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Outline

In this talk, we will

1. discuss the degree of a function between abelian groups,

2. use it to derive properties of algebraic sets (= solution sets of polynomial
equations),

3. relate degree to supernilpotency.

1/59



Polynomial Equations over Finite Fields
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The Chevalley-Warning Theorem

Theorem (C. Chevalley and E. Warning 1935)
Let p ∈ P,m ∈ N, q := pm, let f1, . . . , fr ∈ Fq[x1, . . . , xn], and let

v := #{a ∈ Fnq | f1(a) = · · · = fr(a) = 0}.

We assume n >
∑r

i=1 deg(fi). Then

1. v 6= 1 (Chevalley).

2. p divides v (Warning’s First Theorem).
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Proof of Chevalley’s Theorem

� Suppose that a ∈ Fnq is the only solution of f1(a) = · · · = fr(a) = 0.

� Then g(x ) =
∏r
i=1(1− fi(x + a)q−1) satisfies g(0) = 1 and g(b) = 0 for b 6= 0.

� Hence g(x ) and
∏n
i=1(1− x

q−1
i ) induce the same function.

� Hence deg(g) ≥ n(q − 1).

� Thus
∑r

i=1 deg(fi) (q − 1) ≥ n(q − 1).

� Contradiction to
∑r

i=1 deg(fi) < n.
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Proof of Chevalley’s Theorem

Let χ : Fnq → Fq, χ(0) = 1, χ(a) = 0 for a ∈ Fnq \ {0}.

We need an argument for:

Lemma
Every polynomial p ∈ Fq[x1, . . . , xn] that induces χ has total degree ≥ n(q − 1).

Proof using Alon’s Combinatorial Nullstellensatz [N. Alon 1999]:

Suppose deg(p) < n(q − 1).
Then the coefficient of xq−11 · · ·xq−1n in f := p(x1, . . . , xn)−

∏n
i=1(1− x

q−1
i ) does

not vanish.
Hence Alon’s Theorem tells that f is not the zero-function.
Hence p does not induce χ.
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Proof of Chevalley’s Theorem

Lemma
Every polynomial p ∈ Fq[x1, . . . , xn] that induces χ has total degree ≥ n(q − 1).

Proof using Warning’s argument:

For i < q − 1, we have
∑

a∈Fq a
i = 0.

Hence for each f ∈ Fq[x1, . . . , xn] with deg(f) < n(q − 1), we have∑
a∈Fnq f(a) = 0.

Since
∑

a∈Fnq χ(a) = 1, we have deg(p) ≥ n(q − 1).
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The Chevalley-Warning Theorem

Lemma
For each f ∈ Fq[x1, . . . , xn] with deg(f) < n(q − 1), we have

∑
a∈Fnq f(a) = 0.

The number of solutions of f1(x ) = · · · fr(x ) = 0 modulo p is given by

[v]p =
∑
a∈Fnq

r∏
i=1

(1− fi(a)q−1).

Hence if
∑r

i=1 deg(fi)(q − 1) < n(q − 1), then p divides v (Warning’s First
Theorem).
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Functional degree
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Definition of the degree for functions

We try to generalize the total degree of a polynomial function.
Setup: We let A,B be abelian groups, f : A→ B. (In the Chevalley-Warning
Theorems A = Fnq and B = Fq.)
Goal:

� Find a definition for FDEG(f).

� Argue that the definition is useful.
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Definition of the degree of a function

Setup: We let A,B be abelian groups, f : A→ B.
Definition through difference operator:

� For a ∈ A, ∆a(f) (x) := f(x+ a)− f(x).

� FDEG(f) := the minimal n ∈ N0 with ∆a1∆a2 · · ·∆an+1 f = 0 for all
a1, . . . , an+1 ∈ A.

� Intuitive: f : R→ R is a polynomial of degree ≤ 2⇔ f ′′′ = 0.
� Problems:

� ∆a(f ◦ g) = ? (“Chain rule”)
� f : Z2 → Z3, f(0) = 1, f(1) = 2 satisfies ∆1f = f . Hence FDEG(f) =∞.
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The definition of the degree

Setup: We let A,B be abelian groups, f : A→ B.
Definition through an abstract version of the difference operator:
[Vaughan-Lee 1983, Freese McKenzie 1987 (Chapter 14)]

� Group ring Z[A] := {
∑

a∈A zaτa | (za)a∈A ∈ Z(A)}.
� Z[A] acts on BA by

(τa ∗ f) (x) = f(x+ a)

((
∑

a∈A zaτa) ∗ f) (x) =
∑

a∈A zaf(x+ a)

((τa − 1) ∗ f) (x) = f(x+ a)− f(x).

