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Outline

In this talk, we will

1. discuss the degree of a function between abelian groups,

2. use it to derive properties of algebraic sets (= solution sets of polynomial
equations),

3. relate degree to supernilpotency.
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Polynomial Equations over Finite Fields
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The Chevalley-Warning Theorem

Theorem (C. Chevalley and E. Warning 1935)
Letpe P,meN,q:=p™, let f1,..., fr € Fglz1,..., 2], and let

vi=#{a €F | fi(a) = = f(a) = O}.

We assume n > Y., deg(f;). Then
1. v # 1 (Chevalley).
2. p divides v (Warning’s First Theorem).
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Proof of Chevalley’s Theorem

B Suppose that a € Fy is the only solution of fi(a) = --- = f,(a) = 0.
B Theng(z) =[]_,(1 - fi(z + )7 !) satisfies g(0) = 1 and g(b) = 0 for b # 0.
B Hence g(x) and [, (1 — 2971 induce the same function.

2

B Hence deg(g) > n(qg —1).

B Thus }°;_; deg(fi) (¢ —1) = n(g — 1).
B Contradictionto Y ;_, deg(fi) < n.
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Proof of Chevalley’s Theorem

Let x : Fy — Fy, x(0) =1, x(a) = 0 for a € Fy \ {0}.
We need an argument for:

Lemma

Every polynomial p € Fy[z1, ..., z,] that induces x has total degree > n(¢ — 1).

Proof using Alon’s Combinatorial Nullstellensatz [N. Alon 1999]:

Suppose deg(p) < n(qg — 1).

Then the coefficient of 297" - 24" in f := p(a1, ..., 2,) — [[12,(1 — 27 ") does
not vanish.

Hence Alon’s Theorem tells that f is not the zero-function.

Hence p does not induce .
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Proof of Chevalley’s Theorem

Lemma

Every polynomial p € F,[z1,. .., z,] that induces x has total degree > n(q — 1).

Proof using Warning’s argument:

Fori <g¢—1,wehave 3,5 a’ =0.
Hence for each f € Fylx1, ..., z,] with deg(f) < n(¢ — 1), we have

ZaEF{; f(a’) = 0.
Since 3, e x(a) = 1, we have deg(p) > n(q — 1).
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The Chevalley-Warning Theorem

Lemma

For each f € Fy[x1,...,zy,] with deg(f) < n(q — 1), we have Zae]Fg f(a)=0.

The number of solutions of fi(z) = --- f,(z) = 0 modulo p is given by
=Y ] —fita)™).
acFr i=1

Hence if 3., deg(fi)(¢ — 1) < n(q — 1), then p divides v (Warning’s First
Theorem).

7/59



Functional degree
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Definition of the degree for functions

We try to generalize the total degree of a polynomial function.
Setup: We let A, B be abelian groups, f : A — B. (In the Chevalley-Warning
Theorems A =Fy and B =F,.)
Goal:
B Find a definition for FDEG(f).
B Argue that the definition is useful.
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Definition of the degree of a function

Setup: We let A, B be abelian groups, f : A — B.
Definition through difference operator:

B Forac A, Ay(f) (z) := f(x+a) — f(x).
B FDEG(f) := the minimal n € Ny with A, A, ---A,, ., f=0forall
ai,...,0n41 € A.

B Intuitive: f : R — R is a polynomial of degree < 2 < " = 0.
B Problems:

O Au(fog)=? (“Chain rule”)
O f:Zy — Zs, f(0) =1, f(1) = 2 satisfies A f = f. Hence FDEG(f) = .
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The definition of the degree

Setup: We let A, B be abelian groups, f: A — B.
Definition through an abstract version of the difference operator:
[Vaughan-Lee 1983, Freese McKenzie 1987 (Chapter 14)]

B Group ring Z[A] := {3 ,c 4 #aTa | (2a)aca € ZW}.
B Z[A] acts on B4 by

(Tax f) (2) = f(z+a)
(aeazaTa) x ) (2) = Dieazaf(z+a)
(ra =D« f) (x) = flz+a)- f(2)

B In this way, B4 is a Z[A]-module.
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The definition of the degree

Setup: We let A, B be abelian groups, f : A — B.
Definition through an abstract version of the difference operator:
[Vaughan-Lee 1983, Freese McKenzie 1987 (Chapter 14)]

B (7. —1)*f)(2) == f(x +a) - f(z).

