps } x \text { and } y
\end{gathered}
$$

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1
$$

Fix $i \in I$. Then i is determined by two fixed points, say x and y, when acting naturally on the projective line. Set

$$
\begin{aligned}
& C_{i}:=G_{x, y} \\
& g \in C_{G}(i)\left.\Longleftrightarrow g \text { fixes }\{x, y\} \text { setwise (i.e. } C_{G}(i)=G_{\{x, y\}}\right) \\
& \Longleftrightarrow g \in G_{x, y} \text { OR } g \text { swaps } x \text { and } y \\
& \Longleftrightarrow g \in C_{i} \text { OR } g \in G_{\{x, y\}}-C_{i}
\end{aligned}
$$

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1
$$

Fix $i \in I$. Then i is determined by two fixed points, say x and y, when acting naturally on the projective line. Set

$$
\begin{aligned}
& C_{i}:=G_{x, y} \\
& g \in C_{G}(i)\left.\Longleftrightarrow g \text { fixes }\{x, y\} \text { setwise (i.e. } C_{G}(i)=G_{\{x, y\}}\right) \\
& \Longleftrightarrow g \in G_{x, y} \text { OR } g \text { swaps } x \text { and } y \\
& \Longleftrightarrow g \in C_{i} \text { OR } g \in G_{\{x, y\}}-C_{i}
\end{aligned}
$$

As before, $C_{G}(i)=N_{G}\left(C_{i}\right)$, so we find. . .

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow i j=j i \neq 1
$$

Fix $i \in I$. Then i is determined by two fixed points, say x and y, when acting naturally on the projective line. Set

$$
\begin{aligned}
& C_{i}:=G_{x, y} \\
& g \in C_{G}(i)\left.\Longleftrightarrow g \text { fixes }\{x, y\} \text { setwise (i.e. } C_{G}(i)=G_{\{x, y\}}\right) \\
& \Longleftrightarrow g \in G_{x, y} \text { OR } g \text { swaps } x \text { and } y \\
& \Longleftrightarrow g \in C_{i} \text { OR } g \in G_{\{x, y\}}-C_{i}
\end{aligned}
$$

As before, $C_{G}(i)=N_{G}\left(C_{i}\right)$, so we find. . .

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=G_{x, y}$.

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=G_{x, y}$.

Properties of C in $\mathrm{PGL}_{2}(\mathbb{C})$

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=G_{x, y}$.

Properties of C in $\mathrm{PGL}_{2}(\mathbb{C})$

1. C is TI

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=G_{x, y}$.

Properties of C in $\mathrm{PGL}_{2}(\mathbb{C})$

1. C is TI

- why: no nontrivial element has more than two fixed points

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=G_{x, y}$.

Properties of C in $\mathrm{PGL}_{2}(\mathbb{C})$

1. C is TI

- why: no nontrivial element has more than two fixed points

2. C is quasi-self-normalizing

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=G_{x, y}$.

Properties of C in $\mathrm{PGL}_{2}(\mathbb{C})$

1. C is TI

- why: no nontrivial element has more than two fixed points

2. C is quasi-self-normalizing

- again $\left[N_{G}(C): C\right]=2$

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=G_{x, y}$.

Properties of C in $\mathrm{PGL}_{2}(\mathbb{C})$

1. C is TI

- why: no nontrivial element has more than two fixed points

2. C is quasi-self-normalizing

- again $\left[N_{G}(C): C\right]=2$
- why: g normalizes $C_{i} \Longleftrightarrow(g$ fixes x and y OR g swaps x and $y)$

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=G_{x, y}$.

Properties of C in $\mathrm{PGL}_{2}(\mathbb{C})$

1. C is TI

- why: no nontrivial element has more than two fixed points

2. C is quasi-self-normalizing

- again $\left[N_{G}(C): C\right]=2$
- why: g normalizes $C_{i} \Longleftrightarrow(g$ fixes x and y OR g swaps x and $y)$

3. The conjugates of C generically cover $G: \bigcup_{g \in G-N_{G}(C)} C^{g}$ is generic in G

Geometry of involutions in $\mathrm{PGL}_{2}(\mathbb{C})$

$$
\text { incidence: } j \preccurlyeq \ell_{i} \Longleftrightarrow j \in N_{G}\left(C_{i}\right)-C_{i}
$$

Fix $C:=C_{i}=G_{x, y}$.

Properties of C in $\mathrm{PGL}_{2}(\mathbb{C})$

1. C is TI

- why: no nontrivial element has more than two fixed points

2. C is quasi-self-normalizing

- again $\left[N_{G}(C): C\right]=2$
- why: g normalizes $C_{i} \Longleftrightarrow(g$ fixes x and y OR g swaps x and $y)$

3. The conjugates of C generically cover $G: \bigcup_{g \in G-N_{G}(C)} C^{g}$ is generic in G

- why: generic $g \in G$ fix two points (unipotent elements are missed)

Some remarks

Some remarks

- Geometric similarities might not be unexpected: $\mathrm{PGL}_{2}(\mathbb{C})=\mathrm{SO}_{3}(\mathbb{C})$.