� In this way, BA is a Z[A]-module.
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The definition of the degree

Setup: We let A,B be abelian groups, f : A→ B.
Definition through an abstract version of the difference operator:
[Vaughan-Lee 1983, Freese McKenzie 1987 (Chapter 14)]

� ((τa − 1) ∗ f) (x) := f(x+ a)− f(x).

� I := augmentation ideal of Z[A] = ideal generated by {τa − 1 | a ∈ A} =

{
∑

a∈A zaτa ∈ Z[A] |
∑

a∈A za = 0}
� FDEG(f) := min ({n ∈ N0 | In+1 ∗ f = 0} ∪ {∞}).
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The definition of the degree

Setup: We let A,B be abelian groups, f : A→ B.
Definition through a functional equation: For functions on R, we have:

Theorem (Fréchet 1909)
A polynomial of degree n in x is a continuous function verifying the identity

f(x1 + x2 + . . .+ xn+1)−
∑
n

f(xi1 + . . .+ xin)

+
∑
n−1

f(xi1 + . . .+ xin−1)− . . .

+ (−1)n
∑
n

f(xi1) + (−1)n+1f(0) ≡ 0,

whatever the constants x1, . . . , xn+1 are without satisfying the analogous identi-
ties obtained by replacing the integer n with a smaller integer. 13/59



The definition of the degree

Setup: We let A,B be abelian groups, f : A→ B.
Definition through a functional equation:

We define FDEG(f) to be the smallest m ∈ N0 such that

f(

m+1∑
i=1

xi) =
∑

S⊂[m+1]

(−1)m−|S|f(
∑
j∈S

xj)

for all x1, . . . , xm+1 ∈ A.

m = 0: f(x1) = f(0).
m = 1: f(x1 + x2) = f(x1) + f(x2)− f(0).
m = 2:
f(x1 +x2 +x3) = f(x1 +x2)+f(x1 +x3)+f(x2 +x3)−f(x1)−f(x2)−f(x3)+f(0).
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The functional degree

Setup: We let A,B be abelian groups, f : A→ B.

Lemma
All three definitions yield the same degree.

Definition of the functional degree
FDEG(f) := min ({n ∈ N0 | (Aug(Z[A]))n+1 ∗ f = 0} ∪ {∞}).

� FDEG(f) = 0⇔ f is constant.

� FDEG(f) = 1⇔ f = c+ h with c constant, h group homomorphism.

� Let p ∈ P and assume that A,B are finite abelian p-groups. Then
FDEG(f) <∞. Reason: Nilpotency of Aug(Zpβ [A]).
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The degree of concrete functions

� Polynomials over prime fields:
A = FNp , B = Fp, f ∈ Fp[x1, . . . , xN ] with all exponents ≤ p− 1.
Then FDEG(f) is the total degree of f .

� Polynomials over finite fields:
On F25, x5 induces a homomorphism (⇒ degree 1).
� Fq . . . field with q elements of characteristic p.
� For n ∈ N, sp(n) is the digit sum in base p.

s5(25) = 1, s5(10) = 2, s5(24) = 8.
� [Moreno Moreno 1995] The p-weight degree of xα1

1 · · ·xαn
n is defined by

degp(x
α1
1 · · ·x

αN

N ) :=

N∑
n=1

sp(αn).
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The functional degree of polynomial functions

Theorem
F a field, f ∈ F[x1, . . . , xn].

� If |F| = q = pm, and if all exponents are at most q − 1, then
FDEG(f) = degp(f).

� If F is infinite of characteristic p ∈ P, then FDEG(f) = degp(f).

� If F is of characteristic 0, then FDEG(f) = deg(f).
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Properties of the functional degree

For a function f : (A,+) −→ (B,+), the functional degree does not use any
syntactic representation of f .