B ] := augmentation ideal of Z[A] = ideal generated by {7, — 1| a € A} =
{> aca zaTa € Z[A] | Y 4cn2a = 0}

B FDEG(f) :=min({n € Ng | I"™ % f = 0} U {c0}).
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The definition of the degree
Setup: We let A, B be abelian groups, f : A — B.
Definition through a functional equation: For functions on R, we have:

Theorem (Fréchet 1909)

A polynomial of degree n in z is a continuous function verifying the identity
f@i+m+. A anp1) = > fl@i +...+mi,)
+ Zf($11 +o T ) -
n—1

+ (=1 Y flwi) + (=)™ F(0) =0,

n

whatever the constants z, ..., z,; are without satisfying the analogous identi-
ties obtained by replacing the integer n with a smaller integer. 13/59



The definition of the degree

Setup: We let A, B be abelian groups, f : A — B.
Definition through a functional equation:

We define FDEG(f) to be the smallest m € Ny such that

m—+1
FO )= > ()™ ay)
=1 SC[m+1] JES
forall zq,..., 2,41 € A.

m = 0: f(z1) = f(0).

m = 1: f(z1 +x2) = f(z1) + f(z2) — f(0).

m = 2:

fx1+zo+z3) = f(r1+x2)+ f(er+a3) + f(ee+x3) — f(z1) — f(22) — f(23) + £(0).
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The functional degree

Setup: We let A, B be abelian groups, f : A — B.

Lemma

All three definitions yield the same degree.

Definition of the functional degree
FDEG(f) := min ({n € Ny | (Aug(Z[A]))"*! * f = 0} U {c0}).

B FDEG(f) =0« fis constant.
B FDEG(f) = 1< f = ¢+ h with ¢ constant, h group homomorphism.

B Let p € P and assume that A, B are finite abelian p-groups. Then
FDEG(f) < oo. Reason: Nilpotency of Aug(Z,s[A]).
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The degree of concrete functions

B Polynomials over prime fields:
A=TFY, B=TF,, f €Fplzy,...,zy] with all exponents < p — 1.

Then FDEG(f) is the total degree of f.

B Polynomials over finite fields:
On FFy5, z° induces a homomorphism (= degree 1).

O F, ...field with ¢ elements of characteristic p.
O Forn €N, s,(n) is the digit sum in base p.
s5(25) =1, s5(10) = 2, s5(24) = 8.
O [Moreno Moreno 1995] The p-weight degree of z{* - - - 2%~ is defined by

N
deg, (2§ -+ a3¥) == ) sp(am).

n=1
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The functional degree of polynomial functions

F afield, f € Flxy,...,zy].
B If |F| = ¢ = p™, and if all exponents are at most ¢ — 1, then

FDEG(f) = degp(f).
B If F is infinite of characteristic p € P, then FDEG(f) = deg,,(f).

B If F is of characteristic 0, then FDEG(f) = deg(f).
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Properties of the functional degree

For a function f : (A,+) — (B, +), the functional degree does not use any
syntactic representation of f.

Lemma

B FDEG(f + g) < max(FDEG(f), FDEG(g)).
B If (B,+,-)is aring, then FDEG(f - g) < FDEG(f) + FDEG(g).
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Properties of the functional degree

Theorem [Leibman 2002]

Let (4,4),(B,+),(C,+) be abelian groups, let f : A — Band g : B — C with
FDEG(f) < oo and FDEG(g) < oco. Then FDEG(g o f) < FDEG(g) - FDEG(f).

Self-contained proof in [EA, Moosbauer, 2021].

The proof needs the following claim (stated here for m = 2): If there are
91,92, 93 : A? — B such that for all x1,%2,T3 € A3,

h(z1 + z2 + 3) = g1(z2, 23) + g2(x1, x3) + g3(x1, x2),
then FDEG(h) < 2.
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Characterization of the degree

Theorem (cf. [EA, Moosbauer, 2021])
Let (A,+) and (B, +) be abelian groups, let f : A — B, and let m € Ny. Then
the following are equivalent:

1.
2.
3.

FDEG(f) < m.