Some remarks

- Geometric similarities might not be unexpected: $\mathrm{PGL}_{2}(\mathbb{C})=\mathrm{SO}_{3}(\mathbb{C})$.
- Differences are not unexpected either:

Some remarks

- Geometric similarities might not be unexpected: $\mathrm{PGL}_{2}(\mathbb{C})=\mathrm{SO}_{3}(\mathbb{C})$.
- Differences are not unexpected either:
- $P \mathrm{PL}_{2}(\mathbb{C})$ is stable... and of finite Morley rank.

Some remarks

- Geometric similarities might not be unexpected: $\mathrm{PGL}_{2}(\mathbb{C})=\mathrm{SO}_{3}(\mathbb{C})$.
- Differences are not unexpected either:
- $\mathrm{PGL}_{2}(\mathbb{C})$ is stable... and of finite Morley rank.
- $\mathrm{SO}_{3}(\mathbb{R})$ is not.

Some remarks

- Geometric similarities might not be unexpected: $\mathrm{PGL}_{2}(\mathbb{C})=\mathrm{SO}_{3}(\mathbb{C})$.
- Differences are not unexpected either:
- $\mathrm{PGL}_{2}(\mathbb{C})$ is stable... and of finite Morley rank.
- $\mathrm{SO}_{3}(\mathbb{R})$ is not.
- Weisfeiler ${ }^{1}$ magic: the generically defined projective plane associated to $\mathrm{PGL}_{2}(\mathbb{C})$ can be completed to a genuine plane.
${ }^{1}$ The tragic story of Boris Weisfeiler's disappearance while hiking in Chile in 1985 is a must read.

Some remarks

- Geometric similarities might not be unexpected: $\mathrm{PGL}_{2}(\mathbb{C})=\mathrm{SO}_{3}(\mathbb{C})$.
- Differences are not unexpected either:
- $\mathrm{PGL}_{2}(\mathbb{C})$ is stable... and of finite Morley rank.
- $\mathrm{SO}_{3}(\mathbb{R})$ is not.
- Weisfeiler ${ }^{1}$ magic: the generically defined projective plane associated to $\mathrm{PGL}_{2}(\mathbb{C})$ can be completed to a genuine plane.
- The points of the (uncompleted plane) can be identified with the tori C_{i}. The missing points are the unipotent subgroups.
${ }^{1}$ The tragic story of Boris Weisfeiler's disappearance while hiking in Chile in 1985 is a must read.

Some remarks

- Geometric similarities might not be unexpected: $\mathrm{PGL}_{2}(\mathbb{C})=\mathrm{SO}_{3}(\mathbb{C})$.
- Differences are not unexpected either:
- $\mathrm{PGL}_{2}(\mathbb{C})$ is stable... and of finite Morley rank.
- $\mathrm{SO}_{3}(\mathbb{R})$ is not.
- Weisfeiler ${ }^{1}$ magic: the generically defined projective plane associated to $\mathrm{PGL}_{2}(\mathbb{C})$ can be completed to a genuine plane.
- The points of the (uncompleted plane) can be identified with the tori C_{i}. The missing points are the unipotent subgroups.
- The action of $\mathrm{PGL}_{2}(\mathbb{C})$ on the completed plane is in fact isomorphic to the one obtained from projectivizing the adjoint representation.

[^0]
Some remarks

- Geometric similarities might not be unexpected: $\mathrm{PGL}_{2}(\mathbb{C})=\mathrm{SO}_{3}(\mathbb{C})$.
- Differences are not unexpected either:
- $\mathrm{PGL}_{2}(\mathbb{C})$ is stable... and of finite Morley rank.
- $\mathrm{SO}_{3}(\mathbb{R})$ is not.
- Weisfeiler ${ }^{1}$ magic: the generically defined projective plane associated to $\mathrm{PGL}_{2}(\mathbb{C})$ can be completed to a genuine plane.
- The points of the (uncompleted plane) can be identified with the tori C_{i}. The missing points are the unipotent subgroups.
- The action of $\mathrm{PGL}_{2}(\mathbb{C})$ on the completed plane is in fact isomorphic to the one obtained from projectivizing the adjoint representation.
- The geometries can more-or-less be reconstructed from the properties of the subgroup C. This is the main point we want to explore.

[^1]
$\mathrm{SO}_{3}(\mathbb{R})$ vs $\mathrm{PGL}_{2}(\mathbb{C})$

A model-theoretic dividing line

Groups of finite Morley rank (fMr)

The broader context

The broader context

The broader context

The broader context

Algebraicity Conjecture

Algebraicity Conjecture

Algebraicity Conjecture

All groups

Simple groups of fMr

Algebraicity Conjecture

Algebraicity Conjecture:

Algebraicity Conjecture

Algebraicity Conjecture: the gap, \downarrow, does not exist.

