

Equational theories of idempotent semifields

George Metcalfe

Mathematical Institute, University of Bern

Joint work with Simon Santschi

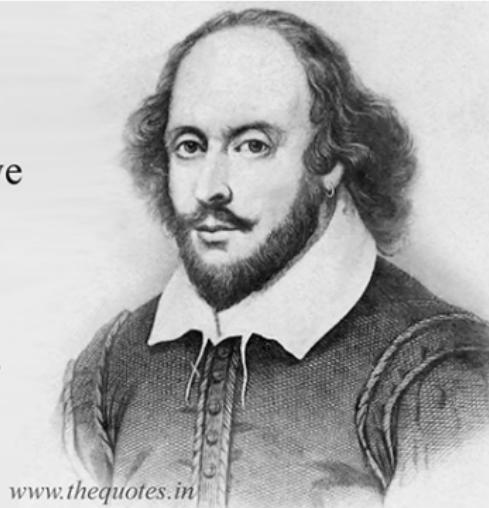
Panglobal Algebra and Logic Seminar, 11. November 2025

A Rose by any other Name?

An **idempotent semifield** is a lattice-ordered group (ℓ -group) $\langle L, \wedge, \vee, \cdot, \nearrow^1, e \rangle$ without the inverse and meet operations.

What's in a name? That which we
call a rose by any other name
would smell as sweet.

William Shakespeare



www.thequotes.in

This Talk

We will see that...

- *unlike ℓ -groups*, no non-trivial class of idempotent semifields is finitely based;
- *like ℓ -groups*, there are continuum-many equational theories of classes of idempotent semifields;
- *like ℓ -groups*, the equational theory of the class of idempotent semifields is co-NP-complete.

Equational theories of idempotent semifields.

G. Metcalfe and S. Santschi. *Bull. Lond. Math. Soc.* 57(3) (2025), 771–785.

This Talk

We will see that...

- *unlike* ℓ -groups, no non-trivial class of idempotent semifields is finitely based;
- *like* ℓ -groups, there are continuum-many equational theories of classes of idempotent semifields;
- *like* ℓ -groups, the equational theory of the class of idempotent semifields is co-NP-complete.

Equational theories of idempotent semifields.

G. Metcalfe and S. Santschi. *Bull. Lond. Math. Soc.* 57(3) (2025), 771–785.

This Talk

We will see that...

- *unlike* ℓ -groups, no non-trivial class of idempotent semifields is finitely based;
- *like* ℓ -groups, there are continuum-many equational theories of classes of idempotent semifields;
- *like* ℓ -groups, the equational theory of the class of idempotent semifields is co-NP-complete.

Equational theories of idempotent semifields.

G. Metcalfe and S. Santschi. *Bull. Lond. Math. Soc.* 57(3) (2025), 771–785.

This Talk

We will see that...

- *unlike* ℓ -groups, no non-trivial class of idempotent semifields is finitely based;
- *like* ℓ -groups, there are continuum-many equational theories of classes of idempotent semifields;
- *like* ℓ -groups, the equational theory of the class of idempotent semifields is co-NP-complete.

Equational theories of idempotent semifields.

G. Metcalfe and S. Santschi. *Bull. Lond. Math. Soc.* 57(3) (2025), 771–785.

Idempotent Semifields

An **idempotent semiring** is an algebraic structure $\langle S, \vee, \cdot, e \rangle$ satisfying

- (i) $\langle S, \cdot, e \rangle$ is a monoid;
- (ii) $\langle S, \vee \rangle$ is a semilattice, where $a \leq b \iff a \vee b = b$;
- (iii) $a(b \vee c)d = abd \vee acd$ for all $a, b, c, d \in S$.

If $\langle S, \cdot, e \rangle$ is a group, this structure is an **idempotent semifield**, and adding the operations $^{-1}$ (inverse) and \wedge (meet) yields an **ℓ -group**.

Remark

Alternative definitions of idempotent semirings (*diods / ai-semirings*) differ with respect to the presence of constants e and 0 in the signature.

Idempotent Semifields

An **idempotent semiring** is an algebraic structure $\langle S, \vee, \cdot, e \rangle$ satisfying

- (i) $\langle S, \cdot, e \rangle$ is a monoid;
- (ii) $\langle S, \vee \rangle$ is a semilattice, where $a \leq b \iff a \vee b = b$;
- (iii) $a(b \vee c)d = abd \vee acd$ for all $a, b, c, d \in S$.

If $\langle S, \cdot, e \rangle$ is a group, this structure is an **idempotent semifield**, and adding the operations $^{-1}$ (inverse) and \wedge (meet) yields an **ℓ -group**.

Remark

Alternative definitions of idempotent semirings (*diods / ai-semirings*) differ with respect to the presence of constants e and 0 in the signature.

Idempotent Semifields

An **idempotent semiring** is an algebraic structure $\langle S, \vee, \cdot, e \rangle$ satisfying

- (i) $\langle S, \cdot, e \rangle$ is a monoid;
- (ii) $\langle S, \vee \rangle$ is a semilattice, where $a \leq b \iff a \vee b = b$;
- (iii) $a(b \vee c)d = abd \vee acd$ for all $a, b, c, d \in S$.

If $\langle S, \cdot, e \rangle$ is a group, this structure is an **idempotent semifield**, and adding the operations $^{-1}$ (inverse) and \wedge (meet) yields an **ℓ -group**.

Remark

Alternative definitions of idempotent semirings (*diods / ai-semirings*) differ with respect to the presence of constants e and 0 in the signature.

Idempotent Semifields

An **idempotent semiring** is an algebraic structure $\langle S, \vee, \cdot, e \rangle$ satisfying

- (i) $\langle S, \cdot, e \rangle$ is a monoid;
- (ii) $\langle S, \vee \rangle$ is a semilattice, where $a \leq b \iff a \vee b = b$;
- (iii) $a(b \vee c)d = abd \vee acd$ for all $a, b, c, d \in S$.

If $\langle S, \cdot, e \rangle$ is a group, this structure is an **idempotent semifield**, and adding the operations $^{-1}$ (inverse) and \wedge (meet) yields an **ℓ -group**.

Remark

Alternative definitions of idempotent semirings (*diods / ai-semirings*) differ with respect to the presence of constants e and 0 in the signature.

Idempotent Semifields

An **idempotent semiring** is an algebraic structure $\langle S, \vee, \cdot, e \rangle$ satisfying

- (i) $\langle S, \cdot, e \rangle$ is a monoid;
- (ii) $\langle S, \vee \rangle$ is a semilattice, where $a \leq b \iff a \vee b = b$;
- (iii) $a(b \vee c)d = abd \vee acd$ for all $a, b, c, d \in S$.

If $\langle S, \cdot, e \rangle$ is a group, this structure is an **idempotent semifield**, and adding the operations $^{-1}$ (inverse) and \wedge (meet) yields an **ℓ -group**.

Remark

Alternative definitions of idempotent semirings (*diods / ai-semirings*) differ with respect to the presence of constants e and 0 in the signature.

Idempotent Semifields

An **idempotent semiring** is an algebraic structure $\langle S, \vee, \cdot, e \rangle$ satisfying

- (i) $\langle S, \cdot, e \rangle$ is a monoid;
- (ii) $\langle S, \vee \rangle$ is a semilattice, where $a \leq b \iff a \vee b = b$;
- (iii) $a(b \vee c)d = abd \vee acd$ for all $a, b, c, d \in S$.

If $\langle S, \cdot, e \rangle$ is a group, this structure is an **idempotent semifield**, and adding the operations $^{-1}$ (inverse) and \wedge (meet) yields an **ℓ -group**.

Remark

Alternative definitions of idempotent semirings (*diods / ai-semirings*) differ with respect to the presence of constants e and 0 in the signature.

Idempotent Semifields

An **idempotent semiring** is an algebraic structure $\langle S, \vee, \cdot, e \rangle$ satisfying

- (i) $\langle S, \cdot, e \rangle$ is a monoid;
- (ii) $\langle S, \vee \rangle$ is a semilattice, where $a \leq b \iff a \vee b = b$;
- (iii) $a(b \vee c)d = abd \vee acd$ for all $a, b, c, d \in S$.

If $\langle S, \cdot, e \rangle$ is a group, this structure is an **idempotent semifield**, and adding the operations $^{-1}$ (inverse) and \wedge (meet) yields an **ℓ -group**.

Remark

Alternative definitions of idempotent semirings (*diods / ai-semirings*) differ with respect to the presence of constants e and 0 in the signature.

Commutative Examples

- $\langle \mathbb{Z}, \max, +, 0 \rangle$ is a **commutative idempotent semifield**, but its subalgebra $\langle \mathbb{N}, \max, +, 0 \rangle$ is only an idempotent semiring, so idempotent semifields do not form a variety.
- Every ordered commutative idempotent semifield embeds into a lexicographically ordered power of $\langle \mathbb{R}, \max, +, 0 \rangle$ (Hahn 1907).
- More generally, every commutative idempotent semifield embeds into an idempotent semifield of real-valued functions on a poset (Conrad et al. 1963).

Commutative Examples

- $\langle \mathbb{Z}, \max, +, 0 \rangle$ is a commutative idempotent semifield, but its subalgebra $\langle \mathbb{N}, \max, +, 0 \rangle$ is only an idempotent semiring, so idempotent semifields do not form a variety.
- Every ordered commutative idempotent semifield embeds into a lexicographically ordered power of $\langle \mathbb{R}, \max, +, 0 \rangle$ (Hahn 1907).
- More generally, every commutative idempotent semifield embeds into an idempotent semifield of real-valued functions on a poset (Conrad et al. 1963).

Commutative Examples

- $\langle \mathbb{Z}, \max, +, 0 \rangle$ is a commutative idempotent semifield, but its subalgebra $\langle \mathbb{N}, \max, +, 0 \rangle$ is only an idempotent semiring, so idempotent semifields do not form a variety.
- Every ordered commutative idempotent semifield embeds into a lexicographically ordered power of $\langle \mathbb{R}, \max, +, 0 \rangle$ (Hahn 1907).
- More generally, every commutative idempotent semifield embeds into an idempotent semifield of real-valued functions on a poset (Conrad et al. 1963).

Commutative Examples

- $\langle \mathbb{Z}, \max, +, 0 \rangle$ is a commutative idempotent semifield, but its subalgebra $\langle \mathbb{N}, \max, +, 0 \rangle$ is only an idempotent semiring, so idempotent semifields do not form a variety.
- Every ordered commutative idempotent semifield embeds into a lexicographically ordered power of $\langle \mathbb{R}, \max, +, 0 \rangle$ (Hahn 1907).
- More generally, every commutative idempotent semifield embeds into an idempotent semifield of real-valued functions on a poset (Conrad et al. 1963).

Commutative Examples

- $\langle \mathbb{Z}, \max, +, 0 \rangle$ is a commutative idempotent semifield, but its subalgebra $\langle \mathbb{N}, \max, +, 0 \rangle$ is only an idempotent semiring, so idempotent semifields do not form a variety.
- Every ordered commutative idempotent semifield embeds into a lexicographically ordered power of $\langle \mathbb{R}, \max, +, 0 \rangle$ (Hahn 1907).
- More generally, every commutative idempotent semifield embeds into an idempotent semifield of real-valued functions on a poset (Conrad et al. 1963).

Fundamental Examples

The order-preserving bijections on any chain $\Omega = \langle \Omega, \preceq \rangle$ equipped with function composition form an idempotent semifield $\mathbf{Aut}(\Omega)$, where

$$f \leq g \iff f(a) \preceq g(a) \text{ for all } a \in \Omega.$$

Moreover, every idempotent semifield embeds into $\mathbf{Aut}(\Omega)$ for some chain Ω (Holland 1963), and the equational theory of the class of all idempotent semifields is the equational theory of $\mathbf{Aut}(\langle \mathbb{R}, \leq \rangle)$.