For every & > m, we have f(3°; 2:) = S gcp (=1 IS F( e s 25)-
There exist functions g1, ..., gmi1 : A™tl 5 B such that for all
T1,...,Tme1 € A, We have

m+1 m+1

FOm) =) gil@r,. -, Bmpa),
i=1

=1

and for each i € [m + 1], the function g; does not depend on its i th argument.
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Maximal degree

For two abelian groups A, B, we define

8(A, B) := sup ({FDEG(f) | f € BA}).

Theorem [EA, Moosbauer 2021]

B j(A, B)<oco<=|Al=1lor|B|=1ordpecP : Ais afinite p-group and B is
a p-group of finite exponent.
B If exp(B) = n € N, then (A, B) = min{m € N | (Aug(Z,[4]))" = 0} —1.
nilpotency inde;r of Aug(Zn[A])
B If exp(B) = n € N, then the characteristic function x(0) = b (of order n) and
x(a) = 0 for a # 0 has degree §(A, B).
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General results on §(A, B)

8(A, B) :=sup ({FDEG(f) | f € B}).

Lemma (EA, Moosbauer 2021)
Let A, B be abelian groups.

W 5(A,Z,5) < B6(A, Z,).
| 5(141 X AQ,B) < 6(A1,B) —|—5(A2,B)
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Known results on §(A, B)

§(A, B) == sup ({FDEG(f) | f € B*}) = (nilpotency index of Aug(Ze,(p)[A])) — 1
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Known results on §(A, B)
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A is not a p-group 00 00
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Known results on §(A, B)
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Equations over abelian groups
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Warning’s First Theorem

Abstract version Warning’s Sum Lemma

Let p be a prime, let A be a finite abelian p-group, f : A — Z,,.
If FDEG(f) < 6(A,Zp), then >, f(x) = 0.

Proof:

B Llet]:=(r,—1|ac A) = Aug(Z[4)]).
B Z[A] x x = Z3 and Z[A] * X = (X)vector-space + I * x. Hence I x x has codim 1 in
ZA.
[ | Iix C{f > 4ca f(a) =0} because
S pen(ra—1) % f(@) = Soen fla+a) — flx) = 0.
W s\ C{f|FDEG(f) < 6(A,Z,)}.
W Hence {f | $,c4 f(a) = 0} = {f | FDEG(f) < 0(A,Z,)}.
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Warning’s First Theorem

Theorem [EA, Moosbauer 2021]

Let p be a prime, let A be a finite abelian p-group with |A| > 1, and let fi,..., f, :
A™ — A be functions with .
n > FDEG(f:).
=1

Then p divides v = [{a € A" | fi(a) =--- = f;(a) = 0}].

Proof:

B \: A— Z,has degree §(A,Zpy).
B a—[[_, x(filar,...,a,)) has degree < > . , FDEG(f;) 6(A,Zy).
B Hence a — [[;_, x(fi(a1,...,a,)) has degree < né(A,Z,) = (A", Zy).
B By the Sum-Lemma [v], = " c4n 111 x(fi(a1,...,a,)) = 0.
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Warning’s First Theorem

Setting A := F, we obtain:

Theorem (Warning 1935; Moreno and Moreno 1995)
Let p be a prime, let F' be a finite field of characteristic p, let r,n € N, and let
fioooo fr € Fla1,...,z0]. We assume that n > >0, deg,(f;). Then p divides

‘V(fla"'7f1“)|'

Warning’s First Thm for noncommutative rings [EA, Moosbauer 2021]
Letp € P, let a € N, let R be a (not necessarily commutative) ring with |R| = p?,
letn e N, let X = {z;,...,z,},and let f1,..., f, be polynomial expressions over
R in the variables X. If n > Y7, deg(f:), then p divides |V (f1,..., f-)|.
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Warning’s First Theorem with restricted domain

Restricted Domain versions have been established, e.g., by [P.L. Clark, 2014] and
[D. Brink, 2011].