Algebraicity Conjecture

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Algebraicity Conjecture

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Algebraicity Conjecture

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Algebraicity Conjecture

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Theorem (Altınel-Borovik-Cherlin-2008)

The Algebraicity Conjecture is true for those groups with an infinite elementary abelian 2-subgroup.

Algebraicity Conjecture

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Theorem (Altınel-Borovik-Cherlin—2008)

The Algebraicity Conjecture is true for those groups with an infinite elementary abelian 2-subgroup.

- Thus, a counterexample to the conjecture has $m_{2}(G)<\infty$.

Algebraicity Conjecture

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Theorem (Altınel-Borovik-Cherlin—2008)

The Algebraicity Conjecture is true for those groups with an infinite elementary abelian 2-subgroup.

- Thus, a counterexample to the conjecture has $m_{2}(G)<\infty$.
- In fact, a minimal counterexample to the conjecture has $\mathrm{pr}_{2}(G) \leq 3$.
- $\operatorname{pr}_{2}(G)$ is the maximal k such that $\bigoplus_{k} Z\left(2^{\infty}\right) \leq G$

Algebraicity Conjecture

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Theorem (Altınel-Borovik-Cherlin—2008)

The Algebraicity Conjecture is true for those groups with an infinite elementary abelian 2-subgroup.

- Thus, a counterexample to the conjecture has $m_{2}(G)<\infty$.
- In fact, a minimal counterexample to the conjecture has $\mathrm{pr}_{2}(G) \leq 3$.
- $\operatorname{pr}_{2}(G)$ is the maximal k such that $\bigoplus_{k} Z\left(2^{\infty}\right) \leq G$
- Our focus-though not evident at the outset-will be on groups with $\mathrm{pr}_{2}(G)=1$, similar to $\mathrm{PGL}_{2}(\mathbb{C})$ (and $\mathrm{SO}_{3}(\mathbb{R})$). This includes a particularly persistent potential counterexample to the Algebraicity Conjecture.

Algebraicity Conjecture

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Theorem (Altınel-Borovik-Cherlin—2008)

The Algebraicity Conjecture is true for those groups with an infinite elementary abelian 2-subgroup.

- Thus, a counterexample to the conjecture has $m_{2}(G)<\infty$.
- In fact, a minimal counterexample to the conjecture has $\mathrm{pr}_{2}(G) \leq 3$.
- $\operatorname{pr}_{2}(G)$ is the maximal k such that $\bigoplus_{k} Z\left(2^{\infty}\right) \leq G$
- Our focus-though not evident at the outset-will be on groups with $\mathrm{pr}_{2}(G)=1$, similar to $\mathrm{PGL}_{2}(\mathbb{C})$ (and $\mathrm{SO}_{3}(\mathbb{R})$). This includes a particularly persistent potential counterexample to the Algebraicity Conjecture.
- In general, the less 2-torsion a group has, the harder it becomes to analyze by "standard/generic" methods.

Geometry of involutions in quasi-Frobenius groups

The setting

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius:

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

1. C is TI (disjoint from its distinct conjugates)

The setting

Global Hypotheses

Let G be a connected group of fMr with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

1. C is TI (disjoint from its distinct conjugates)
2. C is quasi-self-normalizing (finite index in its normalizer)

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

1. C is TI (disjoint from its distinct conjugates)
2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1 .+2.) \Longrightarrow 2$.' conjugates of C generically cover G.

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

1. C is TI (disjoint from its distinct conjugates)
2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1 .+2.) \Longrightarrow 2$.' conjugates of C generically cover G.

Proof.

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

1. C is TI (disjoint from its distinct conjugates)
2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1 .+2.) \Longrightarrow 2$.' conjugates of C generically cover G.

Proof.

$$
\operatorname{rk}\left(\bigsqcup_{g \in G-N_{G}(C)} C^{g}\right)=
$$

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

1. C is TI (disjoint from its distinct conjugates)
2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1 .+2.) \Longrightarrow 2$.' conjugates of C generically cover G.

Proof.

$$
\operatorname{rk}\left(\bigsqcup_{g \in G-N_{G}(C)} C^{g}\right)=\operatorname{rk}\left(G / N_{G}(C)\right)+\mathrm{rk} C=
$$

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

1. C is TI (disjoint from its distinct conjugates)
2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1 .+2.) \Longrightarrow 2$.' conjugates of C generically cover G.

Proof.

$$
\operatorname{rk}\left(\bigsqcup_{g \in G-N_{G}(C)} C^{g}\right)=\mathrm{rk}\left(G / N_{G}(C)\right)+\mathrm{rk} C=\mathrm{rk} G-\mathrm{rk} N_{G}(C)+\mathrm{rk} C
$$

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

1. C is TI (disjoint from its distinct conjugates)
2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1 .+2.) \Longrightarrow 2$.' conjugates of C generically cover G.