Fundamental Examples

The order-preserving bijections on any chain $\Omega = \langle \Omega, \preceq \rangle$ equipped with function composition form an idempotent semifield $\mathbf{Aut}(\Omega)$, where

$$f \leq g \iff f(a) \preceq g(a) \text{ for all } a \in \Omega.$$

Moreover, every idempotent semifield embeds into $\mathbf{Aut}(\Omega)$ for some chain Ω (Holland 1963), and the equational theory of the class of all idempotent semifields is the equational theory of $\mathbf{Aut}(\langle \mathbb{R}, \leq \rangle)$.

Fundamental Examples

The order-preserving bijections on any chain $\Omega = \langle \Omega, \preceq \rangle$ equipped with function composition form an idempotent semifield $\mathbf{Aut}(\Omega)$, where

$$f \leq g \iff f(a) \preceq g(a) \text{ for all } a \in \Omega.$$

Moreover, every idempotent semifield embeds into $\mathbf{Aut}(\Omega)$ for some chain Ω (Holland 1963), and the equational theory of the class of all idempotent semifields is the equational theory of $\mathbf{Aut}(\langle \mathbb{R}, \leq \rangle)$.

Our First Question

Which classes of idempotent semifields are finitely based?

The Finite Basis Problem

Let K be any class of algebras over some fixed signature, and call it **non-trivial** if at least one of its members has more than one element.

A **basis** for its equational theory $\text{Eq}(K)$ is a subset $\Sigma \subseteq \text{Eq}(K)$ such that $\Sigma \models \text{Eq}(K)$; if $\text{Eq}(K)$ has a finite basis, K is said to be **finitely based**.

E.g., the ℓ -group $\langle \mathbb{Z}, \min, \max, +, -, 0 \rangle$ is finitely based, but not the idempotent semifield $\langle \mathbb{Z}, \max, +, 0 \rangle$ (Aceto et al. 2003); indeed, there are infinitely many finitely based varieties of ℓ -groups, but ...

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

The Finite Basis Problem

Let K be any class of algebras over some fixed signature, and call it **non-trivial** if at least one of its members has more than one element.

A **basis** for its equational theory $\text{Eq}(K)$ is a subset $\Sigma \subseteq \text{Eq}(K)$ such that $\Sigma \models \text{Eq}(K)$; if $\text{Eq}(K)$ has a finite basis, K is said to be **finitely based**.

E.g., the ℓ -group $\langle \mathbb{Z}, \min, \max, +, -, 0 \rangle$ is finitely based, but not the idempotent semifield $\langle \mathbb{Z}, \max, +, 0 \rangle$ (Aceto et al. 2003); indeed, there are infinitely many finitely based varieties of ℓ -groups, but ...

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

The Finite Basis Problem

Let K be any class of algebras over some fixed signature, and call it **non-trivial** if at least one of its members has more than one element.

A **basis** for its equational theory $\text{Eq}(K)$ is a subset $\Sigma \subseteq \text{Eq}(K)$ such that $\Sigma \models \text{Eq}(K)$; if $\text{Eq}(K)$ has a finite basis, K is said to be **finitely based**.

E.g., the ℓ -group $\langle \mathbb{Z}, \min, \max, +, -, 0 \rangle$ is finitely based, but not the idempotent semifield $\langle \mathbb{Z}, \max, +, 0 \rangle$ (Aceto et al. 2003); indeed, there are infinitely many finitely based varieties of ℓ -groups, but ...

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

The Finite Basis Problem

Let K be any class of algebras over some fixed signature, and call it **non-trivial** if at least one of its members has more than one element.

A **basis** for its equational theory $\text{Eq}(K)$ is a subset $\Sigma \subseteq \text{Eq}(K)$ such that $\Sigma \models \text{Eq}(K)$; if $\text{Eq}(K)$ has a finite basis, K is said to be **finitely based**.

E.g., the ℓ -group $\langle \mathbb{Z}, \min, \max, +, -, 0 \rangle$ is finitely based, but not the idempotent semifield $\langle \mathbb{Z}, \max, +, 0 \rangle$ (Aceto et al. 2003); indeed, there are infinitely many finitely based varieties of ℓ -groups, but ...

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

The Finite Basis Problem

Let K be any class of algebras over some fixed signature, and call it **non-trivial** if at least one of its members has more than one element.

A **basis** for its equational theory $\text{Eq}(K)$ is a subset $\Sigma \subseteq \text{Eq}(K)$ such that $\Sigma \models \text{Eq}(K)$; if $\text{Eq}(K)$ has a finite basis, K is said to be **finitely based**.

E.g., the ℓ -group $\langle \mathbb{Z}, \min, \max, +, -, 0 \rangle$ is finitely based, but not the idempotent semifield $\langle \mathbb{Z}, \max, +, 0 \rangle$ (Aceto et al. 2003); indeed, there are infinitely many finitely based varieties of ℓ -groups, but ...

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

The Finite Basis Problem

Let K be any class of algebras over some fixed signature, and call it **non-trivial** if at least one of its members has more than one element.

A **basis** for its equational theory $\text{Eq}(K)$ is a subset $\Sigma \subseteq \text{Eq}(K)$ such that $\Sigma \models \text{Eq}(K)$; if $\text{Eq}(K)$ has a finite basis, K is said to be **finitely based**.

E.g., the ℓ -group $\langle \mathbb{Z}, \min, \max, +, -, 0 \rangle$ is finitely based, but not the idempotent semifield $\langle \mathbb{Z}, \max, +, 0 \rangle$ (Aceto et al. 2003); indeed, there are infinitely many finitely based varieties of ℓ -groups, but ...

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

The Finite Basis Problem

Let K be any class of algebras over some fixed signature, and call it **non-trivial** if at least one of its members has more than one element.

A **basis** for its equational theory $\text{Eq}(K)$ is a subset $\Sigma \subseteq \text{Eq}(K)$ such that $\Sigma \models \text{Eq}(K)$; if $\text{Eq}(K)$ has a finite basis, K is said to be **finitely based**.

E.g., the ℓ -group $\langle \mathbb{Z}, \min, \max, +, -, 0 \rangle$ is finitely based, but not the idempotent semifield $\langle \mathbb{Z}, \max, +, 0 \rangle$ (Aceto et al. 2003); indeed, there are infinitely many finitely based varieties of ℓ -groups, but . . .

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Flat Extensions

We define the **flat extension** of a monoid $\mathbf{M} = \langle M, \cdot, e \rangle$ as

$$\flat(\mathbf{M}) = \langle M \cup \{\top\}, \vee, \star, e \rangle,$$

where $\top \notin M$ and for all $a, b \in M \cup \{\top\}$,

$$a \star b := \begin{cases} a \cdot b & \text{if } a, b \in M \\ \top & \text{otherwise;} \end{cases} \quad a \vee b := \begin{cases} a & \text{if } a = b \\ \top & \text{otherwise.} \end{cases}$$

Then $\langle M \cup \{\top\}, \star, e \rangle$ is a monoid, $\langle M \cup \{\top\}, \vee \rangle$ is a semilattice, and

$\flat(\mathbf{M})$ is an idempotent semiring $\iff \mathbf{M}$ is cancellative.

Flat algebras and the translation of universal horn logic to equational logic.
M. Jackson. *J. Symbolic Logic* 73(1) (2008), 90–128.

Flat Extensions

We define the **flat extension** of a monoid $\mathbf{M} = \langle M, \cdot, e \rangle$ as

$$\flat(\mathbf{M}) = \langle M \cup \{\top\}, \vee, \star, e \rangle,$$

where $\top \notin M$ and for all $a, b \in M \cup \{\top\}$,

$$a \star b := \begin{cases} a \cdot b & \text{if } a, b \in M \\ \top & \text{otherwise;} \end{cases} \quad a \vee b := \begin{cases} a & \text{if } a = b \\ \top & \text{otherwise.} \end{cases}$$

Then $\langle M \cup \{\top\}, \star, e \rangle$ is a monoid, $\langle M \cup \{\top\}, \vee \rangle$ is a semilattice, and

$\flat(\mathbf{M})$ is an idempotent semiring $\iff \mathbf{M}$ is cancellative.

Flat algebras and the translation of universal horn logic to equational logic.
M. Jackson. *J. Symbolic Logic* 73(1) (2008), 90–128.

Flat Extensions

We define the **flat extension** of a monoid $\mathbf{M} = \langle M, \cdot, e \rangle$ as

$$\flat(\mathbf{M}) = \langle M \cup \{\top\}, \vee, \star, e \rangle,$$

where $\top \notin M$ and for all $a, b \in M \cup \{\top\}$,

$$a \star b := \begin{cases} a \cdot b & \text{if } a, b \in M \\ \top & \text{otherwise;} \end{cases} \quad a \vee b := \begin{cases} a & \text{if } a = b \\ \top & \text{otherwise.} \end{cases}$$

Then $\langle M \cup \{\top\}, \star, e \rangle$ is a monoid, $\langle M \cup \{\top\}, \vee \rangle$ is a semilattice, and

$\flat(\mathbf{M})$ is an idempotent semiring $\iff \mathbf{M}$ is cancellative.

Flat algebras and the translation of universal horn logic to equational logic.
M. Jackson. *J. Symbolic Logic* 73(1) (2008), 90–128.

Flat Extensions

We define the **flat extension** of a monoid $\mathbf{M} = \langle M, \cdot, e \rangle$ as

$$\flat(\mathbf{M}) = \langle M \cup \{\top\}, \vee, \star, e \rangle,$$

where $\top \notin M$ and for all $a, b \in M \cup \{\top\}$,

$$a \star b := \begin{cases} a \cdot b & \text{if } a, b \in M \\ \top & \text{otherwise;} \end{cases} \quad a \vee b := \begin{cases} a & \text{if } a = b \\ \top & \text{otherwise.} \end{cases}$$

Then $\langle M \cup \{\top\}, \star, e \rangle$ is a monoid, $\langle M \cup \{\top\}, \vee \rangle$ is a semilattice, and

$\flat(\mathbf{M})$ is an idempotent semiring $\iff \mathbf{M}$ is cancellative.

Flat algebras and the translation of universal horn logic to equational logic.
M. Jackson. *J. Symbolic Logic* 73(1) (2008), 90–128.

Flat Extensions

We define the **flat extension** of a monoid $\mathbf{M} = \langle M, \cdot, e \rangle$ as

$$\flat(\mathbf{M}) = \langle M \cup \{\top\}, \vee, \star, e \rangle,$$

where $\top \notin M$ and for all $a, b \in M \cup \{\top\}$,

$$a \star b := \begin{cases} a \cdot b & \text{if } a, b \in M \\ \top & \text{otherwise;} \end{cases} \quad a \vee b := \begin{cases} a & \text{if } a = b \\ \top & \text{otherwise.} \end{cases}$$

Then $\langle M \cup \{\top\}, \star, e \rangle$ is a monoid, $\langle M \cup \{\top\}, \vee \rangle$ is a semilattice, and

$\flat(\mathbf{M})$ is an idempotent semiring $\iff \mathbf{M}$ is cancellative.

Flat algebras and the translation of universal horn logic to equational logic.
M. Jackson. *J. Symbolic Logic* 73(1) (2008), 90–128.

Flat Extensions

We define the **flat extension** of a monoid $\mathbf{M} = \langle M, \cdot, e \rangle$ as

$$\flat(\mathbf{M}) = \langle M \cup \{\top\}, \vee, \star, e \rangle,$$

where $\top \notin M$ and for all $a, b \in M \cup \{\top\}$,

$$a \star b := \begin{cases} a \cdot b & \text{if } a, b \in M \\ \top & \text{otherwise;} \end{cases} \quad a \vee b := \begin{cases} a & \text{if } a = b \\ \top & \text{otherwise.} \end{cases}$$

Then $\langle M \cup \{\top\}, \star, e \rangle$ is a monoid, $\langle M \cup \{\top\}, \vee \rangle$ is a semilattice, and
 $\flat(\mathbf{M})$ is an idempotent semiring $\iff \mathbf{M}$ is cancellative.