Theorem [EA, Moosbauer 2021]

Let p be a prime, o € N, and let F be a finite field with ¢ = p* elements. Let

fiy-oos fr € Flz1,...,2,)], let A be a subgroup of (F™, +) with p™ elements. We
assume that

M > aZdegp(fj).

j=1
Then p divides the cardinality of {a € A | fi(a) =--- = f,(a) = 0}.
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Warning’s Second Theorem

Theorem (E. Warning, 1935)
F afinite field, f1,..., fs € Flx1,...,zy].
FV(f1,..., fs) # D, then #V (f1,..., fn) > |F|*~Zi=1 deslf),

Remarks:

1. Warning considered the case s = 1 (Satz 3).
2. The bound can be attained: #V (z1,...,zs) = |F|"%.
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Warning’s Second Theorem is useful

Let F' be a finite field.

B The problem
Input f € Flz; | i € N] (possibly not in expanded form). Output YES iff
V() #o
is NP-complete.

B lts fixed parameter version for fixed degree D with
Input f € Flz; | i € N] with deg(f) < D
is in RP (randomized polynomial time). Proof: If f has N variables and is
solvable, then a random a € F" is a solution with probability > |F|~P.

B Such (and better) results were used in [Kawatek and Krzaczkowski, 2020] to
provide a linear time Monte-Carlo algorithm to solve equations over nilpotent
groups. 30/59



Improvements of Warning’s Second Theorem

Theorem (E. Warning, 1935)
F afinite field, f1,..., fs € Flz1,...,zy].
FV(fi,..., fs) # 2, then #V (f1,..., fs) > |F|" Xz deslfo),

B [Heath-Brown, 2011]: if V(fy,..., fs) is not a linear manifold and |F'| > 4, then

#V (f1yeo0 fn) 220" (q:= |F|, d:= Y5, deg(fi))
B [Moreno Moreno 1995]: deg(f) can be replaced by the p-weight degree
deg,(f), where p = char(F"),

N
degy (29" ---23) =) splan),
n=1

sp(n) is the digit sum in base p.
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Warning’s Second Theorem for abelian groups

Theorem (E. Warning, 1935)
F afinite field, f1,..., fs € Flx1,...,zy].
£V (f1,..., fs) # @, then #V (fi,..., fo) > |F|"~ iz deslfo),

Theorem [EA, Moosbauer 2021]

Let f1,..., fr: Z,® = Z,°. WV (f1,... fr) # @, then
D D

#V(fi,.... fr) 2 pa—,B > i—1 FDEG(fi)
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Supernilpotency
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Supernilpotent algebras

Let k£ € N. The algebra A is k-supernilpotent if

Vnq,.. nkH € Ny, V Zf+11 n;-ary term functions ¢ of A,

v<(a§’),a2 Ylie{l,...,k+1}) e [T, (4™ x A™), the following holds:
If forall f:{1,...,k} — {1,2} such that f is not constantly 2, we have

(1) a® kDY o) (k) (k+1)
t(af(l),..., k) 01 )—t(af(l),.. () O ),
then
t(aél), ... ,agk), a(k+1)) t(aél), . ,aék), agkﬂ)).
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Supernilpotent algebras

The algebra A is 1-supernilpotent if

VYn1,ns € No, V n1 + no-ary term functions ¢ of A,
Vagl),agl) €A™, a§2),a§2) € A", the following holds:

t(a",a?) = t(af", af”) = #(a}”, al?) = t(a§", af”).
Hence A is 1-supernilpotent iff it is abelian.
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Supernilpotent algebras

The algebra A is 1-supernilpotent if

Vni,ne € Ny, V n1 + ng-ary term functions ¢ of A,
Va,b e A™ ¢,d € A", the following holds:

t(a,c) =t(a,d) = t(b,c) =t(b,d).
Hence A is 1-supernilpotent iff it is abelian.
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Supernilpotent algebras

The algebra A is 2-supernilpotent if

Vni,ns,n3 € Ny, V 2?21 n;-ary term functions ¢ of A,
Y((a®,b®) |ie{1,...,3}) e [T, (A™ x A™), the following holds:

t
t(bMW, a® a®) =¢(bM a®@ pB)) } — t(bM, 5@ a®)) =¢8P, b p3)).
t(a®, 5@ a®) =t(a®, b® bO))
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Comments on “supernilpotent”

B Supernilpotent expanded groups were defined in [Aichinger, Ecker 2006].

B Supernilpotent algebras were defined in [Aichinger, Mudrinski 2010] as those
satisfying [1,. .., 1] = 0 for the higher commutator operation from [Bulatov
2001].