Proof.

$$
\begin{align*}
\mathrm{rk}\left(\bigsqcup_{g \in G-N_{G}(C)} C^{g}\right) & =\mathrm{rk}\left(G / N_{G}(C)\right)+\mathrm{rk} C=\mathrm{rk} G-\mathrm{rk} N_{G}(C)+\mathrm{rk} C \\
& =\mathrm{rk} G-\mathrm{rk}\left(N_{G}(C) / C\right)=
\end{align*}
$$

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

1. C is TI (disjoint from its distinct conjugates)
2. C is quasi-self-normalizing (finite index in its normalizer)

Notice that $(1 .+2.) \Longrightarrow 2$.' conjugates of C generically cover G.

Proof.

$$
\begin{aligned}
\mathrm{rk}\left(\bigsqcup_{g \in G-N_{G}(C)} C^{g}\right) & =\mathrm{rk}\left(G / N_{G}(C)\right)+\mathrm{rk} C=\mathrm{rk} G-\mathrm{rk} N_{G}(C)+\mathrm{rk} C \\
& =\mathrm{rk} G-\mathrm{rk}\left(N_{G}(C) / C\right)=\mathrm{rk} G+0
\end{aligned}
$$

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

1. C is TI (disjoint from its distinct conjugates)
2. C is quasi-self-normalizing (finite index in its normalizer)

In fact,

Proof.

$$
\begin{aligned}
\mathrm{rk}\left(\bigsqcup_{g \in G-N_{G}(C)} C^{g}\right) & =\mathrm{rk}\left(G / N_{G}(C)\right)+\mathrm{rk} C=\mathrm{rk} G-\mathrm{rk} N_{G}(C)+\mathrm{rk} C \\
& =\mathrm{rk} G-\mathrm{rk}\left(N_{G}(C) / C\right)=\mathrm{rk} G+0
\end{aligned}
$$

The setting

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius: G has a connected subgroup C such that

1. C is TI (disjoint from its distinct conjugates)
2. C is quasi-self-normalizing (finite index in its normalizer)

In fact, $1 . \Longrightarrow(2 . \Longleftrightarrow 2$.' conjugates of C generically cover G.)

Proof.

$$
\begin{aligned}
\mathrm{rk}\left(\bigsqcup_{g \in G-N_{G}(C)} C^{g}\right) & =\mathrm{rk}\left(G / N_{G}(C)\right)+\mathrm{rk} C=\mathrm{rk} G-\mathrm{rk} N_{G}(C)+\mathrm{rk} C \\
& =\mathrm{rk} G-\mathrm{rk}\left(N_{G}(C) / C\right)=\mathrm{rk} G+0
\end{aligned}
$$

A dichotomy

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$, i.e.

1. C is TI
2. C is almost self-normalizing
2.' conjugates of C generically cover G

A dichotomy

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$, i.e.

1. C is TI
2. C is almost self-normalizing
2.' conjugates of C generically cover G

Main Alternative

Precisely one of the following occurs:

A dichotomy

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$, i.e.

1. C is TI
2. C is almost self-normalizing
2.' conjugates of C generically cover G

Main Alternative

Precisely one of the following occurs:

- $\left[N_{G}(C): C\right]$ is odd (possibly 1)

A dichotomy

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$, i.e.

1. C is TI
2. C is almost self-normalizing
2.' conjugates of C generically cover G

Main Alternative

Precisely one of the following occurs:

- $\left[N_{G}(C): C\right]$ is odd (possibly 1)
- $\left[N_{G}(C): C\right]=2$

A dichotomy

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$, i.e.

1. C is TI
2. C is almost self-normalizing
2.' conjugates of C generically cover G

Main Alternative

Precisely one of the following occurs:

- $\left[N_{G}(C): C\right]$ is odd (possibly 1)
- $\left[N_{G}(C): C\right]=2$
- this implies $C=C_{G}^{\circ}(i), N_{G}(C)=C_{G}(i)$, and $N_{G}(C)=C \rtimes \omega$ with ω inverting C

A dichotomy

Global Hypotheses

Let G be a connected group of $f \mathrm{Mr}$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$, i.e.