Lemma
� FDEG(f + g) ≤ max(FDEG(f), FDEG(g)).

� If (B,+, ·) is a ring, then FDEG(f · g) ≤ FDEG(f) + FDEG(g).
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Properties of the functional degree

Theorem [Leibman 2002]
Let (A,+), (B,+), (C,+) be abelian groups, let f : A → B and g : B → C with
FDEG(f) <∞ and FDEG(g) <∞. Then FDEG(g ◦ f) ≤ FDEG(g) · FDEG(f).

Self-contained proof in [EA, Moosbauer, 2021].

The proof needs the following claim (stated here for m = 2): If there are
g1, g2, g3 : A2 → B such that for all x1, x2, x3 ∈ A3,

h(x1 + x2 + x3) = g1(x2, x3) + g2(x1, x3) + g3(x1, x2),

then FDEG(h) ≤ 2.
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Characterization of the degree

Theorem (cf. [EA, Moosbauer, 2021])
Let (A,+) and (B,+) be abelian groups, let f : A → B, and let m ∈ N0. Then
the following are equivalent:

1. FDEG(f) ≤ m.

2. For every k > m, we have f(
∑k

i=1 xi) =
∑

S⊂[k](−1)k−|S|+1f(
∑

j∈S xj).

3. There exist functions g1, . . . , gm+1 : Am+1 → B such that for all
x1, . . . , xm+1 ∈ A, we have

f(

m+1∑
i=1

xi) =

m+1∑
i=1

gi(x1, . . . , xm+1),

and for each i ∈ [m+ 1], the function gi does not depend on its i th argument.
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Maximal degree

For two abelian groups A,B, we define

δ(A,B) := sup ({FDEG(f) | f ∈ BA}).

Theorem [EA, Moosbauer 2021]

� δ(A,B) <∞⇐⇒ |A| = 1 or |B| = 1 or ∃p ∈ P : A is a finite p-group and B is
a p-group of finite exponent.

� If exp(B) = n ∈ N, then δ(A,B) = min{m ∈ N | (Aug(Zn[A]))m = 0}︸ ︷︷ ︸
nilpotency index of Aug(Zn[A])

− 1.

� If exp(B) = n ∈ N, then the characteristic function χ(0) = b (of order n) and
χ(a) = 0 for a 6= 0 has degree δ(A,B).
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General results on δ(A,B)

δ(A,B) := sup ({FDEG(f) | f ∈ BA}).

Lemma (EA, Moosbauer 2021)
Let A,B be abelian groups.

� δ(A,Zpβ ) ≤ β δ(A,Zp).
� δ(A1 ×A2, B) ≤ δ(A1, B) + δ(A2, B).
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Known results on δ(A,B)

δ(A,B) := sup ({FDEG(f) | f ∈ BA}) = (nilpotency index of Aug(Zexp(B)[A]))− 1

δ(A,B) B = Zp B = Zpβ

A is not a p-group ∞ ∞
A = Zpα pα − 1 βpα − (β − 1)pα−1 − 1

Karpilovsky 1987 R. Wilson 2006
A = (Zp)n n(p− 1) ≤ βn(p− 1)

Karpilovski 1987 (β + n− 1)(p− 1)

A =
∏n
i=1 Zpαi

∑n
i=1(p

αi − 1) <∞
Karpilovsky 1987 OPEN
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Equations over abelian groups
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Warning’s First Theorem

Abstract version Warning’s Sum Lemma
Let p be a prime, let A be a finite abelian p-group, f : A→ Zp.
If FDEG(f) < δ(A,Zp), then

∑
x∈A f(x) = 0.

Proof:

� Let I := 〈τa − 1 | a ∈ A〉 = Aug(Z[A]).
� Z[A] ∗ χ = ZAp and Z[A] ∗ χ = 〈χ〉vector-space + I ∗ χ. Hence I ∗ χ has codim 1 in

ZAp .
� I ∗ χ ⊆ {f |

∑
a∈A f(a) = 0} because∑

x∈A(τa − 1) ∗ f(x) =
∑

x∈A f(x+ a)− f(x) = 0.
� I ∗ χ ⊆ {f | FDEG(f) < δ(A,Zp)}.
� Hence {f |

∑
a∈A f(a) = 0} = {f | FDEG(f) < δ(A,Zp)}.
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Warning’s First Theorem

Theorem [EA, Moosbauer 2021]
Let p be a prime, let A be a finite abelian p-group with |A| > 1, and let f1, . . . , fr :

An → A be functions with

n >

r∑
i=1

FDEG(fi).

