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A Rose by any other Name?

An idempotent semifield is a lattice-ordered group (ℓ-group)
⟨L,�∧,∨, ·,��−1, e⟩ without the inverse and meet operations.
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This Talk

We will see that . . .

• unlike ℓ-groups, no non-trivial class of idempotent semifields is
finitely based;

• like ℓ-groups, there are continuum-many equational theories of
classes of idempotent semifields;

• like ℓ-groups, the equational theory of the class of idempotent
semifields is co-NP-complete.

Equational theories of idempotent semifields.
G. Metcalfe and S. Santschi. Bull. Lond. Math. Soc. 57(3) (2025), 771–785.
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Idempotent Semifields

An idempotent semiring is an algebraic structure ⟨S,∨, ·, e⟩ satisfying

(i) ⟨S, ·, e⟩ is a monoid;

(ii) ⟨S,∨⟩ is a semilattice, where a ≤ b :⇐⇒ a ∨ b = b;

(iii) a(b ∨ c)d = abd ∨ acd for all a, b, c, d ∈ S.

If ⟨S, ·, e⟩ is a group, this structure is an idempotent semifield, and
adding the operations −1 (inverse) and ∧ (meet) yields an ℓ-group.

Remark
Alternative definitions of idempotent semirings (dioids /ai-semirings)
differ with respect to the presence of constants e and 0 in the signature.
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Commutative Examples

• ⟨Z,max,+, 0⟩ is a commutative idempotent semifield, but its
subalgebra ⟨N,max,+, 0⟩ is only an idempotent semiring, so
idempotent semifields do not form a variety.

• Every ordered commutative idempotent semifield embeds into a
lexicographically ordered power of ⟨R,max,+, 0⟩ (Hahn 1907).

• More generally, every commutative idempotent semifield embeds
into an idempotent semifield of real-valued functions on a poset
(Conrad et al. 1963).
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Fundamental Examples

The order-preserving bijections on any chain Ω = ⟨Ω,⪯⟩ equipped
with function composition form an idempotent semifield Aut(Ω), where

f ≤ g :⇐⇒ f (a) ⪯ g(a) for all a ∈ Ω.

Moreover, every idempotent semifield embeds into Aut(Ω) for some
chain Ω (Holland 1963), and the equational theory of the class of all
idempotent semifields is the equational theory of Aut(⟨R,≤⟩).
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Our First Question

Which classes of idempotent semifields are finitely based ?
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The Finite Basis Problem

Let K be any class of algebras over some fixed signature, and call it
non-trivial if at least one of its members has more than one element.

A basis for its equational theory Eq(K) is a subset Σ ⊆ Eq(K) such that
Σ |= Eq(K); if Eq(K) has a finite basis, K is said to be finitely based.

E.g., the ℓ-group ⟨Z,min,max,+,−, 0⟩ is finitely based, but not the
idempotent semifield ⟨Z,max,+, 0⟩ (Aceto et al. 2003); indeed, there
are infinitely many finitely based varieties of ℓ-groups, but . . .

Theorem (M. & Santschi 2025)
No non-trivial class of idempotent semifields is finitely based.
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Flat Extensions

We define the flat extension of a monoid M = ⟨M, ·, e⟩ as

♭(M) = ⟨M ∪ {⊤},∨, ⋆, e⟩,

where ⊤ ̸∈ M and for all a, b ∈ M ∪ {⊤},

a ⋆ b :=

{
a · b if a, b ∈ M
⊤ otherwise;

a ∨ b :=

{
a if a = b
⊤ otherwise.

Then ⟨M ∪ {⊤}, ⋆, e⟩ is a monoid, ⟨M ∪ {⊤},∨⟩ is a semilattice, and

♭(M) is an idempotent semiring ⇐⇒ M is cancellative.

Flat algebras and the translation of universal horn logic to equational logic.
M. Jackson. J. Symbolic Logic 73(1) (2008), 90–128.
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The Key Examples

The cyclic groups

Z = ⟨Z,+, 0⟩, Zn = ⟨{e,a, . . . , an−1}, ·, e⟩ (n ∈ N+)

yield idempotent semirings ♭(Z), ♭(Zn) with semilattice structure:

⊤

−2 −1 0 1 2
. . . . . .