1. C is TI
2. C is almost self-normalizing
2.' conjugates of C generically cover G

Main Alternative

Precisely one of the following occurs:

- $\left[N_{G}(C): C\right]$ is odd (possibly 1)
- $\left[N_{G}(C): C\right]=2$
- this implies $C=C_{G}^{\circ}(i), N_{G}(C)=C_{G}(i)$, and $N_{G}(C)=C \rtimes \omega$ with ω inverting C (as in $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$)

Towards the main result

Both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$ satisfy all of the group-theoretic conditions in our Global Hypotheses (as well as $\left[N_{G}(C): C\right]=2$). However, there is a difference:

Towards the main result

Both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$ satisfy all of the group-theoretic conditions in our Global Hypotheses (as well as $\left[N_{G}(C): C\right]=2$). However, there is a difference:

- the conjugates of C genuinely cover $\mathrm{SO}_{3}(\mathbb{R})$

Towards the main result

Both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$ satisfy all of the group-theoretic conditions in our Global Hypotheses (as well as $\left[N_{G}(C): C\right]=2$). However, there is a difference:

- the conjugates of C genuinely cover $\mathrm{SO}_{3}(\mathbb{R})$
- the conjugates of C generically but not genuinely cover $\mathrm{PGL}_{2}(\mathbb{C})$

Towards the main result

Both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$ satisfy all of the group-theoretic conditions in our Global Hypotheses (as well as $\left[N_{G}(C): C\right]=2$). However, there is a difference:

- the conjugates of C genuinely cover $\mathrm{SO}_{3}(\mathbb{R})$
- the conjugates of C generically but not genuinely cover $\mathrm{PGL}_{2}(\mathbb{C})$

We reframe this dividing line using the following notion.

Towards the main result

Both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$ satisfy all of the group-theoretic conditions in our Global Hypotheses (as well as $\left[N_{G}(C): C\right]=2$). However, there is a difference:

- the conjugates of C genuinely cover $\mathrm{SO}_{3}(\mathbb{R})$
- the conjugates of C generically but not genuinely cover $\mathrm{PGL}_{2}(\mathbb{C})$

We reframe this dividing line using the following notion.

Definition

An element is strongly real (SR) if it is inverted by some involution.

Towards the main result

Both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$ satisfy all of the group-theoretic conditions in our Global Hypotheses (as well as $\left[N_{G}(C): C\right]=2$). However, there is a difference:

- the conjugates of C genuinely cover $\mathrm{SO}_{3}(\mathbb{R})$
- the conjugates of C generically but not genuinely cover $\mathrm{PGL}_{2}(\mathbb{C})$

We reframe this dividing line using the following notion.

Definition

An element is strongly real (SR) if it is inverted by some involution.

Example

All elements of $\mathrm{SO}_{3}(\mathbb{R})$ are strongly real.

Towards the main result

Both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$ satisfy all of the group-theoretic conditions in our Global Hypotheses (as well as $\left[N_{G}(C): C\right]=2$). However, there is a difference:

- the conjugates of C genuinely cover $\mathrm{SO}_{3}(\mathbb{R})$
- the conjugates of C generically but not genuinely cover $\mathrm{PGL}_{2}(\mathbb{C})$

We reframe this dividing line using the following notion.

Definition

An element is strongly real (SR) if it is inverted by some involution.

Example

All elements of $\mathrm{SO}_{3}(\mathbb{R})$ are strongly real. The same is true in $\mathrm{PGL}_{2}(\mathbb{C})$.

Towards the main result

Both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$ satisfy all of the group-theoretic conditions in our Global Hypotheses (as well as $\left[N_{G}(C): C\right]=2$). However, there is a difference:

- the conjugates of C genuinely cover $\mathrm{SO}_{3}(\mathbb{R})$
- the conjugates of C generically but not genuinely cover $\mathrm{PGL}_{2}(\mathbb{C})$

We reframe this dividing line using the following notion.

Definition

An element is strongly real (SR) if it is inverted by some involution.

Example

All elements of $\mathrm{SO}_{3}(\mathbb{R})$ are strongly real. The same is true in $\mathrm{PGL}_{2}(\mathbb{C})$.

- the conjugates of C contain all SR elements of $\mathrm{SO}_{3}(\mathbb{R})$

Towards the main result

Both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$ satisfy all of the group-theoretic conditions in our Global Hypotheses (as well as $\left[N_{G}(C): C\right]=2$). However, there is a difference:

- the conjugates of C genuinely cover $\mathrm{SO}_{3}(\mathbb{R})$
- the conjugates of C generically but not genuinely cover $\mathrm{PGL}_{2}(\mathbb{C})$

We reframe this dividing line using the following notion.

Definition

An element is strongly real (SR) if it is inverted by some involution.

Example

All elements of $\mathrm{SO}_{3}(\mathbb{R})$ are strongly real. The same is true in $\mathrm{PGL}_{2}(\mathbb{C})$.

- the conjugates of C contain all SR elements of $\mathrm{SO}_{3}(\mathbb{R})$
- the conjugates of C do not contain all SR elements of $\mathrm{PGL}_{2}(\mathbb{C})$

The main result and consequences

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$.

The main result and consequences

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

The main result and consequences

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Corollary

Let G be a connected group of $f M r$ with $m_{2}(G)<\infty$. If G has a definable, connected subgroup C whose conjugates partition G, then $m_{2}(G)=0$.