Then p divides v = |{a ∈ An | f1(a) = · · · = fr(a) = 0}|.

Proof:

� χ : A→ Zp has degree δ(A,Zp).
� a 7→

∏r
i=1 χ (fi(a1, . . . , an)) has degree ≤

∑r
i=1 FDEG(fi) δ(A,Zp).

� Hence a 7→
∏r
i=1 χ(fi(a1, . . . , an)) has degree < nδ(A,Zp) = δ(An,Zp).

� By the Sum-Lemma [v]p =
∑

a∈An
∏r
i=1 χ(fi(a1, . . . , an)) = 0.
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Warning’s First Theorem

Setting A := F , we obtain:

Theorem (Warning 1935; Moreno and Moreno 1995)
Let p be a prime, let F be a finite field of characteristic p, let r, n ∈ N, and let
f1, . . . , fr ∈ F [x1, . . . , xn]. We assume that n >

∑r
j=1 degp(fj). Then p divides

|V (f1, . . . , fr)|.

Warning’s First Thm for noncommutative rings [EA, Moosbauer 2021]
Let p ∈ P, let α ∈ N, let R be a (not necessarily commutative) ring with |R| = pα,
let n ∈ N, let X = {x1, . . . , xn}, and let f1, . . . , fr be polynomial expressions over
R in the variables X. If n >

∑r
i=1 deg(fi), then p divides |V (f1, . . . , fr)|.
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Warning’s First Theorem with restricted domain

Restricted Domain versions have been established, e.g., by [P.L. Clark, 2014] and
[D. Brink, 2011].

Theorem [EA, Moosbauer 2021]
Let p be a prime, α ∈ N, and let F be a finite field with q = pα elements. Let
f1, . . . , fr ∈ F [x1, . . . , xn], let A be a subgroup of (Fn,+) with pM elements. We
assume that

M > α

r∑
j=1

degp(fj).

Then p divides the cardinality of {a ∈ A | f1(a) = · · · = fr(a) = 0}.
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Warning’s Second Theorem

Theorem (E. Warning, 1935)
F a finite field, f1, . . . , fs ∈ F [x1, . . . , xn].
If V (f1, . . . , fs) 6= ∅, then #V (f1, . . . , fn) ≥ |F |n−

∑s
i=1 deg(fi).

Remarks:

1. Warning considered the case s = 1 (Satz 3).

2. The bound can be attained: #V (x1, . . . , xs) = |F |n−s.
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Warning’s Second Theorem is useful

Let F be a finite field.

� The problem

Input f ∈ F [xi | i ∈ N] (possibly not in expanded form). Output YES iff
V (f) 6= ∅

is NP-complete.
� Its fixed parameter version for fixed degree D with

Input f ∈ F [xi | i ∈ N] with deg(f) ≤ D
is in RP (randomized polynomial time). Proof: If f has N variables and is
solvable, then a random a ∈ Fn is a solution with probability ≥ |F |−D.

� Such (and better) results were used in [Kawałek and Krzaczkowski, 2020] to
provide a linear time Monte-Carlo algorithm to solve equations over nilpotent
groups. 30/59



Improvements of Warning’s Second Theorem

Theorem (E. Warning, 1935)
F a finite field, f1, . . . , fs ∈ F [x1, . . . , xn].
If V (f1, . . . , fs) 6= ∅, then #V (f1, . . . , fs) ≥ |F |n−

∑s
i=1 deg(fi).

� [Heath-Brown, 2011]: if V (f1, . . . , fs) is not a linear manifold and |F | ≥ 4, then
#V (f1, . . . , fn) ≥ 2qn−d. (q := |F |, d :=

∑s
i=1 deg(fi))

� [Moreno Moreno 1995]: deg(f) can be replaced by the p-weight degree
degp(f), where p = char(F ),

degp(x
α1
1 · · ·x

αN
N ) :=

N∑
n=1

sp(αn),

sp(n) is the digit sum in base p.
31/59



Warning’s Second Theorem for abelian groups

Theorem (E. Warning, 1935)
F a finite field, f1, . . . , fs ∈ F [x1, . . . , xn].
If V (f1, . . . , fs) 6= ∅, then #V (f1, . . . , fs) ≥ |F |n−

∑s
i=1 deg(fi).