Flat algebras and the translation of universal horn logic to equational logic.
M. Jackson. *J. Symbolic Logic* 73(1) (2008), 90–128.

The Key Examples

The cyclic groups

$$\mathbf{Z} = \langle \mathbb{Z}, +, 0 \rangle, \quad \mathbf{Z}_n = \langle \{e, a, \dots, a^{n-1}\}, \cdot, e \rangle \quad (n \in \mathbb{N}^+)$$

yield idempotent semirings $\mathbb{b}(\mathbf{Z})$, $\mathbb{b}(\mathbf{Z}_n)$ with semilattice structure:

The Key Examples

The cyclic groups

$$\mathbf{Z} = \langle \mathbb{Z}, +, 0 \rangle, \quad \mathbf{Z}_n = \langle \{e, a, \dots, a^{n-1}\}, \cdot, e \rangle \quad (n \in \mathbb{N}^+)$$

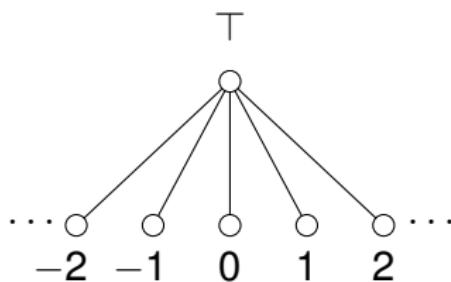
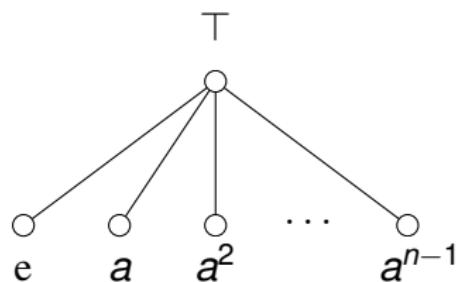
yield idempotent semirings $\mathbf{b}(\mathbf{Z})$, $\mathbf{b}(\mathbf{Z}_n)$ with semilattice structure:

The Key Examples

The cyclic groups

$$\mathbf{Z} = \langle \mathbb{Z}, +, 0 \rangle, \quad \mathbf{Z}_n = \langle \{e, a, \dots, a^{n-1}\}, \cdot, e \rangle \quad (n \in \mathbb{N}^+)$$

yield idempotent semirings $\flat(\mathbf{Z})$, $\flat(\mathbf{Z}_n)$ with semilattice structure:



Semiring Inequations and Monoid Quasiequations

Given $\varepsilon = (s \leq t_1 \vee \dots \vee t_n)$, where s, t_1, \dots, t_n are monoid terms such that each variable occurring in s occurs in $t_1 \vee \dots \vee t_n$, define

$$Q(\varepsilon) := \{t_1 \approx t_2, \dots, t_1 \approx t_n\} \Rightarrow t_1 \approx s.$$

Lemma

For any monoid \mathbf{M} and equation ε of the above 'suitable' form:

$$\flat(\mathbf{M}) \models \varepsilon \iff \mathbf{M} \models Q(\varepsilon).$$

For example, consider for any $n > 1$,

$$\varepsilon = (x \leq e \vee x^n) \quad \text{and} \quad Q(\varepsilon) = (e \approx x^n \Rightarrow e \approx x),$$

and observe that $\mathbf{Z} \models Q(\varepsilon)$, so $\flat(\mathbf{Z}) \models \varepsilon$, but $\mathbf{Z}_n \not\models Q(\varepsilon)$, so $\flat(\mathbf{Z}_n) \not\models \varepsilon$.

Semiring Inequations and Monoid Quasiequations

Given $\varepsilon = (s \leq t_1 \vee \dots \vee t_n)$, where s, t_1, \dots, t_n are monoid terms such that each variable occurring in s occurs in $t_1 \vee \dots \vee t_n$, define

$$Q(\varepsilon) := \{t_1 \approx t_2, \dots, t_1 \approx t_n\} \Rightarrow t_1 \approx s.$$

Lemma

For any monoid \mathbf{M} and equation ε of the above ‘suitable’ form:

$$\flat(\mathbf{M}) \models \varepsilon \iff \mathbf{M} \models Q(\varepsilon).$$

For example, consider for any $n > 1$,

$$\varepsilon = (x \leq e \vee x^n) \quad \text{and} \quad Q(\varepsilon) = (e \approx x^n \Rightarrow e \approx x),$$

and observe that $\mathbf{Z} \models Q(\varepsilon)$, so $\flat(\mathbf{Z}) \models \varepsilon$, but $\mathbf{Z}_n \not\models Q(\varepsilon)$, so $\flat(\mathbf{Z}_n) \not\models \varepsilon$.

Semiring Inequations and Monoid Quasiequations

Given $\varepsilon = (s \leq t_1 \vee \dots \vee t_n)$, where s, t_1, \dots, t_n are monoid terms such that each variable occurring in s occurs in $t_1 \vee \dots \vee t_n$, define

$$Q(\varepsilon) := \{t_1 \approx t_2, \dots, t_1 \approx t_n\} \Rightarrow t_1 \approx s.$$

Lemma

For any monoid \mathbf{M} and equation ε of the above ‘suitable’ form:

$$\flat(\mathbf{M}) \models \varepsilon \iff \mathbf{M} \models Q(\varepsilon).$$

For example, consider for any $n > 1$,

$$\varepsilon = (x \leq e \vee x^n) \quad \text{and} \quad Q(\varepsilon) = (e \approx x^n \Rightarrow e \approx x),$$

and observe that $\mathbf{Z} \models Q(\varepsilon)$, so $\flat(\mathbf{Z}) \models \varepsilon$, but $\mathbf{Z}_n \not\models Q(\varepsilon)$, so $\flat(\mathbf{Z}_n) \not\models \varepsilon$.

Semiring Inequations and Monoid Quasiequations

Given $\varepsilon = (s \leq t_1 \vee \dots \vee t_n)$, where s, t_1, \dots, t_n are monoid terms such that each variable occurring in s occurs in $t_1 \vee \dots \vee t_n$, define

$$Q(\varepsilon) := \{t_1 \approx t_2, \dots, t_1 \approx t_n\} \Rightarrow t_1 \approx s.$$

Lemma

For any monoid \mathbf{M} and equation ε of the above ‘suitable’ form:

$$\flat(\mathbf{M}) \models \varepsilon \iff \mathbf{M} \models Q(\varepsilon).$$

For example, consider for any $n > 1$,

$$\varepsilon = (x \leq e \vee x^n) \quad \text{and} \quad Q(\varepsilon) = (e \approx x^n \Rightarrow e \approx x),$$

and observe that $\mathbf{Z} \models Q(\varepsilon)$, so $\flat(\mathbf{Z}) \models \varepsilon$, but $\mathbf{Z}_n \not\models Q(\varepsilon)$, so $\flat(\mathbf{Z}_n) \not\models \varepsilon$.

Semiring Inequations and Monoid Quasiequations

Given $\varepsilon = (s \leq t_1 \vee \dots \vee t_n)$, where s, t_1, \dots, t_n are monoid terms such that each variable occurring in s occurs in $t_1 \vee \dots \vee t_n$, define

$$Q(\varepsilon) := \{t_1 \approx t_2, \dots, t_1 \approx t_n\} \Rightarrow t_1 \approx s.$$

Lemma

For any monoid \mathbf{M} and equation ε of the above 'suitable' form:

$$\flat(\mathbf{M}) \models \varepsilon \iff \mathbf{M} \models Q(\varepsilon).$$

For example, consider for any $n > 1$,

$$\varepsilon = (x \leq e \vee x^n) \quad \text{and} \quad Q(\varepsilon) = (e \approx x^n \Rightarrow e \approx x),$$

and observe that $\mathbf{Z} \models Q(\varepsilon)$, so $\flat(\mathbf{Z}) \models \varepsilon$, but $\mathbf{Z}_n \not\models Q(\varepsilon)$, so $\flat(\mathbf{Z}_n) \not\models \varepsilon$.

Semiring Inequations and Monoid Quasiequations

Given $\varepsilon = (s \leq t_1 \vee \dots \vee t_n)$, where s, t_1, \dots, t_n are monoid terms such that each variable occurring in s occurs in $t_1 \vee \dots \vee t_n$, define

$$Q(\varepsilon) := \{t_1 \approx t_2, \dots, t_1 \approx t_n\} \Rightarrow t_1 \approx s.$$

Lemma

For any monoid \mathbf{M} and equation ε of the above ‘suitable’ form:

$$\flat(\mathbf{M}) \models \varepsilon \iff \mathbf{M} \models Q(\varepsilon).$$

For example, consider for any $n > 1$,

$$\varepsilon = (x \leq e \vee x^n) \quad \text{and} \quad Q(\varepsilon) = (e \approx x^n \Rightarrow e \approx x),$$

and observe that $\mathbf{Z} \models Q(\varepsilon)$, so $\flat(\mathbf{Z}) \models \varepsilon$, but $\mathbf{Z}_n \not\models Q(\varepsilon)$, so $\flat(\mathbf{Z}_n) \not\models \varepsilon$.

The Crucial Lemma

Lemma

For any conjunction of monoid quasiequations α ,

$$\mathbf{Z} \models \alpha \iff \exists n \in \mathbb{N}: \mathbf{Z}_p \models \alpha \text{ for each prime } p > n.$$

Proof sketch.

(\Leftarrow) \mathbf{Z} embeds into $\prod \{\mathbf{Z}_p \mid p > n \text{ is prime}\}$.

(\Rightarrow) Suppose that $\mathbf{Z} \models \alpha$. Then $T \cup \{\{x^k \approx e\} \Rightarrow x \approx e \mid k \in \mathbb{N}\} \models \alpha$, where T is a first-order axiomatization of the class of Abelian groups. By compactness, $T \cup \{x^2 \approx e \Rightarrow x \approx e, \dots, x^n \approx e \Rightarrow x \approx e\} \models \alpha$ for some $n \in \mathbb{N}$. Hence $\mathbf{Z}_p \models \alpha$ for each prime $p > n$. □

The Crucial Lemma

Lemma

For any conjunction of monoid quasiequations α ,

$$\mathbf{Z} \models \alpha \iff \exists n \in \mathbb{N}: \mathbf{Z}_p \models \alpha \text{ for each prime } p > n.$$

Proof sketch.

(\Leftarrow) \mathbf{Z} embeds into $\prod \{\mathbf{Z}_p \mid p \text{ is prime}\}$.

(\Rightarrow) Suppose that $\mathbf{Z} \models \alpha$. Then $T \cup \{\{x^k \approx e\} \Rightarrow x \approx e \mid k \in \mathbb{N}\} \models \alpha$, where T is a first-order axiomatization of the class of Abelian groups. By compactness, $T \cup \{x^2 \approx e \Rightarrow x \approx e, \dots, x^n \approx e \Rightarrow x \approx e\} \models \alpha$ for some $n \in \mathbb{N}$. Hence $\mathbf{Z}_p \models \alpha$ for each prime $p > n$. □

The Crucial Lemma

Lemma

For any conjunction of monoid quasiequations α ,

$$\mathbf{Z} \models \alpha \iff \exists n \in \mathbb{N}: \mathbf{Z}_p \models \alpha \text{ for each prime } p > n.$$

Proof sketch.

(\Leftarrow) \mathbf{Z} embeds into $\prod \{\mathbf{Z}_p \mid p \text{ is prime}\}$.