⊤

. . .

e a a2 an−1
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Semiring Inequations and Monoid Quasiequations

Given ε = (s ≤ t1 ∨ · · · ∨ tn), where s, t1, . . . , tn are monoid terms such
that each variable occurring in s occurs in t1 ∨ · · · ∨ tn, define

Q(ε) := {t1 ≈ t2, . . . , t1 ≈ tn} ⇒ t1 ≈ s.

Lemma
For any monoid M and equation ε of the above ‘suitable’ form:

♭(M) |= ε ⇐⇒ M |= Q(ε).

For example, consider for any n > 1,

ε = (x ≤ e ∨ xn) and Q(ε) = (e ≈ xn ⇒ e ≈ x),

and observe that Z |= Q(ε), so ♭(Z) |= ε, but Zn ̸|= Q(ε), so ♭(Zn) ̸|= ε.
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The Crucial Lemma

Lemma

For any conjunction of monoid quasiequations α,

Z |= α ⇐⇒ ∃n ∈ N : Zp |= α for each prime p > n.

Proof sketch.

(⇐) Z embeds into
∏
{Zp | p > n is prime}.

(⇒) Suppose that Z |= α. Then T ∪ {{xk ≈ e} ⇒ x ≈ e | k ∈ N} |= α,
where T is a first-order axiomatization of the class of Abelian groups.
By compactness, T ∪ {x2 ≈ e ⇒ x ≈ e, . . . , xn ≈ e ⇒ x ≈ e} |= α for
some n ∈ N. Hence Zp |= α for each prime p > n.
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The Finite Basis Theorem

Theorem (M. & Santschi 2025)
No non-trivial class of idempotent semifields is finitely based.

Proof sketch.
Let K be any finitely based class of idempotent semifields, and w.l.o.g.
let Σ be a finite basis of ‘suitable inequations’ for Eq(K).

For any prime p: K |= x ≤ e∨ xp, but ♭(Zp) ̸|= x ≤ e∨ xp, so ♭(Zp) ̸|= Σ.

Let α := &{Q(ε) | ε ∈ Σ}. Then Zp ̸|= α for each prime p, so Z ̸|= α.

But then ♭(Z) ̸|= Eq(K), which, using the fact that ⟨Z,max,+, 0⟩ embeds
into every non-trivial idempotent semifield, implies that K is trivial.
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A Second Question

How many equational theories of idempotent semifields are there ?
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The Answer

Theorem (M. & Santschi 2025)
There are continuum-many equational theories of classes of
idempotent semifields.

Let us call a variety of ℓ-groups defined by the equational theory of
ordered groups together with a set of group equations g-representable.

Theorem (Kopytov & Medvedev 1977)
There are continuum-many g-representable varieties of ℓ-groups.

To prove our theorem, it suffices to show that any two g-representable
varieties of ℓ-groups can be distinguished by a semiring equation.
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Splitting Products

Every g-representable variety V of ℓ-groups has the following
product-splitting property: for any terms s, t , u and new variable x :

V |= e ≤ u ∨ st ⇐⇒ V |= e ≤ u ∨ sx̄ ∨ xt . (x̄ := x−1)

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

V |= e ≤ vz̄v ∨ zv̄ ⇐⇒ V |= e ≤ vz̄x̄ ∨ xv ∨ zv̄

⇐⇒ V |= xz ≤ v ∨ xvxz ∨ zv̄xz

⇐⇒ V |= e ≤ z̄x̄v ∨ z̄vxz ∨ z̄x̄zv̄xz

⇐⇒ V |= e ≤ z̄x̄v ∨ z̄vxz ∨ z̄x̄zv̄ ȳ ∨ yxz

⇐⇒ V |= xz ≤ v ∨ xvxz ∨ zv̄ ȳ ∨ xzyxz

⇐⇒ V |= xzyv ≤ vyv ∨ xvxzyv ∨ z ∨ xzyxzyv .
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⇐⇒ V |= xzyv ≤ vyv ∨ xvxzyv ∨ z ∨ xzyxzyv .

George Metcalfe (University of Bern) Equational theories of semifields 11. November 2025 16 / 27



Splitting Products

Every g-representable variety V of ℓ-groups has the following
product-splitting property: for any terms s, t ,u and new variable x :

V |= e ≤ u ∨ st ⇐⇒ V |= e ≤ u ∨ sx̄ ∨ xt . (x̄ := x−1)

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

V |= e ≤ vz̄v ∨ zv̄ ⇐⇒ V |= e ≤ vz̄x̄ ∨ xv ∨ zv̄

⇐⇒ V |= xz ≤ v ∨ xvxz ∨ zv̄xz

⇐⇒ V |= e ≤ z̄x̄v ∨ z̄vxz ∨ z̄x̄zv̄xz

⇐⇒ V |= e ≤ z̄x̄v ∨ z̄vxz ∨ z̄x̄zv̄ ȳ ∨ yxz
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⇐⇒ V |= xzyv ≤ vyv ∨ xvxzyv ∨ z ∨ xzyxzyv .

