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Definition

A Heyting algebra is a bounded lattice A such that
∧ : A2 → A has a residual →: A2 → A given by
a ∧ x ≤ b ⇐⇒ x ≤ a→ b.

The class HA of Heyting algebras is equationally definable,
hence forms a variety.

Heyting algebras are rather non-symmetric objects that pop
up in different branches of mathematics.
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Examples from logic

A standard example of a Heyting algebra is the Lindenbaum
algebra L of the intuitionistic calculus.

In fact, L generates HA.

An intermediate logic is a logic between intuitionistic and
classical logics (Umezawa, 1950s).

The Lindenbaum algebra of each intermediate logic is a
Heyting algebra.

The lattice of intermediate logics is dually isomorphic to the
lattice of nontrivial varieties of Heyting algebras.
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Other examples

Topology: The opens O(X ) of each topological space X form
a Heyting algebra, where U → V = int(Uc ∪ V ).

Kripke semantics: In particular, the upsets Up(X ) of each
poset X form a Heyting algebra.

Locale theory: Every locale is a Heyting algebra. In fact, a
complete lattice is a Heyting algebra iff it is a locale (satisfies
the infinite distributive law a ∧

∨
S =

∨
{a ∧ s | s ∈ S}).

Domain theory: Every continuous distributive lattice is a
Heyting algebra.

Topos theory: The subobject classifier in every topos is a
Heyting algebra.

Universal algebra: Every algebraic distributive lattice is a
Heyting algebra. Thus, the congruence lattice of every algebra
in a congruence-distributive variety is a Heyting algebra.
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Interior operators and Heyting algebras

An interior operator on a boolean algebra is a unary function
� : B → B that satisfies the Kuratowski axioms: �1 = 1,
�(a ∧ b) = �a ∧�b, �a ≤ a, and �a ≤ ��a.

The fixpoints Fix(�) form a bounded sublattice of B which is
a Heyting algebra, where a→ b = �(a∗ ∨ b). Moreover, a
bounded sublattice L of B is a Heyting algebra iff the
embedding L ↪→ B has a right adjoint.

Let IA be the variety of interior algebras. Associating with
each (B,�) ∈ IA the fixpoints Fix(�) defines a functor
F : IA→ HA.
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Boolean envelopes

This functor has a left adjoint L : HA→ IA.

For a Heyting algebra A, let BA be the boolean envelope of A
(the boolean algebra freely generated by A).

We can write each element of BA in the conjunctive normal
form: x =

∧n
i=1(a∗i ∨ bi ), where ai , bi ∈ A and a∗i is the

complement of ai in BA.

Define �Ax =
∧n

i=1(ai → bi ), where → is the implication in
A.

Then (BA,�A) ∈ IA and this correspondence extends to a
functor L : HA→ IA that is left adjoint to F : IA→ HA.
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Modal companions

For a variety U of interior algebras, the class
F (U) = {F (B,�) | (B,�) ∈ U} is a variety of Heyting
algebras.

Let V be a variety of Heyting algebras. We call a variety U of
interior algebras a modal companion of V if F (U) = V.

Each V has many modal companions (often continuum many).

F−1(V) := {(B,�) | F (B,�) ∈ V} is the largest modal
companion of V (Gödel translation).

The class L(V) = {L(A) | A ∈ V} may not be a variety of
interior algebras (may not be closed under products).

Let L∗(V) be the variety generated by L(V).

Then L∗(V) is the least modal companion of V.
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Hausdorff residue and Grzegorczyk algebras

Let ♦ be the closure operator defined by ♦a = (�a∗)∗.

The Hausdorff residue is defined by ρ(a) = a ∧ ♦(♦a ∧ a∗).

Define ρk+1(a) = ρ(ρk(a)) and call a cyclic if a 6= 0 and
ρk(a) = ρk+1(a) 6= 0 for some k .

An interior algebra is a Grzegorczyk algebra if it has no cyclic
elements.
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Blok-Esakia theorem

The variety GRZ of Grzegorczyk algebras is exactly the
variety generated by L(HA).

Therefore, GRZ is the least modal companion of HA.

The modal companions of V form the interval
[L∗(V),F−1(V)] in the lattice of subvarieties of IA.

L∗ is an isomorphism from the lattice of varieties of Heyting
algebras to the lattice of varieties of Grzegorczyk algebras
(Blok, Esakia, 1976).
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Priestley duals of Heyting algebras

For a Heyting algebra A, let XA be the poset of prime filters
of A (ordered by inclusion).

For a ∈ A, let ϕ(a) = {x ∈ XA | a ∈ x} (Stone map).

The Priestley topology on XA is given by the subbasis
{ϕ(a) | a ∈ A} ∪ {ϕ(a)c | a ∈ A}.
This is a Stone topology on XA (zero-dimensional, compact,
Hausdorff). Moreover, if x 6≤ y , then x can be separated from
y by a clopen upset (Priestley separation).

Since A is a Heyting algebra, the order is continuous (the
downset of clopen is clopen).
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The Priestley topology on XA is given by the subbasis
{ϕ(a) | a ∈ A} ∪ {ϕ(a)c | a ∈ A}.
This is a Stone topology on XA (zero-dimensional, compact,
Hausdorff). Moreover, if x 6≤ y , then x can be separated from
y by a clopen upset (Priestley separation).

Since A is a Heyting algebra, the order is continuous (the
downset of clopen is clopen).
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Esakia spaces

An Esakia space is a Stone space X equipped with a
continuous partial order ≤.