(\Rightarrow) Suppose that $\mathbf{Z} \models \alpha$. Then $T \cup \{\{x^k \approx e\} \Rightarrow x \approx e \mid k \in \mathbb{N}\} \models \alpha$, where T is a first-order axiomatization of the class of Abelian groups. By compactness, $T \cup \{x^2 \approx e \Rightarrow x \approx e, \dots, x^n \approx e \Rightarrow x \approx e\} \models \alpha$ for some $n \in \mathbb{N}$. Hence $\mathbf{Z}_p \models \alpha$ for each prime $p > n$. □

The Crucial Lemma

Lemma

For any conjunction of monoid quasiequations α ,

$$\mathbf{Z} \models \alpha \iff \exists n \in \mathbb{N}: \mathbf{Z}_p \models \alpha \text{ for each prime } p > n.$$

Proof sketch.

(\Leftarrow) \mathbf{Z} embeds into $\prod \{\mathbf{Z}_p \mid p \text{ is prime}\}$.

(\Rightarrow) Suppose that $\mathbf{Z} \models \alpha$. Then $T \cup \{\{x^k \approx e\} \Rightarrow x \approx e \mid k \in \mathbb{N}\} \models \alpha$, where T is a first-order axiomatization of the class of Abelian groups.

By compactness, $T \cup \{x^2 \approx e \Rightarrow x \approx e, \dots, x^n \approx e \Rightarrow x \approx e\} \models \alpha$ for some $n \in \mathbb{N}$. Hence $\mathbf{Z}_p \models \alpha$ for each prime $p > n$. □

The Crucial Lemma

Lemma

For any conjunction of monoid quasiequations α ,

$$\mathbf{Z} \models \alpha \iff \exists n \in \mathbb{N}: \mathbf{Z}_p \models \alpha \text{ for each prime } p > n.$$

Proof sketch.

(\Leftarrow) \mathbf{Z} embeds into $\prod \{\mathbf{Z}_p \mid p \text{ is prime}\}$.

(\Rightarrow) Suppose that $\mathbf{Z} \models \alpha$. Then $T \cup \{\{x^k \approx e\} \Rightarrow x \approx e \mid k \in \mathbb{N}\} \models \alpha$, where T is a first-order axiomatization of the class of Abelian groups. By compactness, $T \cup \{x^2 \approx e \Rightarrow x \approx e, \dots, x^n \approx e \Rightarrow x \approx e\} \models \alpha$ for some $n \in \mathbb{N}$. Hence $\mathbf{Z}_p \models \alpha$ for each prime $p > n$. □

The Crucial Lemma

Lemma

For any conjunction of monoid quasiequations α ,

$$\mathbf{Z} \models \alpha \iff \exists n \in \mathbb{N}: \mathbf{Z}_p \models \alpha \text{ for each prime } p > n.$$

Proof sketch.

(\Leftarrow) \mathbf{Z} embeds into $\prod \{\mathbf{Z}_p \mid p \text{ is prime}\}$.

(\Rightarrow) Suppose that $\mathbf{Z} \models \alpha$. Then $T \cup \{\{x^k \approx e\} \Rightarrow x \approx e \mid k \in \mathbb{N}\} \models \alpha$, where T is a first-order axiomatization of the class of Abelian groups. By compactness, $T \cup \{x^2 \approx e \Rightarrow x \approx e, \dots, x^n \approx e \Rightarrow x \approx e\} \models \alpha$ for some $n \in \mathbb{N}$. Hence $\mathbf{Z}_p \models \alpha$ for each prime $p > n$. □

The Finite Basis Theorem

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Proof sketch.

Let K be any finitely based class of idempotent semifields, and w.l.o.g. let Σ be a finite basis of 'suitable inequations' for $\text{Eq}(K)$.

For any prime p : $K \models x \leq e \vee x^p$, but $\mathbb{b}(\mathbb{Z}_p) \not\models x \leq e \vee x^p$, so $\mathbb{b}(\mathbb{Z}_p) \not\models \Sigma$.

Let $\alpha := \&\{Q(\varepsilon) \mid \varepsilon \in \Sigma\}$. Then $\mathbb{Z}_p \not\models \alpha$ for each prime p , so $\mathbb{Z} \not\models \alpha$.

But then $\mathbb{b}(\mathbb{Z}) \not\models \text{Eq}(K)$, which, using the fact that $\langle \mathbb{Z}, \max, +, 0 \rangle$ embeds into every non-trivial idempotent semifield, implies that K is trivial. \square

The Finite Basis Theorem

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Proof sketch.

Let K be any finitely based class of idempotent semifields, and w.l.o.g. let Σ be a finite basis of 'suitable inequations' for $\text{Eq}(K)$.

For any prime p : $K \models x \leq e \vee x^p$, but $\mathbb{b}(\mathbb{Z}_p) \not\models x \leq e \vee x^p$, so $\mathbb{b}(\mathbb{Z}_p) \not\models \Sigma$.

Let $\alpha := \&\{Q(\varepsilon) \mid \varepsilon \in \Sigma\}$. Then $\mathbb{Z}_p \not\models \alpha$ for each prime p , so $\mathbb{Z} \not\models \alpha$.

But then $\mathbb{b}(\mathbb{Z}) \not\models \text{Eq}(K)$, which, using the fact that $\langle \mathbb{Z}, \max, +, 0 \rangle$ embeds into every non-trivial idempotent semifield, implies that K is trivial. \square

The Finite Basis Theorem

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Proof sketch.

Let K be any finitely based class of idempotent semifields, and w.l.o.g. let Σ be a finite basis of 'suitable inequations' for $\text{Eq}(K)$.

For any prime p : $K \models x \leq e \vee x^p$, but $\mathbb{b}(\mathbb{Z}_p) \not\models x \leq e \vee x^p$, so $\mathbb{b}(\mathbb{Z}_p) \not\models \Sigma$.

Let $\alpha := \&\{Q(\varepsilon) \mid \varepsilon \in \Sigma\}$. Then $\mathbb{Z}_p \not\models \alpha$ for each prime p , so $\mathbb{Z} \not\models \alpha$.

But then $\mathbb{b}(\mathbb{Z}) \not\models \text{Eq}(K)$, which, using the fact that $\langle \mathbb{Z}, \max, +, 0 \rangle$ embeds into every non-trivial idempotent semifield, implies that K is trivial. \square

The Finite Basis Theorem

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Proof sketch.

Let K be any finitely based class of idempotent semifields, and w.l.o.g. let Σ be a finite basis of 'suitable inequations' for $\text{Eq}(K)$.

For any prime p : $K \models x \leq e \vee x^p$, but $\mathbb{b}(\mathbb{Z}_p) \not\models x \leq e \vee x^p$, so $\mathbb{b}(\mathbb{Z}_p) \not\models \Sigma$.

Let $\alpha := \&\{Q(\varepsilon) \mid \varepsilon \in \Sigma\}$. Then $\mathbb{Z}_p \not\models \alpha$ for each prime p , so $\mathbb{Z} \not\models \alpha$.

But then $\mathbb{b}(\mathbb{Z}) \not\models \text{Eq}(K)$, which, using the fact that $\langle \mathbb{Z}, \max, +, 0 \rangle$ embeds into every non-trivial idempotent semifield, implies that K is trivial. \square

The Finite Basis Theorem

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Proof sketch.

Let K be any finitely based class of idempotent semifields, and w.l.o.g. let Σ be a finite basis of 'suitable inequations' for $\text{Eq}(K)$.

For any prime p : $K \models x \leq e \vee x^p$, but $\mathbb{b}(\mathbb{Z}_p) \not\models x \leq e \vee x^p$, so $\mathbb{b}(\mathbb{Z}_p) \not\models \Sigma$.

Let $\alpha := \&\{Q(\varepsilon) \mid \varepsilon \in \Sigma\}$. Then $\mathbb{Z}_p \not\models \alpha$ for each prime p , so $\mathbb{Z} \not\models \alpha$.

But then $\mathbb{b}(\mathbb{Z}) \not\models \text{Eq}(K)$, which, using the fact that $\langle \mathbb{Z}, \max, +, 0 \rangle$ embeds into every non-trivial idempotent semifield, implies that K is trivial. \square

The Finite Basis Theorem

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Proof sketch.

Let K be any finitely based class of idempotent semifields, and w.l.o.g. let Σ be a finite basis of 'suitable inequations' for $\text{Eq}(K)$.

For any prime p : $K \models x \leq e \vee x^p$, but $\mathbb{b}(\mathbb{Z}_p) \not\models x \leq e \vee x^p$, so $\mathbb{b}(\mathbb{Z}_p) \not\models \Sigma$.

Let $\alpha := \&\{Q(\varepsilon) \mid \varepsilon \in \Sigma\}$. Then $\mathbb{Z}_p \not\models \alpha$ for each prime p , so $\mathbb{Z} \not\models \alpha$.

But then $\mathbb{b}(\mathbb{Z}) \not\models \text{Eq}(K)$, which, using the fact that $\langle \mathbb{Z}, \max, +, 0 \rangle$ embeds into every non-trivial idempotent semifield, implies that K is trivial. \square

The Finite Basis Theorem

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Proof sketch.

Let K be any finitely based class of idempotent semifields, and w.l.o.g. let Σ be a finite basis of 'suitable inequations' for $\text{Eq}(K)$.

For any prime p : $K \models x \leq e \vee x^p$, but $\mathbb{b}(\mathbb{Z}_p) \not\models x \leq e \vee x^p$, so $\mathbb{b}(\mathbb{Z}_p) \not\models \Sigma$.

Let $\alpha := \&\{Q(\varepsilon) \mid \varepsilon \in \Sigma\}$. Then $\mathbb{Z}_p \not\models \alpha$ for each prime p , so $\mathbb{Z} \not\models \alpha$.

But then $\mathbb{b}(\mathbb{Z}) \not\models \text{Eq}(K)$, which, using the fact that $\langle \mathbb{Z}, \max, +, 0 \rangle$ embeds into every non-trivial idempotent semifield, implies that K is trivial. \square

The Finite Basis Theorem

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Proof sketch.

Let K be any finitely based class of idempotent semifields, and w.l.o.g. let Σ be a finite basis of 'suitable inequations' for $\text{Eq}(K)$.

For any prime p : $K \models x \leq e \vee x^p$, but $\mathbb{b}(\mathbb{Z}_p) \not\models x \leq e \vee x^p$, so $\mathbb{b}(\mathbb{Z}_p) \not\models \Sigma$.

Let $\alpha := \&\{Q(\varepsilon) \mid \varepsilon \in \Sigma\}$. Then $\mathbb{Z}_p \not\models \alpha$ for each prime p , so $\mathbb{Z} \not\models \alpha$.

But then $\mathbb{b}(\mathbb{Z}) \not\models \text{Eq}(K)$, which, using the fact that $\langle \mathbb{Z}, \max, +, 0 \rangle$ embeds into every non-trivial idempotent semifield, implies that K is trivial. \square

The Finite Basis Theorem

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Proof sketch.

Let K be any finitely based class of idempotent semifields, and w.l.o.g. let Σ be a finite basis of 'suitable inequations' for $\text{Eq}(K)$.

For any prime p : $K \models x \leq e \vee x^p$, but $\mathbb{b}(\mathbb{Z}_p) \not\models x \leq e \vee x^p$, so $\mathbb{b}(\mathbb{Z}_p) \not\models \Sigma$.

Let $\alpha := \&\{Q(\varepsilon) \mid \varepsilon \in \Sigma\}$. Then $\mathbb{Z}_p \not\models \alpha$ for each prime p , so $\mathbb{Z} \not\models \alpha$.

But then $\mathbb{b}(\mathbb{Z}) \not\models \text{Eq}(K)$, which, using the fact that $\langle \mathbb{Z}, \max, +, 0 \rangle$ embeds into every non-trivial idempotent semifield, implies that K is trivial. \square

The Finite Basis Theorem

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Proof sketch.

Let K be any finitely based class of idempotent semifields, and w.l.o.g. let Σ be a finite basis of 'suitable inequations' for $\text{Eq}(K)$.

