THE DEGREE AS A MEASURE OF COMPLEXITY OF FUNCTIONS ON A UNIVERSAL ALGEBRA

Erhard Aichinger PALS, February 16, 2021

Institute for Algebra, Austrian Science Fund FWF P33878

Outline

In this talk, we will

- 1. discuss the degree of a function between abelian groups,
- use it to derive properties of algebraic sets (= solution sets of polynomial equations),
- 3. relate degree to supernilpotency.

Polynomial Equations over Finite Fields

The Chevalley-Warning Theorem

Theorem (C. Chevalley and E. Warning 1935)

Let $p \in \mathbb{P}, m \in \mathbb{N}, q := p^m$, let $f_1, \ldots, f_r \in \mathbb{F}_q[x_1, \ldots, x_n]$, and let

$$v := \#\{\boldsymbol{a} \in \mathbb{F}_q^n \mid f_1(\boldsymbol{a}) = \cdots = f_r(\boldsymbol{a}) = 0\}.$$

We assume $n > \sum_{i=1}^{r} \deg(f_i)$. Then

- 1. $v \neq 1$ (Chevalley).
- 2. p divides v (Warning's First Theorem).

Proof of Chevalley's Theorem

- Suppose that $a \in \mathbb{F}_q^n$ is the only solution of $f_1(a) = \cdots = f_r(a) = 0$.
- Then $g(\mathbf{x}) = \prod_{i=1}^{r} (1 f_i(\mathbf{x} + \mathbf{a})^{q-1})$ satisfies $g(\mathbf{0}) = 1$ and $g(\mathbf{b}) = 0$ for $\mathbf{b} \neq \mathbf{0}$.
- Hence g(x) and $\prod_{i=1}^{n} (1 x_i^{q-1})$ induce the same function.
- $\blacksquare \text{ Hence } \deg(g) \ge n(q-1).$
- **Thus** $\sum_{i=1}^{r} \deg(f_i) (q-1) \ge n(q-1).$
- Contradiction to $\sum_{i=1}^{r} \deg(f_i) < n$.

Proof of Chevalley's Theorem

Let
$$\chi : \mathbb{F}_q^n \to \mathbb{F}_q, \, \chi(0) = 1, \, \chi(a) = 0$$
 for $a \in \mathbb{F}_q^n \setminus \{0\}$.

We need an argument for:

Lemma Every polynomial $p \in \mathbb{F}_q[x_1, \dots, x_n]$ that induces χ has total degree $\geq n(q-1)$.

Proof using Alon's Combinatorial Nullstellensatz [N. Alon 1999]:

Suppose $\deg(p) < n(q-1)$. Then the coefficient of $x_1^{q-1} \cdots x_n^{q-1}$ in $f := p(x_1, \dots, x_n) - \prod_{i=1}^n (1 - x_i^{q-1})$ does not vanish.

Hence Alon's Theorem tells that f is not the zero-function.

Hence p does not induce χ .

Proof of Chevalley's Theorem

Lemma

Every polynomial $p \in \mathbb{F}_q[x_1, \ldots, x_n]$ that induces χ has total degree $\geq n(q-1)$.

Proof using Warning's argument:

For i < q - 1, we have $\sum_{a \in \mathbb{F}_q} a^i = 0$. Hence for each $f \in \mathbb{F}_q[x_1, \dots, x_n]$ with $\deg(f) < n(q - 1)$, we have $\sum_{a \in \mathbb{F}_q^n} f(a) = 0$. Since $\sum_{a \in \mathbb{F}_q^n} \chi(a) = 1$, we have $\deg(p) \ge n(q - 1)$.

The Chevalley-Warning Theorem

Lemma

For each
$$f \in \mathbb{F}_q[x_1, \dots, x_n]$$
 with $\deg(f) < n(q-1)$, we have $\sum_{a \in \mathbb{F}_q^n} f(a) = 0$.

The number of solutions of $f_1(\mathbf{x}) = \cdots f_r(\mathbf{x}) = 0$ modulo p is given by

$$[v]_p = \sum_{a \in \mathbb{F}_q^n} \prod_{i=1}^r (1 - f_i(a)^{q-1}).$$

Hence if $\sum_{i=1}^{r} \deg(f_i)(q-1) < n(q-1)$, then p divides v (Warning's First Theorem).

Functional degree

Definition of the degree for functions

We try to generalize the total degree of a polynomial function.