George Metcalfe (University of Bern) Equational theories of semifields 11. November 2025 16 / 27



Splitting Products

Every g-representable variety V of ℓ-groups has the following
product-splitting property: for any terms s, t ,u and new variable x :

V |= e ≤ u ∨ st ⇐⇒ V |= e ≤ u ∨ sx̄ ∨ xt . (x̄ := x−1)

For such a variety, we can ‘eliminate inverses’ from inequations, e.g.,

V |= e ≤ vz̄v ∨ zv̄ ⇐⇒ V |= e ≤ vz̄x̄ ∨ xv ∨ zv̄

⇐⇒ V |= xz ≤ v ∨ xvxz ∨ zv̄xz

⇐⇒ V |= e ≤ z̄x̄v ∨ z̄vxz ∨ z̄x̄zv̄xz

⇐⇒ V |= e ≤ z̄x̄v ∨ z̄vxz ∨ z̄x̄zv̄ ȳ ∨ yxz
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The Counting Theorem

Theorem (M. & Santschi 2025)
There are continuum-many equational theories of classes of
idempotent semifields.

Proof sketch.
Let V1 and V2 be distinct g-representable varieties of ℓ-groups.
W.l.o.g., V1 |= ε and V2 ̸|= ε for some inequation ε = (e ≤ t1 ∨ · · · ∨ tn),
where t1, . . . , tn are group terms. However, since V1 and V2 have the
product-splitting property, eliminating inverses produces a semiring
inequation ε⋆ such that V1 |= ε⋆ and V2 ̸|= ε⋆. That is, the idempotent
semifield reducts of V1 and V2 have distinct equational theories.
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A Third Question

How hard is deciding equations in the class of idempotent semifields?
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Towards an Answer

• The equational theory of ℓ-groups is known to be co-NP-complete
(Galatos & M. 2016), so the equational theory of idempotent
semifields belongs to co-NP; but is it co-NP-hard?

• The equational theory of Abelian ℓ-groups is co-NP-complete,
but deciding inequations s ≤ t1 ∨ · · · ∨ tn, where s, t1, . . . , tn are
monoid (or group) terms, in this variety belongs to P.

• We will see that deciding inequations s ≤ t1 ∨ · · · ∨ tn, where
s, t1, . . . , tn are monoid terms, in the class of idempotent semifields
(equivalently, the variety of ℓ-groups) is co-NP-hard.
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Splitting Meets

The variety LG of ℓ-groups has the product-splitting property and also
the meet-splitting property: for any terms s, t , u and new variable x ,

LG |= e ≤ u ∨ (s ∧ t) ⇐⇒ LG |= e ≤ u ∨ sx ∨ t x̄ .

For example,

LG |= e ≤ y ∨ (ȳ ∧ zȳ z̄) ⇐⇒ LG |= e ≤ y ∨ ȳx ∨ zȳ z̄x̄

⇐⇒ LG |= yxzy ≤ y2xzy ∨ x2zy ∨ yz.

Remark
No non-trivial proper variety of ℓ-groups has this property; such a
variety would satisfy e ≤ (y ∨ e)2x̄ ∨ (y ∨ e)−1x ∨ (y ∨ e)−1 and hence,
by the meet-splitting property, e ≤ (y ∨ e)−1, yielding triviality.

George Metcalfe (University of Bern) Equational theories of semifields 11. November 2025 20 / 27



Splitting Meets

The variety LG of ℓ-groups has the product-splitting property and also
the meet-splitting property: for any terms s, t , u and new variable x ,

LG |= e ≤ u ∨ (s ∧ t) ⇐⇒ LG |= e ≤ u ∨ sx ∨ t x̄ .

For example,
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⇐⇒ LG |= yxzy ≤ y2xzy ∨ x2zy ∨ yz.

Remark
No non-trivial proper variety of ℓ-groups has this property; such a
variety would satisfy e ≤ (y ∨ e)2x̄ ∨ (y ∨ e)−1x ∨ (y ∨ e)−1 and hence,
by the meet-splitting property, e ≤ (y ∨ e)−1, yielding triviality.