For any prime p : $K \models x \leq e \vee x^p$, but $\mathbb{b}(\mathbb{Z}_p) \not\models x \leq e \vee x^p$, so $\mathbb{b}(\mathbb{Z}_p) \not\models \Sigma$.

Let $\alpha := \&\{Q(\varepsilon) \mid \varepsilon \in \Sigma\}$. Then $\mathbb{Z}_p \not\models \alpha$ for each prime p , so $\mathbb{Z} \not\models \alpha$.

But then $\mathbb{b}(\mathbb{Z}) \not\models \text{Eq}(K)$, which, using the fact that $\langle \mathbb{Z}, \max, +, 0 \rangle$ embeds into every non-trivial idempotent semifield, implies that K is trivial. \square

The Finite Basis Theorem

Theorem (M. & Santschi 2025)

No non-trivial class of idempotent semifields is finitely based.

Proof sketch.

Let K be any finitely based class of idempotent semifields, and w.l.o.g. let Σ be a finite basis of 'suitable inequations' for $\text{Eq}(K)$.

For any prime p : $K \models x \leq e \vee x^p$, but $\mathbb{b}(\mathbb{Z}_p) \not\models x \leq e \vee x^p$, so $\mathbb{b}(\mathbb{Z}_p) \not\models \Sigma$.

Let $\alpha := \&\{Q(\varepsilon) \mid \varepsilon \in \Sigma\}$. Then $\mathbb{Z}_p \not\models \alpha$ for each prime p , so $\mathbb{Z} \not\models \alpha$.

But then $\mathbb{b}(\mathbb{Z}) \not\models \text{Eq}(K)$, which, using the fact that $\langle \mathbb{Z}, \max, +, 0 \rangle$ embeds into every non-trivial idempotent semifield, implies that K is trivial. □

A Second Question

How many equational theories of idempotent semifields are there ?

The Answer

Theorem (M. & Santschi 2025)

There are continuum-many equational theories of classes of idempotent semifields.

Let us call a variety of ℓ -groups defined by the equational theory of ordered groups together with a set of group equations **g-representable**.

Theorem (Kopytov & Medvedev 1977)

There are continuum-many g-representable varieties of ℓ -groups.

To prove our theorem, it suffices to show that any two g-representable varieties of ℓ -groups can be distinguished by a semiring equation.

The Answer

Theorem (M. & Santschi 2025)

There are continuum-many equational theories of classes of idempotent semifields.

Let us call a variety of ℓ -groups defined by the equational theory of ordered groups together with a set of group equations **g-representable**.

Theorem (Kopytov & Medvedev 1977)

There are continuum-many g-representable varieties of ℓ -groups.

To prove our theorem, it suffices to show that any two g-representable varieties of ℓ -groups can be distinguished by a semiring equation.

The Answer

Theorem (M. & Santschi 2025)

There are continuum-many equational theories of classes of idempotent semifields.

Let us call a variety of ℓ -groups defined by the equational theory of ordered groups together with a set of group equations **g-representable**.

Theorem (Kopytov & Medvedev 1977)

There are continuum-many g-representable varieties of ℓ -groups.

To prove our theorem, it suffices to show that any two g-representable varieties of ℓ -groups can be distinguished by a semiring equation.

The Answer

Theorem (M. & Santschi 2025)

There are continuum-many equational theories of classes of idempotent semifields.

Let us call a variety of ℓ -groups defined by the equational theory of ordered groups together with a set of group equations **g-representable**.

Theorem (Kopytov & Medvedev 1977)

There are continuum-many g-representable varieties of ℓ -groups.

To prove our theorem, it suffices to show that any two g-representable varieties of ℓ -groups can be distinguished by a semiring equation.

Splitting Products

Every g -representable variety V of ℓ -groups has the following **product-splitting property**: for any terms s, t, u and new variable x :

$$V \models e \leq u \vee st \iff V \models e \leq u \vee s\bar{x} \vee xt. \quad (\bar{x} := x^{-1})$$

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

$$\begin{aligned} V \models e \leq v\bar{z}v \vee z\bar{v} &\iff V \models e \leq v\bar{z}\bar{x} \vee xv \vee z\bar{v} \\ &\iff V \models xz \leq v \vee xvxz \vee z\bar{v}xz \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}vxz \vee \bar{z}\bar{x}z\bar{v}xz \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}vxz \vee \bar{z}\bar{x}z\bar{v}\bar{y} \vee yxz \\ &\iff V \models xz \leq v \vee xvxz \vee z\bar{v}\bar{y} \vee xzyxz \\ &\iff V \models xzyv \leq vyv \vee xvxyzv \vee z \vee xzyxzyv. \end{aligned}$$

Splitting Products

Every g -representable variety V of ℓ -groups has the following **product-splitting property**: for any terms s, t, u and new variable x :

$$V \models e \leq u \vee st \iff V \models e \leq u \vee s\bar{x} \vee xt. \quad (\bar{x} := x^{-1})$$

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

$$\begin{aligned} V \models e \leq v\bar{z}v \vee z\bar{v} &\iff V \models e \leq v\bar{z}\bar{x} \vee xv \vee z\bar{v} \\ &\iff V \models xz \leq vv xvxz \vee z\bar{v}xz \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}vxz \vee \bar{z}\bar{x}z\bar{v}xz \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}vxz \vee \bar{z}\bar{x}z\bar{v}\bar{y} \vee yxz \\ &\iff V \models xz \leq vv xvxz \vee z\bar{v}\bar{y} \vee xzyxz \\ &\iff V \models xzyv \leq vyv \vee xv xzyv \vee z \vee xzyxzyv. \end{aligned}$$

Splitting Products

Every g -representable variety V of ℓ -groups has the following **product-splitting property**: for any terms s, t, u and new variable x :

$$V \models e \leq u \vee st \iff V \models e \leq u \vee s\bar{x} \vee xt. \quad (\bar{x} := x^{-1})$$

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

$$\begin{aligned} V \models e \leq v\bar{z}v \vee z\bar{v} &\iff V \models e \leq v\bar{z}\bar{x} \vee xv \vee z\bar{v} \\ &\iff V \models xz \leq v \vee xv \vee xz \vee z\bar{v}x \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}vxz \vee \bar{z}\bar{x}z\bar{v}x \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}vxz \vee \bar{z}\bar{x}z\bar{v}\bar{y} \vee yxz \\ &\iff V \models xz \leq v \vee xv \vee xz \vee z\bar{v}\bar{y} \vee xzyxz \\ &\iff V \models xzyv \leq vyv \vee xv \vee xzyv \vee z \vee xzyxzyv. \end{aligned}$$

Splitting Products

Every g -representable variety V of ℓ -groups has the following **product-splitting property**: for any terms s, t, u and new variable x :

$$V \models e \leq u \vee st \iff V \models e \leq u \vee s\bar{x} \vee xt. \quad (\bar{x} := x^{-1})$$

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

$$\begin{aligned} V \models e \leq v\bar{z}v \vee z\bar{v} &\iff V \models e \leq v\bar{z}\bar{x} \vee xv \vee z\bar{v} \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v}x \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee z\bar{v} \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee z\bar{v} \bar{y} \vee y \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v} \bar{y} \vee xzy \\ &\iff V \models xzyv \leq v \vee xv \vee z \vee xzyxzyv. \end{aligned}$$

Splitting Products

Every g -representable variety V of ℓ -groups has the following **product-splitting property**: for any terms s, t, u and new variable x :

$$V \models e \leq u \vee st \iff V \models e \leq u \vee s\bar{x} \vee xt. \quad (\bar{x} := x^{-1})$$

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

$$\begin{aligned} V \models e \leq v\bar{z}v \vee z\bar{v} &\iff V \models e \leq v\bar{z}\bar{x} \vee xv \vee z\bar{v} \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v}x \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee \bar{z}\bar{x}z \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee \bar{z}\bar{x}z \vee \bar{z}\bar{x}z\bar{v} \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee \bar{z}\bar{x}z \vee \bar{z}\bar{x}z\bar{v}y \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v}y \\ &\iff V \models xzyv \leq v \vee xv \vee z \vee xzyxzyv. \end{aligned}$$

Splitting Products

Every g -representable variety V of ℓ -groups has the following **product-splitting property**: for any terms s, t, u and new variable x :

$$V \models e \leq u \vee st \iff V \models e \leq u \vee s\bar{x} \vee xt. \quad (\bar{x} := x^{-1})$$

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

$$\begin{aligned} V \models e \leq v\bar{z}v \vee z\bar{v} &\iff V \models e \leq v\bar{z}\bar{x} \vee xv \vee z\bar{v} \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v}x \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee z\bar{v}x \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee z\bar{v}y \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v}y \\ &\iff V \models xzyv \leq v \vee xv \vee z \vee xzyxv. \end{aligned}$$

Splitting Products

Every g -representable variety V of ℓ -groups has the following **product-splitting property**: for any terms s, t, u and new variable x :

$$V \models e \leq u \vee st \iff V \models e \leq u \vee s\bar{x} \vee xt. \quad (\bar{x} := x^{-1})$$

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

$$\begin{aligned} V \models e \leq v\bar{z}v \vee z\bar{v} &\iff V \models e \leq v\bar{z}\bar{x} \vee xv \vee z\bar{v} \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v}x \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee z\bar{v}x \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee \bar{z}\bar{x}z\bar{v} \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v}y \vee yx \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v}y \vee xzyx \\ &\iff V \models xzyv \leq v \vee xv \vee z \vee xzyxzyv. \end{aligned}$$

Splitting Products

Every g -representable variety V of ℓ -groups has the following **product-splitting property**: for any terms s, t, u and new variable x :

$$V \models e \leq u \vee st \iff V \models e \leq u \vee s\bar{x} \vee xt. \quad (\bar{x} := x^{-1})$$

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

$$\begin{aligned} V \models e \leq v\bar{z}v \vee z\bar{v} &\iff V \models e \leq v\bar{z}\bar{x} \vee xv \vee z\bar{v} \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v} \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee z\bar{v} \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee \bar{z}\bar{x}z\bar{v} \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee \bar{z}\bar{x}z\bar{v} \vee y \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v} \\ &\iff V \models xzyv \leq v \vee xv \vee z \vee xzyxv. \end{aligned}$$

Splitting Products

Every g -representable variety V of ℓ -groups has the following **product-splitting property**: for any terms s, t, u and new variable x :

$$V \models e \leq u \vee st \iff V \models e \leq u \vee s\bar{x} \vee xt. \quad (\bar{x} := x^{-1})$$

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

$$\begin{aligned} V \models e \leq v\bar{z}v \vee z\bar{v} &\iff V \models e \leq v\bar{z}\bar{x} \vee xv \vee z\bar{v} \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v}x \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee z\bar{v}x \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee \bar{z}\bar{x}z\bar{v} \\ &\iff V \models e \leq \bar{z}\bar{x}v \vee \bar{z}v \vee \bar{z}\bar{x}z\bar{v}y \vee yx \\ &\iff V \models xz \leq v \vee xv \vee z\bar{v}y \vee xzy \\ &\iff V \models xzyv \leq v \vee xv \vee xzyv \vee z \vee xzyxzyv. \end{aligned}$$

The Counting Theorem

Theorem (M. & Santschi 2025)

There are continuum-many equational theories of classes of idempotent semifields.

Proof sketch.

Let V_1 and V_2 be distinct g -representable varieties of ℓ -groups. W.l.o.g., $V_1 \models \varepsilon$ and $V_2 \not\models \varepsilon$ for some inequation $\varepsilon = (e \leq t_1 \vee \dots \vee t_n)$, where t_1, \dots, t_n are group terms. However, since V_1 and V_2 have the product-splitting property, eliminating inverses produces a semiring inequation ε^* such that $V_1 \models \varepsilon^*$ and $V_2 \not\models \varepsilon^*$. That is, the idempotent semifield reducts of V_1 and V_2 have distinct equational theories. □

The Counting Theorem

Theorem (M. & Santschi 2025)

There are continuum-many equational theories of classes of idempotent semifields.