An Esakia morphism is a continuous map f : X → Y such
that ↑f (x) = f [↑x ] (p-morphism)

Let ES be the category of Esakia spaces and Esakia
morphisms.

Esakia duality: HA is dually equivalent to ES.
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Jónsson-Tarski duality for interior algebras

For an interior algebra (B,�), let XB be the Stone space
(space of ultrafilters) of B.

Define v on XB by x v y iff �−1[x ] ⊆ y (�a ∈ x implies
a ∈ y).

Then v is a continuous pre-order on XB .

Let PES be the category of pre-ordered Esakia spaces and
continuous p-morphisms.

Jónsson-Tarski duality for Interior Algebras: IA is dually
equivalent to PES.
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Skeletal algebras

Call an interior algebra (B,�) skeletal if B is the Boolean
envelope of the Heyting algebra Fix(�) of fixpoints of �.

(B,�) is skeletal iff XB is an Esakia space (so the preorder v
on XB is a partial order).

The category SA of skeletal algebras is equivalent to HA.

Observe that HA is a variety, but SA is not. In fact, every
variety of Grzegorczyk algebras is generated by skeletal
algebras (Blok’s lemma).
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Hosoi slices

The depth of a Heyting algebra A is the maximal length of
chains in XA provided the max is finite. Otherwise it is infinite.

The depth of a variety V of Heyting algebras is ≤ n if n
bounds the depths of all A ∈ V. Otherwise it is infinite.

For each n, there exist the least and greatest varieties of
depth n. The least one is the variety Cn generated by the
(n + 1)-chain and the greatest is the variety HAn of all
Heyting algebras of depth n.

This provides the following partition of the lattice of all
varieties of Heyting algebras into slices (Hosoi’s classification).
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Cardinality of Sn

S0 only consists of the trivial variety.

S1 only consists of the variety BA = C1 = HA1.

S2 is countable.

Let An be the Heyting algebra obtained by adjoining a new
top to the boolean algebra 2n. Its dual space is the n-fork.

Let Vn = HSP(An). Then S2 is the chain

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · ⊂ HSP{An | n ≥ 1}

If n ≥ 3, then Sn is uncountable.
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Locally finite varieties

A variety V is of finite depth if V ∈ Sn for some n.

Every variety of finite depth is locally finite (Kuznetsov,
Komori, 1970s). However, there exist locally finite varieties of
infinite depth.

For example, the variety LC of all chains is locally finite.

A characterization of locally finite varieties of Heyting
algebras remains elusive.

For a while, it was believed that V is locally finite iff the
two-generated free V-algebra is finite.
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Mardaev’s theorem

Roughly speaking, a Brouwerian algebra is a Heyting algebra
without bottom in the signature.

Mardaev’s theorem: Each n-generated Brouwerian algebra
embeds into a 2-generated Brouwerian algebra.

But the embedding does not preserve 0. And there’s now
evidence suggesting that it is likely that for each n there exists
a non-locally finite variety V of Heyting algebras such that the
free n-generated V-algebra is finite.

The situation is very different from the varieties of interior
algebras, where being of finite depth determines whether the
variety is locally finite (Segerberg, Maksimova, 1970s).
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Kuznetsov’s hierarchy

FG = finitely generated varieties (generated by one finite
algebra).

LF = locally finite varieties.

FMP = varieties generated by finite algebras.

KR = varieties generated by algebras of the form Up(X ) for a
poset X (Kripke completeness).

T OP = varieties generated by algebras of the form O(X ) for
X a topological space (topological completeness).

CHA = varieties generated by complete Heyting algebras.
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(In)completeness

FG ⊂ LF ⊂ FMP ⊂ KR ⊆ T OP ⊆ CHA.

It remains open whether there exist varieties (logics) that are
Kripke incomplete, but topologically complete.

Kuznetsov’s problem: It also remains open if there exist
varieties (logics) that are topologically incomplete.

It is also open whether there exist varieties that are not
generated by complete Heyting algebras.

Whether being generated by complete Heyting algebras
implies topological completeness is also open.
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Related results

All these classes become distinguishable in the signature of
modal algebras.

In particular, Kuznetsov’s problem has a negative solution for
varieties of interior algebras (Shehtman).

A Heyting algebra A is a bi-Heyting algebra if its order-dual
Ad is also a Heyting algebra.

Recent result: Kuznetsov’s problem has a negative solution for
varieties of bi-Heyting algebras (jointly with Gabelaia and
Jibladze).

Consequently, there exist varieties of Heyting algebras that are
not generated by complete bi-Heyting algebras.
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P-degrees

Let P be a property. For a cardinal κ and variety V, we say
that the P-degree of V is κ provided there are κ-many
varieties that share the property P with V.

This way we can talk about the degree of Kripke
incompleteness of V (Fine, 1970s).

Blok’s dichotomy theorem (1978): The degree of Kripke
incompleteness of a variety of modal algebras is either 1 or
2ℵ0 .
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Degrees of fmp

We know that there are continuum many Kripke incomplete
varieties of Heyting algebras. But we know little about the
degree of Kripke incompleteness for varieties of Heyting
algebras.

The situation becomes drastically different from Blok’s
dichotomy theorem if we ask about the degree of fmp.

Antidichotomy theorem: If κ ≥ 1 is countable or 2ℵ0 , then κ
is realized as the degree of fmp of some variety V of Heyting
algebras. Assuming CH, every cardinal 1 ≤ κ ≤ 2ℵ0 is realized
as the degree of fmp of some V (jointly with my brother Nick
and Tommaso Moraschini).
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Thank you!
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