The main result and consequences

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Corollary

Let G be a connected group of $f M r$ with $m_{2}(G)<\infty$. If G has a definable, connected subgroup C whose conjugates partition G, then $m_{2}(G)=0$.

Corollary (Nesin; Borovik-Poizat; Corredor)

A simple "bad group" of fMr has no involutions.

The main result and consequences

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Corollary

Let G be a connected group of fMr with $m_{2}(G)<\infty$. If G has a definable, connected subgroup C whose conjugates partition G, then $m_{2}(G)=0$.

Corollary (Nesin; Borovik-Poizat; Corredor)

A simple "bad group" of fMr has no involutions.

Corollary (Borovik-Burdges)

If $G \leq \mathrm{GL}_{n}(K)$ is simple, definable, but not Zariski closed for K of $f M r$ in characteristic 0 , then G has no involutions.

Proof sketch

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Proof sketch

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Assume the conjugates of C do contain all SR elements of G.

Proof sketch

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Assume the conjugates of C do contain all SR elements of G.
Step 1: $\left[N_{G}(C): C\right]$ is even (so $\left[N_{G}(C): C\right]=2$ with all consequences)

Proof sketch

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Assume the conjugates of C do contain all SR elements of G.
Step 1: $\left[N_{G}(C): C\right]$ is even (so $\left[N_{G}(C): C\right]=2$ with all consequences)
Step 2: the conjugates of C genuinely cover G

Proof sketch

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Assume the conjugates of C do contain all SR elements of G.
Step 1: $\left[N_{G}(C): C\right]$ is even (so $\left[N_{G}(C): C\right]=2$ with all consequences)
Step 2: the conjugates of C genuinely cover G
Step 3: the geometry-but not just a plane: a 3-space

Proof sketch

Step 3: the geometry-but not just a plane: a 3-space

Proof sketch

Step 3: the geometry-but not just a plane: a 3-space

Proof sketch

Step 3: the geometry—but not just a plane: a 3-space

Motivation: in $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$, the set of involutions incident with i was the coset $N_{G}\left(C_{i}\right)-C_{i}$. This should be a line.

Proof sketch

Step 3: the geometry-but not just a plane: a 3-space

Motivation: in $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$, the set of involutions incident with i was the coset $N_{G}\left(C_{i}\right)-C_{i}$. This should be a line.

Points: all elements of G (not just I)

Proof sketch

Step 3: the geometry—but not just a plane: a 3-space

Motivation: in $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$, the set of involutions incident with i was the coset $N_{G}\left(C_{i}\right)-C_{i}$. This should be a line.

Points: all elements of G (not just I)
Lines: all translates of all conjugates of C (not just $N_{G}\left(C^{g}\right)-C^{g}$)

- i.e. $\{g C h: g, h \in G\}$

Proof sketch

Step 3: the geometry-but not just a plane: a 3-space

Motivation: in $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$, the set of involutions incident with i was the coset $N_{G}\left(C_{i}\right)-C_{i}$. This should be a line.

Points: all elements of G (not just I)
Lines: all translates of all conjugates of C (not just $N_{G}\left(C^{g}\right)-C^{g}$)

- i.e. $\{g C h: g, h \in G\}$

Planes: all translates of I (not just I)

- i.e. $\{g l h: g, h \in G\}$

Proof sketch

Step 3: the geometry—but not just a plane: a 3-space

Motivation: in $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$, the set of involutions incident with i was the coset $N_{G}\left(C_{i}\right)-C_{i}$. This should be a line.

Points: all elements of G (not just I)
Lines: all translates of all conjugates of C (not just $N_{G}\left(C^{g}\right)-C^{g}$)

- i.e. $\{g C h: g, h \in G\}$

Planes: all translates of I (not just I)

- i.e. $\{g l h: g, h \in G\}$

This defines a (genuine!) 3-dimensional projective space Γ.

Proof sketch

Step 3: the geometry—but not just a plane: a 3-space

Motivation: in $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$, the set of involutions incident with i was the coset $N_{G}\left(C_{i}\right)-C_{i}$. This should be a line.

Points: all elements of G (not just I)
Lines: all translates of all conjugates of C (not just $\left.N_{G}\left(C^{g}\right)-C^{g}\right)$

- i.e. $\{g C h: g, h \in G\}$

Planes: all translates of I (not just I)

- i.e. $\{g l h: g, h \in G\}$

This defines a (genuine!) 3-dimensional projective space Γ. And, Γ carries an action of G on the left and right.

Proof sketch

Step 3: the geometry—but not just a plane: a 3-space

Motivation: in $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$, the set of involutions incident with i was the coset $N_{G}\left(C_{i}\right)-C_{i}$. This should be a line.

Points: all elements of G (not just I)
Lines: all translates of all conjugates of C (not just $\left.N_{G}\left(C^{g}\right)-C^{g}\right)$

- i.e. $\{g C h: g, h \in G\}$

Planes: all translates of I (not just I)

- i.e. $\{g l h: g, h \in G\}$

This defines a (genuine!) 3-dimensional projective space Γ. And, Γ carries an action of G on the left and right.