B For algebras with Mal’cev term, supernilpotent implies nilpotent (nested
commutator property (HC8)) [EA, Mudrinski 2010].

B Supernilpotent = Nilpotent:

O not true in general [Moore, Moorhead 2019].
O true for finite algebras [Kearnes, Szendrei 2020] and Taylor algebras [Wires
2019 and Moorhead 2021].
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Supernilpotent algebras

Let £ € N, A an algebra. TFAE:

1. A is k-supernilpotent.
2. A satisfies [1,...,1] =0 (k + 1 times 1).
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Supernilpotent algebras in congruence modular varieties

A term w(z1,...,z,41) in the language of A is a commutator term of rank r for
A if

AkEw(zxe,..., 0 2) Rw(T,2,.. ., &, 2) - R w(x, X, ..., 2,2) R 2.
A commutator term w(z1, ..., z,4+1) is called trivial if A = w(xy, ...,z 2) = 2.

A commutator term in the language of (A + constants) is a commutator
polynomial.
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Supernilpotent algebras

Let £ € N, A an algebra in a congruence modular variety. TFAE:
1. A is k-supernilpotent.
2. A is nilpotent, and all nontrivial commutator polynomials are of rank < k.

For (1)=(2), [Wires 2019] produces a Mal'cev term. Then apply [EA, Mudrinski
2010].
Two descriptions of supernilpotency in cp varieties in terms of

B identities (as opposed to quasi-identities),
B invariant relations

can be found in [Opr8al 2016].
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Supernilpotent algebras

Let k£ € N, A afinite algebra in a congruence modular variety. TFAE:
1. A is k-supernilpotent.

2. A is nilpotent, and all nontrivial commutator terms are of rank < k.

3. f(n) =logy(|Clo,(A)|) is a polynomial of degree k.

Proof: Use [Berman, Blok 1987], [Freese, McKenzie 1987], [Hobby McKenzie
1988], [EA, Mudrinski 2010], [Wires 2019].
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Supernilpotent expanded groups

Let £ € N, A an expanded group. TFAE:

1. A is k-supernilpotent.
2. For every p € Pol;11(A) with

Vai,...,ak41:0 € {a1,...,ap11} = plas,...,ax+1) =0

we have Va € A¥*!: p(a) = 0. (Every nonzero absorbing polynomial function
has at most k& arguments).
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Supernilpotent expanded abelian groups

Let k£ € N, A an expansion of an abelian group. TFAE:
1. A is k-supernilpotent.

2. Every nonzero absorbing polynomial function has at most £ arguments.
3. Every function in Clo(A) has functional degree at most k.
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Let k € N, A afield, and let A = (A, +, —, 0, F') with F' C Pol(A). TFAE:
1. A is k-supernilpotent.

2. Every nonzero absorbing polynomial function has at most & arguments.
3. Every function in Clo(A) has functional degree at most k.
4

. Every function in Clo(A) can be represented by a polynomial in A[zy, z5 .. ]
each of whose monomials contains only & variables.
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The Structure of Supernilpotent Algebras
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Structure of supernilpotent algebras

Theorem [Kearnes 1999], [Berman, Blok 1987], [Freese, McKenzie 1987]

A in a cm variety, finitely many basic operations. Then A is supernilpotent <—-
A is nilpotent and isomorphic to a product of algebras of prime power order.

Our goal: Find f such that
k-nilpotent and prime power order = f(k, .)-supernilpotent.
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Bounds on the supernilpotency degree

Examples:

B %-nilpotent groups and rings are k-supernilpotent.

B For each k € N and m > 2, there is a k-nilpotent expanded group of of
supernilpotency class m*~! [EA, Mudrinski 2013].

We will now outline a proof of
nilpotent & prime power order = supernilpotent.
Can we do it for

B Expanded groups?
B Expansions of elementary abelian groups = reducts of fields?
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Reducts of Fields
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Clones of polynomials
For A,B C Klz; | i € N] = ,eny K[z, - . ., 2,], we define (following [Couceiro,
Foldes 2009])

AB ={p(q1,...,qn)|neN,pe ANK[z1,...,24),q1,-..,q, € B}.