Proof sketch.

Let V_1 and V_2 be distinct g -representable varieties of ℓ -groups.

W.l.o.g., $V_1 \models \varepsilon$ and $V_2 \not\models \varepsilon$ for some inequation $\varepsilon = (e \leq t_1 \vee \dots \vee t_n)$, where t_1, \dots, t_n are group terms. However, since V_1 and V_2 have the product-splitting property, eliminating inverses produces a semiring inequation ε^* such that $V_1 \models \varepsilon^*$ and $V_2 \not\models \varepsilon^*$. That is, the idempotent semifield reducts of V_1 and V_2 have distinct equational theories. □

The Counting Theorem

Theorem (M. & Santschi 2025)

There are continuum-many equational theories of classes of idempotent semifields.

Proof sketch.

Let V_1 and V_2 be distinct g -representable varieties of ℓ -groups. W.l.o.g., $V_1 \models \varepsilon$ and $V_2 \not\models \varepsilon$ for some inequation $\varepsilon = (e \leq t_1 \vee \cdots \vee t_n)$, where t_1, \dots, t_n are group terms. However, since V_1 and V_2 have the product-splitting property, eliminating inverses produces a semiring inequation ε^* such that $V_1 \models \varepsilon^*$ and $V_2 \not\models \varepsilon^*$. That is, the idempotent semifield reducts of V_1 and V_2 have distinct equational theories. □

The Counting Theorem

Theorem (M. & Santschi 2025)

There are continuum-many equational theories of classes of idempotent semifields.

Proof sketch.

Let V_1 and V_2 be distinct g -representable varieties of ℓ -groups.

W.l.o.g., $V_1 \models \varepsilon$ and $V_2 \not\models \varepsilon$ for some inequation $\varepsilon = (e \leq t_1 \vee \cdots \vee t_n)$, where t_1, \dots, t_n are group terms. However, since V_1 and V_2 have the product-splitting property, eliminating inverses produces a semiring inequation ε^* such that $V_1 \models \varepsilon^*$ and $V_2 \not\models \varepsilon^*$. That is, the idempotent semifield reducts of V_1 and V_2 have distinct equational theories. □

The Counting Theorem

Theorem (M. & Santschi 2025)

There are continuum-many equational theories of classes of idempotent semifields.

Proof sketch.

Let V_1 and V_2 be distinct g -representable varieties of ℓ -groups.

W.l.o.g., $V_1 \models \varepsilon$ and $V_2 \not\models \varepsilon$ for some inequation $\varepsilon = (e \leq t_1 \vee \cdots \vee t_n)$, where t_1, \dots, t_n are group terms. However, since V_1 and V_2 have the product-splitting property, eliminating inverses produces a semiring inequation ε^* such that $V_1 \models \varepsilon^*$ and $V_2 \not\models \varepsilon^*$. That is, the idempotent semifield reducts of V_1 and V_2 have distinct equational theories. □

A Third Question

How hard is deciding equations in the class of idempotent semifields?

Towards an Answer

- The equational theory of ℓ -groups is known to be co-NP-complete (Galatos & M. 2016), so the equational theory of idempotent semifields belongs to co-NP, but is it co-NP-hard?
- The equational theory of Abelian ℓ -groups is co-NP-complete, but deciding inequations $s \leq t_1 \vee \dots \vee t_n$, where s, t_1, \dots, t_n are monoid (or group) terms, in this variety belongs to P.
- We will see that deciding inequations $s \leq t_1 \vee \dots \vee t_n$, where s, t_1, \dots, t_n are monoid terms, in the class of idempotent semifields (equivalently, the variety of ℓ -groups) is co-NP-hard.

Towards an Answer

- The equational theory of ℓ -groups is known to be co-NP-complete (Galatos & M. 2016), so the equational theory of idempotent semifields belongs to co-NP; but is it co-NP-hard?
- The equational theory of Abelian ℓ -groups is co-NP-complete, but deciding inequations $s \leq t_1 \vee \dots \vee t_n$, where s, t_1, \dots, t_n are monoid (or group) terms, in this variety belongs to P.
- We will see that deciding inequations $s \leq t_1 \vee \dots \vee t_n$, where s, t_1, \dots, t_n are monoid terms, in the class of idempotent semifields (equivalently, the variety of ℓ -groups) is co-NP-hard.

Towards an Answer

- The equational theory of ℓ -groups is known to be co-NP-complete (Galatos & M. 2016), so the equational theory of idempotent semifields belongs to co-NP; but is it co-NP-hard?
- The equational theory of Abelian ℓ -groups is co-NP-complete, but deciding inequations $s \leq t_1 \vee \dots \vee t_n$, where s, t_1, \dots, t_n are monoid (or group) terms, in this variety belongs to P.
- We will see that deciding inequations $s \leq t_1 \vee \dots \vee t_n$, where s, t_1, \dots, t_n are monoid terms, in the class of idempotent semifields (equivalently, the variety of ℓ -groups) is co-NP-hard.

Towards an Answer

- The equational theory of ℓ -groups is known to be co-NP-complete (Galatos & M. 2016), so the equational theory of idempotent semifields belongs to co-NP; but is it co-NP-hard?
- The equational theory of Abelian ℓ -groups is co-NP-complete, but deciding inequations $s \leq t_1 \vee \dots \vee t_n$, where s, t_1, \dots, t_n are monoid (or group) terms, in this variety belongs to P.
- We will see that deciding inequations $s \leq t_1 \vee \dots \vee t_n$, where s, t_1, \dots, t_n are monoid terms, in the class of idempotent semifields (equivalently, the variety of ℓ -groups) is co-NP-hard.

Towards an Answer

- The equational theory of ℓ -groups is known to be co-NP-complete (Galatos & M. 2016), so the equational theory of idempotent semifields belongs to co-NP; but is it co-NP-hard?
- The equational theory of Abelian ℓ -groups is co-NP-complete, but deciding inequations $s \leq t_1 \vee \cdots \vee t_n$, where s, t_1, \dots, t_n are monoid (or group) terms, in this variety belongs to P.
- We will see that deciding inequations $s \leq t_1 \vee \cdots \vee t_n$, where s, t_1, \dots, t_n are monoid terms, in the class of idempotent semifields (equivalently, the variety of ℓ -groups) is co-NP-hard.

Splitting Meets

The variety LG of ℓ -groups has the product-splitting property and also the **meet-splitting property**: for any terms s, t, u and new variable x ,

$$\text{LG} \models e \leq u \vee (s \wedge t) \iff \text{LG} \models e \leq u \vee sx \vee t\bar{x}.$$

For example,

$$\begin{aligned} \text{LG} \models e \leq y \vee (\bar{y} \wedge z\bar{y}\bar{z}) &\iff \text{LG} \models e \leq y \vee \bar{y}x \vee z\bar{y}\bar{z}\bar{x} \\ &\iff \text{LG} \models yxzy \leq y^2xzy \vee x^2zy \vee yz. \end{aligned}$$

Remark

No non-trivial proper variety of ℓ -groups has this property; such a variety would satisfy $e \leq (y \vee e)^2\bar{x} \vee (y \vee e)^{-1}x \vee (y \vee e)^{-1}$ and hence, by the meet-splitting property, $e \leq (y \vee e)^{-1}$, yielding triviality.

Splitting Meets

The variety LG of ℓ -groups has the product-splitting property and also the **meet-splitting property**: for any terms s, t, u and new variable x ,

$$\text{LG} \models e \leq u \vee (s \wedge t) \iff \text{LG} \models e \leq u \vee sx \vee t\bar{x}.$$

For example,

$$\begin{aligned} \text{LG} \models e \leq y \vee (\bar{y} \wedge z\bar{y}\bar{z}) &\iff \text{LG} \models e \leq y \vee \bar{y}x \vee z\bar{y}\bar{z}\bar{x} \\ &\iff \text{LG} \models yxzy \leq y^2xzy \vee x^2zy \vee yz. \end{aligned}$$

Remark

No non-trivial proper variety of ℓ -groups has this property; such a variety would satisfy $e \leq (y \vee e)^2\bar{x} \vee (y \vee e)^{-1}x \vee (y \vee e)^{-1}$ and hence, by the meet-splitting property, $e \leq (y \vee e)^{-1}$, yielding triviality.

Splitting Meets

The variety LG of ℓ -groups has the product-splitting property and also the **meet-splitting property**: for any terms s, t, u and new variable x ,

$$\text{LG} \models e \leq u \vee (s \wedge t) \iff \text{LG} \models e \leq u \vee sx \vee t\bar{x}.$$

For example,

$$\begin{aligned} \text{LG} \models e \leq y \vee (\bar{y} \wedge z\bar{y}\bar{z}) &\iff \text{LG} \models e \leq y \vee \bar{y}x \vee z\bar{y}\bar{z}\bar{x} \\ &\iff \text{LG} \models yxzy \leq y^2xzy \vee x^2zy \vee yz. \end{aligned}$$

Remark

No non-trivial proper variety of ℓ -groups has this property; such a variety would satisfy $e \leq (y \vee e)^2\bar{x} \vee (y \vee e)^{-1}x \vee (y \vee e)^{-1}$ and hence, by the meet-splitting property, $e \leq (y \vee e)^{-1}$, yielding triviality.

Splitting Meets

The variety LG of ℓ -groups has the product-splitting property and also the **meet-splitting property**: for any terms s, t, u and new variable x ,

$$\text{LG} \models e \leq u \vee (s \wedge t) \iff \text{LG} \models e \leq u \vee sx \vee t\bar{x}.$$

For example,

$$\begin{aligned} \text{LG} \models e \leq y \vee (\bar{y} \wedge z\bar{y}\bar{z}) &\iff \text{LG} \models e \leq y \vee \bar{y}x \vee z\bar{y}\bar{z}\bar{x} \\ &\iff \text{LG} \models yxzy \leq y^2xzy \vee x^2zy \vee yz. \end{aligned}$$

Remark

No non-trivial proper variety of ℓ -groups has this property; such a variety would satisfy $e \leq (y \vee e)^2\bar{x} \vee (y \vee e)^{-1}x \vee (y \vee e)^{-1}$ and hence, by the meet-splitting property, $e \leq (y \vee e)^{-1}$, yielding triviality.

Splitting Meets

The variety LG of ℓ -groups has the product-splitting property and also the **meet-splitting property**: for any terms s, t, u and new variable x ,

$$\text{LG} \models e \leq u \vee (s \wedge t) \iff \text{LG} \models e \leq u \vee sx \vee t\bar{x}.$$

For example,

$$\begin{aligned} \text{LG} \models e \leq y \vee (\bar{y} \wedge z\bar{y}\bar{z}) &\iff \text{LG} \models e \leq y \vee \bar{y}x \vee z\bar{y}\bar{z}\bar{x} \\ &\iff \text{LG} \models yxzy \leq y^2xzy \vee x^2zy \vee yz. \end{aligned}$$

Remark

No non-trivial proper variety of ℓ -groups has this property; such a variety would satisfy $e \leq (y \vee e)^2\bar{x} \vee (y \vee e)^{-1}x \vee (y \vee e)^{-1}$ and hence, by the meet-splitting property, $e \leq (y \vee e)^{-1}$, yielding triviality.