That it is genuine hinges on the conjugates of C genuinely covering G.

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.
Step 4: Contradiction.

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.
Step 4: Contradiction.

- Hilbert: $\Gamma \simeq \mathbb{P}^{3}(\mathbb{K})$ with \mathbb{K} definable,

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.
Step 4: Contradiction.

- Hilbert: $\Gamma \simeq \mathbb{P}^{3}(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.
Step 4: Contradiction.

- Hilbert: $\Gamma \simeq \mathbb{P}^{3}(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on 「 by left multiplication,

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.
Step 4: Contradiction.

- Hilbert: $\Gamma \simeq \mathbb{P}^{3}(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so $G \leq \operatorname{Aut}(\Gamma)=\mathrm{PGL}_{3}(\mathbb{K})$

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.
Step 4: Contradiction.

- Hilbert: $\Gamma \simeq \mathbb{P}^{3}(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so $G \leq \operatorname{Aut}(\Gamma)=\mathrm{PGL}_{3}(\mathbb{K})$
- Note: C is abelian,

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.

The set of involutions forms a plane, with the geometry as before.
Step 4: Contradiction.

- Hilbert: $\Gamma \simeq \mathbb{P}^{3}(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so $G \leq \operatorname{Aut}(\Gamma)=\mathrm{PGL}_{3}(\mathbb{K})$
- Note: C is abelian, so \bar{C} (its closure in $\mathrm{PGL}_{3}(\mathbb{K})$) is as well

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.
The set of involutions forms a plane, with the geometry as before.
Step 4: Contradiction.
- Hilbert: $\Gamma \simeq \mathbb{P}^{3}(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so $G \leq \operatorname{Aut}(\Gamma)=P L_{3}(\mathbb{K})$
- Note: C is abelian, so \bar{C} (its closure in $\mathrm{PGL}_{3}(\mathbb{K})$) is as well
- Borel: \bar{C} (hence C) has a fixed point in it's action on $\mathbb{P}^{3}(\mathbb{K})$

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.
The set of involutions forms a plane, with the geometry as before.
Step 4: Contradiction.
- Hilbert: $\Gamma \simeq \mathbb{P}^{3}(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so $G \leq \operatorname{Aut}(\Gamma)=P L_{3}(\mathbb{K})$
- Note: C is abelian, so \bar{C} (its closure in $\mathrm{PGL}_{3}(\mathbb{K})$) is as well
- Borel: \bar{C} (hence C) has a fixed point in it's action on $\mathbb{P}^{3}(\mathbb{K})$
- But the action is regular.

Proof sketch

Aside

This construction works in both $\mathrm{SO}_{3}(\mathbb{R})$ and $\mathrm{PGL}_{2}(\mathbb{C})$.

- It turns $\mathrm{SO}_{3}(\mathbb{R})$ into a 3-dimensional projective space.
- It turns $\mathrm{PGL}_{2}(\mathbb{C})$ into a generically defined 3-dimensional projective space.
The set of involutions forms a plane, with the geometry as before.
Step 4: Contradiction.
- Hilbert: $\Gamma \simeq \mathbb{P}^{3}(\mathbb{K})$ with \mathbb{K} definable, so \mathbb{K} is algebraically closed
- G acts (regularly!) on Γ by left multiplication, so $G \leq \operatorname{Aut}(\Gamma)=P L_{3}(\mathbb{K})$
- Note: C is abelian, so \bar{C} (its closure in $\mathrm{PGL}_{3}(\mathbb{K})$) is as well
- Borel: \bar{C} (hence C) has a fixed point in it's action on $\mathbb{P}^{3}(\mathbb{K})$
- But the action is regular. Contradiction.

Final thoughts

Reflections

The Geometric Theorem (Deloro-W)

Let G be a connected group of fMr with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Reflections

The Geometric Theorem (Deloro-W)

Let G be a connected group of fMr with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Remarks

Reflections

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Remarks

- The theorem says (slightly more than): the geometry of involutions of such a G, in a ranked context, can not be a genuine projective space.

Reflections

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Remarks

- The theorem says (slightly more than): the geometry of involutions of such a G, in a ranked context, can not be a genuine projective space.
- We can certainly ask for more: actual recognition.