Setup: We let A, B be abelian groups, $f : A \to B$. (In the Chevalley-Warning Theorems $A = \mathbb{F}_q^n$ and $B = \mathbb{F}_q$.) **Goal:**

- Find a definition for FDEG(f).
- Argue that the definition is useful.

Definition of the degree of a function

Setup: We let A, B be abelian groups, $f : A \rightarrow B$. **Definition through difference operator:**

■ For
$$a \in A$$
, $\Delta_a(f)(x) := f(x+a) - f(x)$.
■ FDEG $(f) :=$ the minimal $n \in \mathbb{N}_0$ with $\Delta_{a_1} \Delta_{a_2} \cdots \Delta_{a_{n+1}} f = 0$ for all $a_1, \ldots, a_{n+1} \in A$.

Intuitive: $f : \mathbb{R} \to \mathbb{R}$ is a polynomial of degree $\leq 2 \Leftrightarrow f''' = 0$. Problems:

Setup: We let A, B be abelian groups, $f : A \rightarrow B$. Definition through an abstract version of the difference operator: [Vaughan-Lee 1983, Freese McKenzie 1987 (Chapter 14)]

• Group ring
$$\mathbb{Z}[A] := \{ \sum_{a \in A} z_a \tau_a \mid (z_a)_{a \in A} \in \mathbb{Z}^{(A)} \}.$$

 $\blacksquare \mathbb{Z}[A]$ acts on B^A by

$$\begin{aligned} &(\tau_a * f) \ (x) &= f(x+a) \\ &((\sum_{a \in A} z_a \tau_a) * f) \ (x) &= \sum_{a \in A} z_a f(x+a) \\ &((\tau_a - 1) * f) \ (x) &= f(x+a) - f(x). \end{aligned}$$

In this way, B^A is a $\mathbb{Z}[A]$ -module.

Setup: We let A, B be abelian groups, $f : A \rightarrow B$. **Definition through an abstract version of the difference operator:** [Vaughan-Lee 1983, Freese McKenzie 1987 (Chapter 14)]

$$((\tau_a - 1) * f)(x) := f(x + a) - f(x).$$

- I := augmentation ideal of $\mathbb{Z}[A] =$ ideal generated by $\{\tau_a 1 \mid a \in A\} = \{\sum_{a \in A} z_a \tau_a \in \mathbb{Z}[A] \mid \sum_{a \in A} z_a = 0\}$
- $FDEG(f) := \min(\{n \in \mathbb{N}_0 \mid I^{n+1} * f = 0\} \cup \{\infty\}).$

Setup: We let A, B be abelian groups, $f : A \rightarrow B$.

Definition through a functional equation: For functions on \mathbb{R} , we have:

Theorem (Fréchet 1909)

A polynomial of degree n in x is a continuous function verifying the identity

$$f(x_1 + x_2 + \ldots + x_{n+1}) - \sum_n f(x_{i_1} + \ldots + x_{i_n}) + \sum_{n-1} f(x_{i_1} + \ldots + x_{i_{n-1}}) - \ldots + (-1)^n \sum_n f(x_{i_1}) + (-1)^{n+1} f(0) \equiv 0,$$

whatever the constants x_1, \ldots, x_{n+1} are without satisfying the analogous identities obtained by replacing the integer n with a smaller integer. 13/59

Setup: We let A, B be abelian groups, $f : A \rightarrow B$. Definition through a functional equation:

We define FDEG(f) to be the smallest $m \in \mathbb{N}_0$ such that

$$f(\sum_{i=1}^{m+1} x_i) = \sum_{S \subset [m+1]} (-1)^{m-|S|} f(\sum_{j \in S} x_j)$$

for all $x_1, \ldots, x_{m+1} \in A$.

$$m = 0: f(x_1) = f(0).$$

$$m = 1: f(x_1 + x_2) = f(x_1) + f(x_2) - f(0).$$

$$m = 2:$$

$$f(x_1 + x_2 + x_3) = f(x_1 + x_2) + f(x_1 + x_3) + f(x_2 + x_3) - f(x_1) - f(x_2) - f(x_3) + f(0).$$

14/59

The functional degree

Setup: We let A, B be abelian groups, $f : A \rightarrow B$.

Lemma

All three definitions yield the same degree.