Splitting Meets

The variety LG of ℓ -groups has the product-splitting property and also the **meet-splitting property**: for any terms s, t, u and new variable x ,

$$\text{LG} \models e \leq u \vee (s \wedge t) \iff \text{LG} \models e \leq u \vee sx \vee t\bar{x}.$$

For example,

$$\begin{aligned} \text{LG} \models e \leq y \vee (\bar{y} \wedge z\bar{y}\bar{z}) &\iff \text{LG} \models e \leq y \vee \bar{y}x \vee z\bar{y}\bar{z}\bar{x} \\ &\iff \text{LG} \models yxzy \leq y^2xzy \vee x^2zy \vee yz. \end{aligned}$$

Remark

No non-trivial proper variety of ℓ -groups has this property; such a variety would satisfy $e \leq (y \vee e)^2\bar{x} \vee (y \vee e)^{-1}x \vee (y \vee e)^{-1}$ and hence, by the meet-splitting property, $e \leq (y \vee e)^{-1}$, yielding triviality.

Splitting Meets

The variety LG of ℓ -groups has the product-splitting property and also the **meet-splitting property**: for any terms s, t, u and new variable x ,

$$\text{LG} \models e \leq u \vee (s \wedge t) \iff \text{LG} \models e \leq u \vee sx \vee t\bar{x}.$$

For example,

$$\begin{aligned} \text{LG} \models e \leq y \vee (\bar{y} \wedge z\bar{y}\bar{z}) &\iff \text{LG} \models e \leq y \vee \bar{y}x \vee z\bar{y}\bar{z}\bar{x} \\ &\iff \text{LG} \models yxzy \leq y^2xzy \vee x^2zy \vee yz. \end{aligned}$$

Remark

No non-trivial proper variety of ℓ -groups has this property; such a variety would satisfy $e \leq (y \vee e)^2\bar{x} \vee (y \vee e)^{-1}x \vee (y \vee e)^{-1}$ and hence, by the meet-splitting property, $e \leq (y \vee e)^{-1}$, yielding triviality.

Splitting Meets

The variety LG of ℓ -groups has the product-splitting property and also the **meet-splitting property**: for any terms s, t, u and new variable x ,

$$\text{LG} \models e \leq u \vee (s \wedge t) \iff \text{LG} \models e \leq u \vee sx \vee t\bar{x}.$$

For example,

$$\begin{aligned} \text{LG} \models e \leq y \vee (\bar{y} \wedge z\bar{y}\bar{z}) &\iff \text{LG} \models e \leq y \vee \bar{y}x \vee z\bar{y}\bar{z}\bar{x} \\ &\iff \text{LG} \models yxzy \leq y^2xzy \vee x^2zy \vee yz. \end{aligned}$$

Remark

No non-trivial proper variety of ℓ -groups has this property; such a variety would satisfy $e \leq (y \vee e)^2\bar{x} \vee (y \vee e)^{-1}x \vee (y \vee e)^{-1}$ and hence, by the meet-splitting property, $e \leq (y \vee e)^{-1}$, yielding triviality.

Splitting Meets

The variety LG of ℓ -groups has the product-splitting property and also the **meet-splitting property**: for any terms s, t, u and new variable x ,

$$\text{LG} \models e \leq u \vee (s \wedge t) \iff \text{LG} \models e \leq u \vee sx \vee t\bar{x}.$$

For example,

$$\begin{aligned} \text{LG} \models e \leq y \vee (\bar{y} \wedge z\bar{y}\bar{z}) &\iff \text{LG} \models e \leq y \vee \bar{y}x \vee z\bar{y}\bar{z}\bar{x} \\ &\iff \text{LG} \models yxzy \leq y^2xzy \vee x^2zy \vee yz. \end{aligned}$$

Remark

No non-trivial proper variety of ℓ -groups has this property; such a variety would satisfy $e \leq (y \vee e)^2\bar{x} \vee (y \vee e)^{-1}x \vee (y \vee e)^{-1}$ and hence, by the meet-splitting property, $e \leq (y \vee e)^{-1}$, yielding triviality.

A Hardness Lemma

Lemma

Deciding inequations $s \leq t_1 \vee \cdots \vee t_n$, where s, t_1, \dots, t_n are monoid terms, in the variety LG of ℓ -groups is co-NP-hard.

Proof sketch.

Deciding equations of the following form in the variety DL of distributive lattices is co-NP-hard (Hunt, Rosenkrantz, Bloniarz 1987):

$$\varepsilon = \bigwedge_{i \in I} \bigvee_{j \in J_i} x_{ij} \leq \bigvee_{k \in K} \bigwedge_{l \in L_k} y_{kl} \vee z_{kl}, \text{ where the } x_{ij}, y_{kl}, z_{kl} \text{ are variables.}$$

Hence it suffices to use the meet-splitting property to produce for input ε (in polynomial time) a suitable inequation δ of size polynomial in the size of ε such that $\text{DL} \models \varepsilon \iff \text{LG} \models \delta$. □

A Hardness Lemma

Lemma

Deciding inequations $s \leq t_1 \vee \cdots \vee t_n$, where s, t_1, \dots, t_n are monoid terms, in the variety LG of ℓ -groups is co-NP-hard.

Proof sketch.

Deciding equations of the following form in the variety DL of distributive lattices is co-NP-hard (Hunt, Rosenkrantz, Bloniarz 1987):

$$\varepsilon = \bigwedge_{i \in I} \bigvee_{j \in J_i} x_{ij} \leq \bigvee_{k \in K} \bigwedge_{l \in L_k} y_{kl} \vee z_{kl}, \text{ where the } x_{ij}, y_{kl}, z_{kl} \text{ are variables.}$$

Hence it suffices to use the meet-splitting property to produce for input ε (in polynomial time) a suitable inequation δ of size polynomial in the size of ε such that $\text{DL} \models \varepsilon \iff \text{LG} \models \delta$. □

A Hardness Lemma

Lemma

Deciding inequations $s \leq t_1 \vee \cdots \vee t_n$, where s, t_1, \dots, t_n are monoid terms, in the variety LG of ℓ -groups is co-NP-hard.

Proof sketch.

Deciding equations of the following form in the variety DL of distributive lattices is co-NP-hard (Hunt, Rosenkrantz, Bloniarz 1987):

$$\varepsilon = \bigwedge_{i \in I} \bigvee_{j \in J_i} x_{ij} \leq \bigvee_{k \in K} \bigwedge_{l \in L_k} y_{kl} \vee z_{kl}, \text{ where the } x_{ij}, y_{kl}, z_{kl} \text{ are variables.}$$

Hence it suffices to use the meet-splitting property to produce for input ε (in polynomial time) a suitable inequation δ of size polynomial in the size of ε such that $\text{DL} \models \varepsilon \iff \text{LG} \models \delta$. □

The Complexity Theorem

Theorem (M. & Santschi 2025)

The equational theory of the class of idempotent semifields is co-NP-complete.

Remark

The equational theory of commutative idempotent semifields is also co-NP-complete, but the decidability of the equational theory of ordered idempotent semifields (or, similarly, ordered groups) is open.

The Complexity Theorem

Theorem (M. & Santschi 2025)

The equational theory of the class of idempotent semifields is co-NP-complete.

Remark

The equational theory of commutative idempotent semifields is also co-NP-complete, but the decidability of the equational theory of ordered idempotent semifields (or, similarly, ordered groups) is open.

The Complexity Theorem

Theorem (M. & Santschi 2025)

The equational theory of the class of idempotent semifields is co-NP-complete.

Remark

The equational theory of commutative idempotent semifields is also co-NP-complete, but the decidability of the equational theory of ordered idempotent semifields (or, similarly, ordered groups) is open.

Coda: Left-Orders

A **left-order** on a monoid \mathbf{M} is a total order \leq on M satisfying

$$x \leq y \implies zx \leq zy.$$

Let $\mathbf{FG}(X)$ denote the **free group** over a set X .

Theorem (Colacito & M. 2019)

The following are equivalent for any $t_1, \dots, t_n \in \mathbf{FG}(X)$:

- (1) *There exists a left-order \leq on $\mathbf{FG}(X)$ such that $e < t_1, \dots, e < t_n$.*
- (2) $\mathbf{LG} \not\models e \leq t_1 \vee \dots \vee t_n$.

Theorem (M. & Santschi 2025)

Checking for a set X with $|X| \geq 2$ and $t_1, \dots, t_n \in \mathbf{FG}(X)$ if there exists a left-order \leq on $\mathbf{FG}(X)$ such that $e < t_1, \dots, e < t_n$ is NP-complete.

Coda: Left-Orders

A **left-order** on a monoid \mathbf{M} is a total order \leq on M satisfying

$$x \leq y \implies zx \leq zy.$$

Let $\mathbf{FG}(X)$ denote the **free group** over a set X .

Theorem (Colacito & M. 2019)

The following are equivalent for any $t_1, \dots, t_n \in \mathbf{FG}(X)$:

- (1) There exists a left-order \leq on $\mathbf{FG}(X)$ such that $e < t_1, \dots, e < t_n$.
- (2) $\mathbf{LG} \not\models e \leq t_1 \vee \dots \vee t_n$.

Theorem (M. & Santschi 2025)

Checking for a set X with $|X| \geq 2$ and $t_1, \dots, t_n \in \mathbf{FG}(X)$ if there exists a left-order \leq on $\mathbf{FG}(X)$ such that $e < t_1, \dots, e < t_n$ is NP-complete.

Coda: Left-Orders

A **left-order** on a monoid \mathbf{M} is a total order \leq on M satisfying

$$x \leq y \implies zx \leq zy.$$

Let $\mathbf{FG}(X)$ denote the **free group** over a set X .

Theorem (Colacito & M. 2019)

The following are equivalent for any $t_1, \dots, t_n \in \mathbf{FG}(X)$:

- (1) *There exists a left-order \leq on $\mathbf{FG}(X)$ such that $e < t_1, \dots, e < t_n$.*
- (2) $\mathbf{LG} \not\models e \leq t_1 \vee \dots \vee t_n$.

Theorem (M. & Santschi 2025)

Checking for a set X with $|X| \geq 2$ and $t_1, \dots, t_n \in \mathbf{FG}(X)$ if there exists a left-order \leq on $\mathbf{FG}(X)$ such that $e < t_1, \dots, e < t_n$ is NP-complete.

Coda: Left-Orders

A **left-order** on a monoid \mathbf{M} is a total order \leq on M satisfying

$$x \leq y \implies zx \leq zy.$$

Let $\mathbf{FG}(X)$ denote the **free group** over a set X .

Theorem (Colacito & M. 2019)

The following are equivalent for any $t_1, \dots, t_n \in \mathbf{FG}(X)$:

- (1) *There exists a left-order \leq on $\mathbf{FG}(X)$ such that $e < t_1, \dots, e < t_n$.*
- (2) $\mathbf{LG} \not\models e \leq t_1 \vee \dots \vee t_n$.

Theorem (M. & Santschi 2025)

Checking for a set X with $|X| \geq 2$ and $t_1, \dots, t_n \in \mathbf{FG}(X)$ if there exists a left-order \leq on $\mathbf{FG}(X)$ such that $e < t_1, \dots, e < t_n$ is NP-complete.

Left-Orders on Free Monoids

Now let $\mathbf{FM}(X)$ denote the **free monoid** over a set X .

Theorem (Colacito, Galatos, M., Santschi 2022)

The following are equivalent for any $s_1, \dots, s_m, t_1, \dots, t_m \in \mathbf{FM}(X)$:

- (1) There exists a left-order on $\mathbf{FM}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.
- (2) There exists a left-order on $\mathbf{F}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.
- (3) $\text{LG} \not\models s_1 y_1 \wedge \dots \wedge s_m y_m \leq t_1 y_1 \vee \dots \vee t_m y_m$ for any new y_1, \dots, y_m .

In particular, every left-order on $\mathbf{FM}(X)$ extends to a left-order on $\mathbf{F}(X)$.

Theorem (M. & Santschi 2025)

Checking for any $s_1, \dots, s_n, t_1, \dots, t_n \in \mathbf{FM}(\omega)$ if there exists a left-order \leq on $\mathbf{FM}(\omega)$ satisfying $s_1 < t_1, \dots, s_n < t_n$ is NP-complete.