Theorem [EA, Moosbauer 2021]
Let f1, . . . , fr : Zpα → Zpβ. If V (f1, . . . fr) 6= ∅, then

#V (f1, . . . , fr) ≥ pα−β
∑r
i=1 FDEG(fi).
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Supernilpotency
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Supernilpotent algebras

Definition
Let k ∈ N. The algebra A is k-supernilpotent if

∀n1, . . . , nk+1 ∈ N0, ∀
∑k+1

i=1 ni-ary term functions t of A,
∀〈(a(i)1 , a

(i)
2 ) | i ∈ {1, . . . , k + 1}〉 ∈

∏k
i=1(A

ni ×Ani), the following holds:

If for all f : {1, . . . , k} → {1, 2} such that f is not constantly 2, we have

t(a
(1)
f(1), . . . , a

(k)
f(k), a

(k+1)
1 ) = t(a

(1)
f(1), . . . , a

(k)
f(k), a

(k+1)
2 ),

then
t(a

(1)
2 , . . . , a

(k)
2 , a

(k+1)
1 ) = t(a

(1)
2 , . . . , a

(k)
2 , a

(k+1)
2 ).
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Supernilpotent algebras

Definition
The algebra A is 1-supernilpotent if

∀n1, n2 ∈ N0, ∀ n1 + n2-ary term functions t of A,
∀a(1)1 , a

(1)
2 ∈ An1 , a

(2)
1 , a

(2)
2 ∈ An2 , the following holds:

t(a
(1)
1 , a

(2)
1 ) = t(a

(1)
1 , a

(2)
2 ) =⇒ t(a

(1)
2 , a

(2)
1 ) = t(a

(1)
2 , a

(2)
2 ).

Hence A is 1-supernilpotent iff it is abelian.
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Supernilpotent algebras

Definition
The algebra A is 1-supernilpotent if

∀n1, n2 ∈ N0, ∀ n1 + n2-ary term functions t of A,
∀a , b ∈ An1 , c,d ∈ An2 , the following holds:

t(a , c) = t(a ,d) =⇒ t(b, c) = t(b,d).

Hence A is 1-supernilpotent iff it is abelian.
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Supernilpotent algebras

Definition
The algebra A is 2-supernilpotent if

∀n1, n2, n3 ∈ N0, ∀
∑3

i=1 ni-ary term functions t of A,
∀〈(a (i), b(i)) | i ∈ {1, . . . , 3}〉 ∈

∏k
i=1(A

ni ×Ani), the following holds:

t(a (1),a (2),a (3)) = t(a (1),a (2), b(3))

t(b(1),a (2),a (3)) = t(b(1),a (2), b(3))

t(a (1), b(2),a (3)) = t(a (1), b(2), b(3))

 =⇒ t(b(1), b(2),a (3)) = t(b(2), b(2), b(3)).
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Comments on “supernilpotent”

� Supernilpotent expanded groups were defined in [Aichinger, Ecker 2006].

� Supernilpotent algebras were defined in [Aichinger, Mudrinski 2010] as those
satisfying [1, . . . , 1] = 0 for the higher commutator operation from [Bulatov
2001].

� For algebras with Mal’cev term, supernilpotent implies nilpotent (nested
commutator property (HC8)) [EA, Mudrinski 2010].

� Supernilpotent⇒ Nilpotent:
� not true in general [Moore, Moorhead 2019].
� true for finite algebras [Kearnes, Szendrei 2020] and Taylor algebras [Wires

2019 and Moorhead 2021].
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Supernilpotent algebras

Theorem
Let k ∈ N, A an algebra. TFAE:

1. A is k-supernilpotent.

2. A satisfies [1, . . . , 1] = 0 (k + 1 times 1).
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Supernilpotent algebras in congruence modular varieties

Definition
A term w(x1, . . . , xr+1) in the language of A is a commutator term of rank r for
A if

A |= w(z, x2, . . . , xr, z) ≈ w(x1, z, . . . , xr, z) ≈ · · · ≈ w(x1, x2, . . . , z, z) ≈ z.