Definition of the functional degree

 $\mathsf{FDEG}(f) := \min\left(\{n \in \mathbb{N}_0 \mid (\operatorname{Aug}(\mathbb{Z}[A]))^{n+1} * f = 0\} \cup \{\infty\}\right).$

- **FDEG** $(f) = 0 \Leftrightarrow f$ is constant.
- **F**DEG $(f) = 1 \Leftrightarrow f = c + h$ with *c* constant, *h* group homomorphism.
- Let $p \in \mathbb{P}$ and assume that A, B are finite abelian *p*-groups. Then $\mathsf{FDEG}(f) < \infty$. Reason: Nilpotency of $\operatorname{Aug}(\mathbb{Z}_{p^{\beta}}[A])$.

The degree of concrete functions

Polynomials over prime fields: $A = \mathbb{F}_p^N, B = \mathbb{F}_p, f \in \mathbb{F}_p[x_1, \dots, x_N]$ with all exponents $\leq p - 1$. Then FDEG(\overline{f}) is the total degree of f.

Polynomials over finite fields:

On \mathbb{F}_{25} , x^5 induces a homomorphism (\Rightarrow degree 1).

 $\square \mathbb{F}_q \dots$ field with q elements of characteristic p.

 \Box For $n \in \mathbb{N}$, $s_p(n)$ is the digit sum in base p.

 $s_5(25) = 1, s_5(10) = 2, s_5(24) = 8.$

 \Box [Moreno Moreno 1995] The *p*-weight degree of $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is defined by

$$\deg_p(x_1^{\alpha_1}\cdots x_N^{\alpha_N}) := \sum_{n=1}^N s_p(\alpha_n).$$

The functional degree of polynomial functions

Theorem

- \mathbb{F} a field, $f \in \mathbb{F}[x_1, \ldots, x_n]$.
- If $|\mathbb{F}| = q = p^m$, and if all exponents are at most q 1, then $\mathsf{FDEG}(\overline{f}) = \deg_p(f)$.
- If \mathbb{F} is infinite of characteristic $p \in \mathbb{P}$, then $\mathsf{FDEG}(\overline{f}) = \deg_p(f)$.
- If \mathbb{F} is of characteristic 0, then $FDEG(\overline{f}) = deg(f)$.

Properties of the functional degree

For a function $f: (A, +) \longrightarrow (B, +)$, the functional degree does not use any syntactic representation of f.

Lemma

■ $FDEG(f + g) \le max(FDEG(f), FDEG(g)).$

If $(B, +, \cdot)$ is a ring, then $FDEG(f \cdot g) \leq FDEG(f) + FDEG(g)$.

Properties of the functional degree

Theorem [Leibman 2002]

Let (A, +), (B, +), (C, +) be abelian groups, let $f : A \to B$ and $g : B \to C$ with $FDEG(f) < \infty$ and $FDEG(g) < \infty$. Then $FDEG(g \circ f) \leq FDEG(g) \cdot FDEG(f)$.

Self-contained proof in [EA, Moosbauer, 2021].

The proof needs the following claim (stated here for m = 2): If there are $g_1, g_2, g_3 : A^2 \to B$ such that for all $x_1, x_2, x_3 \in A^3$,

$$h(x_1 + x_2 + x_3) = g_1(x_2, x_3) + g_2(x_1, x_3) + g_3(x_1, x_2),$$

then $FDEG(h) \leq 2$.

Characterization of the degree

Theorem (cf. [EA, Moosbauer, 2021])

Let (A, +) and (B, +) be abelian groups, let $f : A \to B$, and let $m \in \mathbb{N}_0$. Then the following are equivalent:

- 1. $FDEG(f) \leq m$.
- 2. For every k > m, we have $f(\sum_{i=1}^{k} x_i) = \sum_{S \subset [k]} (-1)^{k-|S|+1} f(\sum_{j \in S} x_j)$.
- 3. There exist functions $g_1, \ldots, g_{m+1} : A^{m+1} \to B$ such that for all $x_1, \ldots, x_{m+1} \in A$, we have

$$f(\sum_{i=1}^{m+1} x_i) = \sum_{i=1}^{m+1} g_i(x_1, \dots, x_{m+1}),$$

and for each $i \in [m + 1]$, the function g_i does not depend on its *i* th argument.

Maximal degree

For two abelian groups A, B, we define

```
\delta(A,B) := \sup \left( \{ \mathsf{FDEG}(f) \mid f \in B^A \} \right).
```

Theorem [EA, Moosbauer 2021]

■ $\delta(A,B) < \infty \iff |A| = 1$ or |B| = 1 or $\exists p \in \mathbb{P} : A$ is a finite *p*-group and *B* is a *p*-group of finite exponent.