Left-Orders on Free Monoids

Now let $\mathbf{FM}(X)$ denote the **free monoid** over a set X .

Theorem (Colacito, Galatos, M., Santschi 2022)

The following are equivalent for any $s_1, \dots, s_m, t_1, \dots, t_m \in \mathbf{FM}(X)$:

- (1) *There exists a left-order on $\mathbf{FM}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.*
- (2) *There exists a left-order on $\mathbf{F}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.*
- (3) $\text{LG} \not\models s_1 y_1 \wedge \dots \wedge s_m y_m \leq t_1 y_1 \vee \dots \vee t_m y_m$ *for any new y_1, \dots, y_m .*

In particular, every left-order on $\mathbf{FM}(X)$ extends to a left-order on $\mathbf{F}(X)$.

Theorem (M. & Santschi 2025)

Checking for any $s_1, \dots, s_n, t_1, \dots, t_n \in \mathbf{FM}(\omega)$ if there exists a left-order \leq on $\mathbf{FM}(\omega)$ satisfying $s_1 < t_1, \dots, s_n < t_n$ is NP-complete.

Left-Orders on Free Monoids

Now let $\mathbf{FM}(X)$ denote the **free monoid** over a set X .

Theorem (Colacito, Galatos, M., Santschi 2022)

The following are equivalent for any $s_1, \dots, s_m, t_1, \dots, t_m \in \mathbf{FM}(X)$:

- (1) *There exists a left-order on $\mathbf{FM}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.*
- (2) *There exists a left-order on $\mathbf{F}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.*
- (3) $\text{LG} \not\models s_1 y_1 \wedge \dots \wedge s_m y_m \leq t_1 y_1 \vee \dots \vee t_m y_m$ *for any new y_1, \dots, y_m .*

In particular, every left-order on $\mathbf{FM}(X)$ extends to a left-order on $\mathbf{F}(X)$.

Theorem (M. & Santschi 2025)

Checking for any $s_1, \dots, s_n, t_1, \dots, t_n \in \mathbf{FM}(\omega)$ if there exists a left-order \leq on $\mathbf{FM}(\omega)$ satisfying $s_1 < t_1, \dots, s_n < t_n$ is NP-complete.

Left-Orders on Free Monoids

Now let $\mathbf{FM}(X)$ denote the **free monoid** over a set X .

Theorem (Colacito, Galatos, M., Santschi 2022)

The following are equivalent for any $s_1, \dots, s_m, t_1, \dots, t_m \in \mathbf{FM}(X)$:

- (1) *There exists a left-order on $\mathbf{FM}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.*
- (2) *There exists a left-order on $\mathbf{F}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.*
- (3) $\mathbf{LG} \not\models s_1 y_1 \wedge \dots \wedge s_m y_m \leq t_1 y_1 \vee \dots \vee t_m y_m$ *for any new y_1, \dots, y_m .*

In particular, every left-order on $\mathbf{FM}(X)$ extends to a left-order on $\mathbf{F}(X)$.

Theorem (M. & Santschi 2025)

Checking for any $s_1, \dots, s_n, t_1, \dots, t_n \in \mathbf{FM}(\omega)$ if there exists a left-order \leq on $\mathbf{FM}(\omega)$ satisfying $s_1 < t_1, \dots, s_n < t_n$ is NP-complete.

Left-Orders on Free Monoids

Now let $\mathbf{FM}(X)$ denote the **free monoid** over a set X .

Theorem (Colacito, Galatos, M., Santschi 2022)

The following are equivalent for any $s_1, \dots, s_m, t_1, \dots, t_m \in \mathbf{FM}(X)$:

- (1) *There exists a left-order on $\mathbf{FM}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.*
- (2) *There exists a left-order on $\mathbf{F}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.*
- (3) $\mathbf{LG} \not\models s_1 y_1 \wedge \dots \wedge s_m y_m \leq t_1 y_1 \vee \dots \vee t_m y_m$ *for any new y_1, \dots, y_m .*

In particular, every left-order on $\mathbf{FM}(X)$ extends to a left-order on $\mathbf{F}(X)$.

Theorem (M. & Santschi 2025)

Checking for any $s_1, \dots, s_n, t_1, \dots, t_n \in \mathbf{FM}(\omega)$ if there exists a left-order \leq on $\mathbf{FM}(\omega)$ satisfying $s_1 < t_1, \dots, s_n < t_n$ is NP-complete.

Left-Orders on Free Monoids

Now let $\mathbf{FM}(X)$ denote the **free monoid** over a set X .

Theorem (Colacito, Galatos, M., Santschi 2022)

The following are equivalent for any $s_1, \dots, s_m, t_1, \dots, t_m \in \mathbf{FM}(X)$:

- (1) *There exists a left-order on $\mathbf{FM}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.*
- (2) *There exists a left-order on $\mathbf{F}(X)$ satisfying $s_1 < t_1, \dots, s_m < t_m$.*
- (3) $\mathbf{LG} \not\models s_1 y_1 \wedge \dots \wedge s_m y_m \leq t_1 y_1 \vee \dots \vee t_m y_m$ *for any new y_1, \dots, y_m .*

In particular, every left-order on $\mathbf{FM}(X)$ extends to a left-order on $\mathbf{F}(X)$.

Theorem (M. & Santschi 2025)

Checking for any $s_1, \dots, s_n, t_1, \dots, t_n \in \mathbf{FM}(\omega)$ if there exists a left-order \leq on $\mathbf{FM}(\omega)$ satisfying $s_1 < t_1, \dots, s_n < t_n$ is NP-complete.

Summing Up

- Idempotent semifields are reducts of ℓ -groups, but their equational theories have different properties and require new proof methods.
- There are continuum-many equational theories of classes of idempotent semifields, but only the trivial theory has a finite basis.
- The equational theory of idempotent semifields is co-NP-complete and deciding if there exists a left-order on a free group or monoid satisfying a given finite set of inequalities is NP-complete.

Summing Up

- Idempotent semifields are reducts of ℓ -groups, but their equational theories have different properties and require new proof methods.
- There are continuum-many equational theories of classes of idempotent semifields, but only the trivial theory has a finite basis.
- The equational theory of idempotent semifields is co-NP-complete and deciding if there exists a left-order on a free group or monoid satisfying a given finite set of inequalities is NP-complete.

Summing Up

- Idempotent semifields are reducts of ℓ -groups, but their equational theories have different properties and require new proof methods.
- There are continuum-many equational theories of classes of idempotent semifields, but only the trivial theory has a finite basis.
- The equational theory of idempotent semifields is co-NP-complete and deciding if there exists a left-order on a free group or monoid satisfying a given finite set of inequalities is NP-complete.

Summing Up

- Idempotent semifields are reducts of ℓ -groups, but their equational theories have different properties and require new proof methods.
- There are continuum-many equational theories of classes of idempotent semifields, but only the trivial theory has a finite basis.
- The equational theory of idempotent semifields is co-NP-complete and deciding if there exists a left-order on a free group or monoid satisfying a given finite set of inequalities is NP-complete.

Open Problems

1. Can we describe a broader family of classes of idempotent semirings that are not finitely based?
2. Is the equational theory of totally ordered idempotent semifields — or, similarly, ordered groups — decidable?

This problem is equivalent to deciding if there exists a bi-order on a free group satisfying a given finite set of inequalities.
3. Is the equational theory of totally ordered commutative idempotent semirings decidable?

This problem amounts to deciding if there exists a total preorder on $\langle \mathbb{N}^k, +, \bar{0} \rangle$ satisfying $\bar{u} < \bar{v}_1, \dots, \bar{u} < \bar{v}_n$ with $\bar{u}, \bar{v}_1, \dots, \bar{v}_n \in \mathbb{N}^k$.

Open Problems

1. Can we describe a broader family of classes of idempotent semirings that are not finitely based?
2. Is the equational theory of totally ordered idempotent semifields — or, similarly, ordered groups — decidable?

This problem is equivalent to deciding if there exists a bi-order on a free group satisfying a given finite set of inequalities.

3. Is the equational theory of totally ordered commutative idempotent semirings decidable?

This problem amounts to deciding if there exists a total preorder on $\langle \mathbb{N}^k, +, \bar{0} \rangle$ satisfying $\bar{u} < \bar{v}_1, \dots, \bar{u} < \bar{v}_n$ with $\bar{u}, \bar{v}_1, \dots, \bar{v}_n \in \mathbb{N}^k$.

Open Problems

1. Can we describe a broader family of classes of idempotent semirings that are not finitely based?
2. Is the equational theory of totally ordered idempotent semifields — or, similarly, ordered groups — decidable?
This problem is equivalent to deciding if there exists a bi-order on a free group satisfying a given finite set of inequalities.
3. Is the equational theory of totally ordered commutative idempotent semirings decidable?

This problem amounts to deciding if there exists a total preorder on $\langle \mathbb{N}^k, +, \bar{0} \rangle$ satisfying $\bar{u} < \bar{v}_1, \dots, \bar{u} < \bar{v}_n$ with $\bar{u}, \bar{v}_1, \dots, \bar{v}_n \in \mathbb{N}^k$.

Open Problems

1. Can we describe a broader family of classes of idempotent semirings that are not finitely based?
2. Is the equational theory of totally ordered idempotent semifields — or, similarly, ordered groups — decidable?
This problem is equivalent to deciding if there exists a bi-order on a free group satisfying a given finite set of inequalities.
3. Is the equational theory of totally ordered commutative idempotent semirings decidable?

This problem amounts to deciding if there exists a total preorder on $\langle \mathbb{N}^k, +, \bar{0} \rangle$ satisfying $\bar{u} < \bar{v}_1, \dots, \bar{u} < \bar{v}_n$ with $\bar{u}, \bar{v}_1, \dots, \bar{v}_n \in \mathbb{N}^k$.

Open Problems

1. Can we describe a broader family of classes of idempotent semirings that are not finitely based?
2. Is the equational theory of totally ordered idempotent semifields — or, similarly, ordered groups — decidable?

This problem is equivalent to deciding if there exists a bi-order on a free group satisfying a given finite set of inequalities.
3. Is the equational theory of totally ordered commutative idempotent semirings decidable?

This problem amounts to deciding if there exists a total preorder on $\langle \mathbb{N}^k, +, \bar{0} \rangle$ satisfying $\bar{u} < \bar{v}_1, \dots, \bar{u} < \bar{v}_n$ with $\bar{u}, \bar{v}_1, \dots, \bar{v}_n \in \mathbb{N}^k$.

References

Equational theories of tropical semirings.

L. Aceto, Z. Ésik, A. Ingólfssdóttir. *Theor. Comput. Sci.* 298(3) (2023), 417–469.

From ℓ -groups to distributive ℓ -monoids and back again.

A. Colacito, N. Galatos, G. Metcalfe, S. Santschi. *J. Algebra* 601 (2022), 129–148.

Ordering groups and validity in lattice-ordered groups.

A. Colacito and G. Metcalfe. *J. Pure Appl. Algebra*, 223(12) (2019), 5163–5175.

Proof theory for lattice-ordered groups.

N. Galatos and G. Metcalfe. *Ann. Pure Appl. Logic* 167 (2016), 707–724.

Nonfinitely based ai-semirings with finitely based semigroup reducts.

M. Jackson, M. Ren, X. Zhao. *J. Algebra* 611 (2022), 211–245.

Flat algebras and the translation of universal horn logic to equational logic.

M. Jackson. *J. Symbolic Logic* 73(1) (2008), 90–128.

Varieties of lattice-ordered groups.

V.M. Kopytov and N.Y. Medvedev. *Algebra and Logic* 16 (1977), 281–285

On the computational complexity of algebra on lattices.

H.B. Hunt III, D.J. Rosenkrantz, P.A. Bloniarz. *SIAM J. Comput.* 16(1) (1987), 129–148.