A commutator term w(x1, . . . , xr+1) is called trivial if A |= w(x1, . . . , xr, z) ≈ z.

A commutator term in the language of (A + constants) is a commutator
polynomial.
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Supernilpotent algebras

Theorem
Let k ∈ N, A an algebra in a congruence modular variety. TFAE:

1. A is k-supernilpotent.

2. A is nilpotent, and all nontrivial commutator polynomials are of rank ≤ k.

For (1)⇒(2), [Wires 2019] produces a Mal’cev term. Then apply [EA, Mudrinski
2010].
Two descriptions of supernilpotency in cp varieties in terms of

� identities (as opposed to quasi-identities),
� invariant relations

can be found in [Opršal 2016].
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Supernilpotent algebras

Theorem
Let k ∈ N, A a finite algebra in a congruence modular variety. TFAE:

1. A is k-supernilpotent.

2. A is nilpotent, and all nontrivial commutator terms are of rank ≤ k.

3. f(n) = log2(|Clon(A)|) is a polynomial of degree k.

Proof: Use [Berman, Blok 1987], [Freese, McKenzie 1987], [Hobby McKenzie
1988], [EA, Mudrinski 2010], [Wires 2019].
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Supernilpotent expanded groups

Theorem
Let k ∈ N, A an expanded group. TFAE:

1. A is k-supernilpotent.

2. For every p ∈ Polk+1(A) with

∀a1, . . . , ak+1 : 0 ∈ {a1, . . . , ak+1} ⇒ p(a1, . . . , ak+1) = 0

we have ∀a ∈ Ak+1 : p(a) = 0. (Every nonzero absorbing polynomial function
has at most k arguments).
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Supernilpotent expanded abelian groups

Theorem
Let k ∈ N, A an expansion of an abelian group. TFAE:

1. A is k-supernilpotent.

2. Every nonzero absorbing polynomial function has at most k arguments.

3. Every function in Clo(A) has functional degree at most k.
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Theorem
Let k ∈ N, A a field, and let A = (A,+,−, 0, F ) with F ⊆ Pol(A). TFAE:

1. A is k-supernilpotent.

2. Every nonzero absorbing polynomial function has at most k arguments.

3. Every function in Clo(A) has functional degree at most k.

4. Every function in Clo(A) can be represented by a polynomial in A[x1, x2 . . .]

each of whose monomials contains only k variables.
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The Structure of Supernilpotent Algebras
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Structure of supernilpotent algebras

Theorem [Kearnes 1999], [Berman, Blok 1987], [Freese, McKenzie 1987]
A in a cm variety, finitely many basic operations. Then A is supernilpotent ⇐⇒
A is nilpotent and isomorphic to a product of algebras of prime power order.

Our goal: Find f such that
k-nilpotent and prime power order =⇒ f(k, .)-supernilpotent.
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Bounds on the supernilpotency degree

Examples:

� k-nilpotent groups and rings are k-supernilpotent.

� For each k ∈ N and m ≥ 2, there is a k-nilpotent expanded group of of
supernilpotency class mk−1 [EA, Mudrinski 2013].

We will now outline a proof of
nilpotent & prime power order =⇒ supernilpotent.

Can we do it for

� Expanded groups?

� Expansions of elementary abelian groups = reducts of fields?

47/59



Reducts of Fields
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Clones of polynomials

For A,B ⊆ K[xi | i ∈ N] =
⋃
n∈NK[x1, . . . , xn], we define (following [Couceiro,

Foldes 2009])

AB = {p(q1, . . . , qn) |||n ∈ N, p ∈ A ∩K[x1, . . . , xn], q1, . . . , qn ∈ B}.

C ⊆ K[xi | i ∈ N] is a clone of polynomials if for each i ∈ N, xi ∈ C and CC ⊆ C.

A polynomial f is homovariate if all of its monomials contain the same variables.

� 5x1x
3
2x4 − 2x171 x2x

3
4 + x61x

3
2x

20
4 , x2 + 6x42, and 2 are all homovariate.