George Metcalfe (University of Bern) Equational theories of semifields 11. November 2025 20 / 27



Splitting Meets

The variety LG of ℓ-groups has the product-splitting property and also
the meet-splitting property: for any terms s, t , u and new variable x ,

LG |= e ≤ u ∨ (s ∧ t) ⇐⇒ LG |= e ≤ u ∨ sx ∨ t x̄ .

For example,
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⇐⇒ LG |= yxzy ≤ y2xzy ∨ x2zy ∨ yz.

Remark
No non-trivial proper variety of ℓ-groups has this property; such a
variety would satisfy e ≤ (y ∨ e)2x̄ ∨ (y ∨ e)−1x ∨ (y ∨ e)−1 and hence,
by the meet-splitting property, e ≤ (y ∨ e)−1, yielding triviality.

George Metcalfe (University of Bern) Equational theories of semifields 11. November 2025 20 / 27



A Hardness Lemma

Lemma
Deciding inequations s ≤ t1 ∨ · · · ∨ tn, where s, t1, . . . , tn are monoid
terms, in the variety LG of ℓ-groups is co-NP-hard.

Proof sketch.
Deciding equations of the following form in the variety DL of distributive
lattices is co-NP-hard (Hunt, Rosenkrantz, Bloniarz 1987):

ε =
∧
i∈I

∨
j∈Ji

xij ≤
∨

k∈K

∧
l∈Lk

ykl ∨ zkl , where the xij , ykl , zkl are variables.

Hence it suffices to use the meet-splitting property to produce for input
ε (in polynomial time) a suitable inequation δ of size polynomial in the
size of ε such that DL |= ε ⇐⇒ LG |= δ.
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The Complexity Theorem

Theorem (M. & Santschi 2025)
The equational theory of the class of idempotent semifields is
co-NP-complete.

Remark
The equational theory of commutative idempotent semifields is also
co-NP-complete, but the decidability of the equational theory of
ordered idempotent semifields (or, similarly, ordered groups) is open.
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Coda: Left-Orders

A left-order on a monoid M is a total order ≤ on M satisfying

x ≤ y =⇒ zx ≤ zy .

Let FG(X ) denote the free group over a set X .

Theorem (Colacito & M. 2019)
The following are equivalent for any t1, . . . , tn ∈ FG(X ):
(1) There exists a left-order ≤ on FG(X ) such that e < t1, . . . , e < tn.
(2) LG ̸|= e ≤ t1 ∨ · · · ∨ tn.

Theorem (M. & Santschi 2025)
Checking for a set X with |X | ≥ 2 and t1, . . . , tn ∈ FG(X ) if there exists
a left-order ≤ on FG(X ) such that e < t1, . . . , e < tn is NP-complete.
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Summing Up

• Idempotent semifields are reducts of ℓ-groups, but their equational
theories have different properties and require new proof methods.

• There are continuum-many equational theories of classes of
idempotent semifields, but only the trivial theory has a finite basis.

• The equational theory of idempotent semifields is co-NP-complete
and deciding if there exists a left-order on a free group or monoid
satisfying a given finite set of inequalities is NP-complete.
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Open Problems

1. Can we describe a broader family of classes of idempotent
semirings that are not finitely based?

2. Is the equational theory of totally ordered idempotent semifields
— or, similarly, ordered groups — decidable?
This problem is equivalent to deciding if there exists a bi-order on
a free group satisfying a given finite set of inequalities.

3. Is the equational theory of totally ordered commutative idempotent
semirings decidable?
This problem amounts to deciding if there exists a total preorder
on ⟨Nk ,+, 0̄⟩ satisfying ū < v̄1, . . . , ū < v̄n with ū, v̄1, . . . , v̄n ∈ Nk .

George Metcalfe (University of Bern) Equational theories of semifields 11. November 2025 26 / 27



Open Problems

1. Can we describe a broader family of classes of idempotent
semirings that are not finitely based?

2. Is the equational theory of totally ordered idempotent semifields
— or, similarly, ordered groups — decidable?
This problem is equivalent to deciding if there exists a bi-order on
a free group satisfying a given finite set of inequalities.

3. Is the equational theory of totally ordered commutative idempotent
semirings decidable?
This problem amounts to deciding if there exists a total preorder
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