Reflections

The Geometric Theorem (Deloro-W)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Remarks

- The theorem says (slightly more than): the geometry of involutions of such a G, in a ranked context, can not be a genuine projective space.
- We can certainly ask for more: actual recognition.
- Recognition of $\mathrm{PGL}_{2}(K)$ in a ranked context

Reflections

The Geometric Theorem (Deloro-W)

Let G be a connected group of fMr with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Remarks

- The theorem says (slightly more than): the geometry of involutions of such a G, in a ranked context, can not be a genuine projective space.
- We can certainly ask for more: actual recognition.
- Recognition of $\mathrm{PGL}_{2}(K)$ in a ranked context
- Recognition of $\mathrm{PGL}_{2}(K), \mathrm{SO}_{3}(\mathcal{R})$, and other 'forms of type A_{1} ' in a suitable dimensional context

Reflections

The Geometric Theorem (Deloro-W)

Let G be a connected group of fMr with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Remarks

- The theorem says (slightly more than): the geometry of involutions of such a G, in a ranked context, can not be a genuine projective space.
- We can certainly ask for more: actual recognition.
- Recognition of $\mathrm{PGL}_{2}(K)$ in a ranked context
- Recognition of $\mathrm{PGL}_{2}(K), \mathrm{SO}_{3}(\mathcal{R})$, and other 'forms of type A_{1} ' in a suitable dimensional context
- To be precise, we need to assume G is nonsolvable

Reflections

The Geometric Theorem (Deloro-W)

Let G be a connected group of fMr with $0<m_{2}(G)<\infty$. Suppose G is quasi-Frobenius with respect to $C<G$. Then the conjugates of C do not contain all SR elements of G.

Remarks

- The theorem says (slightly more than): the geometry of involutions of such a G, in a ranked context, can not be a genuine projective space.
- We can certainly ask for more: actual recognition.
- Recognition of $\mathrm{PGL}_{2}(K)$ in a ranked context
- Recognition of $\mathrm{PGL}_{2}(K), \mathrm{SO}_{3}(\mathcal{R})$, and other 'forms of type A_{1} ' in a suitable dimensional context
- To be precise, we need to assume G is nonsolvable
- To be realistic, we need to assume G is not honestly Frobenius

Recognition results

Theorem (Zamour)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to $C<G$. If C is solvable and $\left[N_{G}(C): C\right]=2$, then either C is a maximal connected solvable of G or $G \cong \mathrm{PGL}_{2}(K)$.

Recognition results

Theorem (Zamour)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to $C<G$. If C is solvable and $\left[N_{G}(C): C\right]=2$, then either C is a maximal connected solvable of G or $G \cong \mathrm{PGL}_{2}(K)$.

Remarks

Recognition results

Theorem (Zamour)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to $C<G$. If C is solvable and $\left[N_{G}(C): C\right]=2$, then either C is a maximal connected solvable of G or $G \cong \mathrm{PGL}_{2}(K)$.

Remarks

- Corredor and Deloro have shown that the hypothesis that $\left[N_{G}(C): C\right]=2$ can be removed from the previous theorem.

Recognition results

Theorem (Zamour)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to $C<G$. If C is solvable and $\left[N_{G}(C): C\right]=2$, then either C is a maximal connected solvable of G or $G \cong \mathrm{PGL}_{2}(K)$.

Remarks

- Corredor and Deloro have shown that the hypothesis that $\left[N_{G}(C): C\right]=2$ can be removed from the previous theorem.
- Zamour and separately Deloro and Onshuus have related results in an o-minimal context.

Recognition results

Theorem (Zamour)

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to $C<G$. If C is solvable and $\left[N_{G}(C): C\right]=2$, then either C is a maximal connected solvable of G or $G \cong \mathrm{PGL}_{2}(K)$.

Remarks

- Corredor and Deloro have shown that the hypothesis that $\left[N_{G}(C): C\right]=2$ can be removed from the previous theorem.
- Zamour and separately Deloro and Onshuus have related results in an o-minimal context.
- So what might this be working towards. . .

The Conjecture

A_{1}-Conjecture

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to $C<G$.

The Conjecture

A_{1}-Conjecture

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to $C<G$. Also assume a level of modesty: $\left[N_{G}(C): C\right]$ is even.

The Conjecture

A_{1}-Conjecture

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to $C<G$. Also assume a level of modesty: $\left[N_{G}(C): C\right]$ is even. Then $G \cong \mathrm{PGL}_{2}(K)$.

The Conjecture

A_{1}-Conjecture

Let G be a connected group of $f M r$ with $0<m_{2}(G)<\infty$. Suppose G is a nonsolvable quasi-Frobenius group with respect to $C<G$. Also assume a level of modesty: $\left[N_{G}(C): C\right]$ is even. Then $G \cong \mathrm{PGL}_{2}(K)$.

Moreover, in a suitable 'dimensional' setting (generalizing the fMr and o-minimal contexts), one still finds nice recognition of G, including now $\mathrm{PGL}_{2}(\mathrm{~K}), \mathrm{SO}_{3}(\mathcal{R})$, and other related groups.

Thank You

[^0]: ${ }^{1}$ The tragic story of Boris Weisfeiler's disappearance while hiking in Chile in 1985 is a must read.

[^1]: ${ }^{1}$ The tragic story of Boris Weisfeiler's disappearance while hiking in Chile in 1985 is a must read.