� None of x1 + x2, 1 + 3x31 + x51 is homovariate.
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Clones of polynomials

The function defined by

f(x1, x2, x4) := 5x1x
3
2x4 − 2x171 x2x

3
4 + x61x

3
2x

20
4

is absorbing, meaning that f(0, y, z) = f(x, 0, z) = f(x, y, 0) = 0 for all x, y, z.

Theorem [EA, 2019]
Let K be a field, let F ⊆ K[xi | i ∈ N], deg(f) ≤ n for all f ∈ F . Let L :=

Clop({x1+x2,−x1, 0}). Then there exists a setH ⊆ K[x1, . . . , xn] of homovariate
polynomials such that

L Clop(H) = Clop(F ∪ {x1 + x2,−x1, 0})

and deg(h) ≤ n for all h ∈ H.
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Nilpotency and Supernilpotency

Let C be a clone of polynomials on K that contains x1 + x2 and −x1. Let
H ⊆ K[x1, . . . , xn] be such that all h ∈ H are homovariate, and L Clop(H) = C.

� If the algebra K = (K, C) is k-nilpotent, then each function in Clop(H)

depends on ≤ nk−1 arguments.

� The algebra K = (K, C) is s-supernilpotent if each absorbing polynomial
function of K depends on ≤ s arguments.
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On the implication nilpotent⇒ supernilpotent

Let C be a clone of polynomials on K that contains x1 + x2 and −x1.
Let H ⊆ K[x1, . . . , xn] be such that all h ∈ H are homovariate, and
L Clop(H) = C.

Then:
K = (K, C) is k-nilpotent
⇒ each function in Clop(H) depends on ≤ nk−1 arguments
⇒ each absorbing polynomial function of K = (K,L Clop(H))

depends on ≤ nk−1 arguments
⇒ K is nk−1-supernilpotent.
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Expansions of additive groups of fields

Theorem
Let (A,+, ∗) be a field, and let A = (A,+,−, 0, (fi)i∈I) be an algebra. Assume

� For each i ∈ I, deg(fi) ≤ n,

� A is nilpotent of class at most k.

Then all absorbing polynomial functions of A are of essential arity at most nk−1.

Theorem [EA, 2019]
Let A = (A,+, ∗) be a field, and let A = (A,+,−, 0, (fi)i∈I) be an expansion of
(A,+) with polynomial functions of A of total degree ≤ n. Then:

� If A is k-nilpotent, it is nk−1-supernilpotent.
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Coordinatization
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Coordinatization

We have seen a result on the structure of nilpotent expansions of ((Zp)n,+).

It would be nice to have a result on nilpotent algebras of prime power order in
congruence modular varieties.

To this end, we will expand such algebras with a group operation.
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Coordinatization

Theorem. Let A = (A, (fi)i∈N) be a nilpotent algebra in a congruence modular
variety, |A| = pn with p prime.

Then there exists + : A×A→ A and ∗ : A×A→ A such that

� (A,+, ∗) is a field and hence (A,+) ∼= (Znp ,+).

� A′ = (A, (fi)i∈N,+) is nilpotent.
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Structure of nilpotent algebras

Theorem
Let A be a finite nilpotent algebra in a congruence modular variety that is a direct
product of algebras of prime power order, with all fundamental operations of arity
at most m, |A| > 1. Let

s :=
(
m(|A| − 1)

)(log2(|A|)−1).
Then A is s-supernilpotent and there is a polynomial p ∈ R[x] of degree ≤ s such
that the free spectrum satisfies

fA(n) = Clon(A) = 2p(n) for all n ∈ N.
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Theorem (Vaughan-Lee 1983, Freese McKenzie 1987, EA+JM 2019)
A: nilpotent, in cm variety, prime power order q = pα, all fundamental operations
at most m-ary. h := height of Con(A).
Then A is supernilpotent of degree at most

(
mα(p− 1)

)h−1.
� The old bound was

(
m(pα − 1)

)h−1.
� We can take h as the p-nilpotency degree of A.
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Written Material:

� E. Aichinger. Bounding the free spectrum of nilpotent algebras of prime power
order. Israel Journal of Mathematics 230 (2019): 919-947.

� E. Aichinger and J. Moosbauer, Chevalley-Warning type results on abelian
groups, Journal of Algebra 569 (2021): 30-66.
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