C CK[z; | ¢ € N] is a clone of polynomials if foreach i € N, z; € C and CC C C.

A polynomial f is homovariate if all of its monomials contain the same variables.

B 5oi737y — 2017 z0xd + 2823220, 29 + 623, and 2 are all homovariate.

B None of z; + xa, 1+ 323 + 2% is homovariate.
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Clones of polynomials

The function defined by

— 3 17,3, 63 20
f(z1, 22, x4) 1= br12524 — 227 T2 + X257

is absorbing, meaning that f(0,y, z) = f(z,0,2) = f(x,y,0) =0 for all z,y, .

Theorem [EA, 2019]
Let K be a field, let F C K[z; | ¢ € N|, deg(f) < nforall f € F. Let L :=
Clop({z1+x2, —21,0}). Then there exists aset H C K[zy, ..., z,| of homovariate
polynomials such that

L Clop(H) = Clop(F U {z1 + x2, —21,0})

and deg(h) <nforallh € H.
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Nilpotency and Supernilpotency

Let C be a clone of polynomials on K that contains x; + x2 and —x;. Let
H CK[zy,...,x,] be such that all h € H are homovariate, and L Clop(H) = C.

W If the algebra K = (K, C) is k-nilpotent, then each function in Clop(H)
depends on < n¥~! arguments.

B The algebra K = (K, C) is s-supernilpotent if each absorbing polynomial
function of K depends on < s arguments.
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On the implication nilpotent = supernilpotent

Let C be a clone of polynomials on K that contains z; + x5 and —z;.

Let H C K[z1,...,z,] be such that all h € H are homovariate, and
L Clop(H) =C.

Then:
K = (K, C) is k-nilpotent
= each function in Clop(H) depends on < n*~! arguments
= each absorbing polynomial function of K = (K, L Clop(H))
depends on < n*~! arguments
= K is n*~!-supernilpotent.
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Expansions of additive groups of fields

Let (A, +,*) be afield, and let A = (A, +, —,0, (f):cr) be an algebra. Assume
B Foreachi e I, deg(f;) <n,

B A is nilpotent of class at most &.

Then all absorbing polynomial functions of A are of essential arity at most n*~!.

Theorem [EA, 2019]

Let A = (A, +,%) be afield, and let A = (A4,+, —,0,(fi)icr) be an expansion of
(A, +) with polynomial functions of A of total degree < n. Then:

B If A is k-nilpotent, it is n*~'-supernilpotent.
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Coordinatization
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Coordinatization

We have seen a result on the structure of nilpotent expansions of ((Z,)", +).

It would be nice to have a result on nilpotent algebras of prime power order in
congruence modular varieties.

To this end, we will expand such algebras with a group operation.
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Coordinatization

Theorem. Let A = (A, (f;)ien) be a nilpotent algebra in a congruence modular
variety, |A| = p" with p prime.

Then there exists +: A x A — Aand «: A x A — A such that

B (A, + +)is afield and hence (4, +) = (Z7, +).
B A’ = (A, (fi)ien, +) is nilpotent.
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Structure of nilpotent algebras

Let A be a finite nilpotent algebra in a congruence modular variety that is a direct
product of algebras of prime power order, with all fundamental operations of arity
at most m, |A| > 1. Let

logy (JA|)—1
5 = (m(|A[ _ 1))( g2 (| Al) ).

Then A is s-supernilpotent and there is a polynomial p € R[z] of degree < s such
that the free spectrum satisfies

fa(n) = Clo,(A) = 2P™ for all n € N.
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Theorem (Vaughan-Lee 1983, Freese McKenzie 1987, EA+JM 2019)

A nilpotent, in cm variety, prime power order ¢ = p®, all fundamental operations
at most m-ary.  h := height of Con(A).

Then A is supernilpotent of degree at most (m a(p — 1))h_1.

W The old bound was (m(p™ — 1))}“1.
B We can take h as the p-nilpotency degree of A.
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Written Material:

B E. Aichinger. Bounding the free spectrum of nilpotent algebras of prime power
order. Israel Journal of Mathematics 230 (2019): 919-947.

B E. Aichinger and J. Moosbauer, Chevalley-Warning type results on abelian
groups, Journal of Algebra 569 (2021): 30-66.
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