If
$$\exp(B) = n \in \mathbb{N}$$
, then $\delta(A, B) = \min\{m \in \mathbb{N} \mid (\operatorname{Aug}(\mathbb{Z}_n[A]))^m = 0\} - 1$.

nilpotency index of $\operatorname{Aug}(\mathbb{Z}_n[A])$

If $\exp(B) = n \in \mathbb{N}$, then the characteristic function $\chi(0) = b$ (of order n) and $\chi(a) = 0$ for $a \neq 0$ has degree $\delta(A, B)$.

General results on $\delta(A, B)$

$$\delta(A,B) := \sup \left(\{ \mathsf{FDEG}(f) \mid f \in B^A \} \right).$$

Lemma (EA, Moosbauer 2021)

Let A, B be abelian groups.

$$\delta(A, \mathbb{Z}_{p^{\beta}}) \leq \beta \, \delta(A, \mathbb{Z}_p).$$

$$\delta(A_1 \times A_2, B) \le \delta(A_1, B) + \delta(A_2, B).$$

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B = \mathbb{Z}_{p^\beta}$
A is not a p-group	∞	∞

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B = \mathbb{Z}_{p^\beta}$
A is not a p-group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	
	Karpilovsky 1987	

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B=\mathbb{Z}_{p^\beta}$
A is not a p-group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B=\mathbb{Z}_{p^\beta}$
A is not a p-group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006
$A = (\mathbb{Z}_p)^n$	n(p-1)	
	Karpilovski 1987	

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B=\mathbb{Z}_{p^\beta}$
A is not a p-group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006
$A = (\mathbb{Z}_p)^n$	n(p-1)	$\leq \beta n(p-1)$
	Karpilovski 1987	

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B=\mathbb{Z}_{p^\beta}$
A is not a p-group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006
$A = (\mathbb{Z}_p)^n$	n(p-1)	$\leq \beta n(p-1)$
	Karpilovski 1987	$(\beta + n - 1)(p - 1)$

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B=\mathbb{Z}_{p^\beta}$
A is not a p-group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006
$A = (\mathbb{Z}_p)^n$	n(p-1)	$\leq \beta n(p-1)$
	Karpilovski 1987	$(\beta + n - 1)(p - 1)$
$A = \prod_{i=1}^{n} \mathbb{Z}_{p^{\alpha_i}}$	$\sum_{i=1}^{n} (p^{\alpha_i} - 1)$	
	Karpilovsky 1987	

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B=\mathbb{Z}_{p^\beta}$
A is not a p-group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006
$A = (\mathbb{Z}_p)^n$	n(p-1)	$\leq \beta n(p-1)$
	Karpilovski 1987	$(\beta + n - 1)(p - 1)$
$A = \prod_{i=1}^{n} \mathbb{Z}_{p^{\alpha_i}}$	$\sum_{i=1}^{n} (p^{\alpha_i} - 1)$	$<\infty$
	Karpilovsky 1987	OPEN

Equations over abelian groups

Warning's First Theorem

Abstract version Warning's Sum Lemma

Let p be a prime, let A be a finite abelian p-group, $f : A \to \mathbb{Z}_p$. If $\mathsf{FDEG}(f) < \delta(A, \mathbb{Z}_p)$, then $\sum_{x \in A} f(x) = 0$.

Proof:

$$\begin{array}{l} \textbf{ Let } I := \langle \tau_a - 1 \mid a \in A \rangle = \operatorname{Aug}(\mathbb{Z}[A]). \\ \textbf{ } \mathbb{Z}[A] * \chi = \mathbb{Z}_p^A \text{ and } \mathbb{Z}[A] * \chi = \langle \chi \rangle_{\text{vector-space}} + I * \chi. \text{ Hence } I * \chi \text{ has codim 1 in } \\ \mathbb{Z}_p^A. \\ \textbf{ } I * \chi \subseteq \{f \mid \sum_{a \in A} f(a) = 0\} \text{ because} \\ \sum_{x \in A} (\tau_a - 1) * f(x) = \sum_{x \in A} f(x + a) - f(x) = 0. \\ \textbf{ } I * \chi \subseteq \{f \mid \mathsf{FDEG}(f) < \delta(A, \mathbb{Z}_p)\}. \\ \textbf{ } \text{ Hence } \{f \mid \sum_{a \in A} f(a) = 0\} = \{f \mid \mathsf{FDEG}(f) < \delta(A, \mathbb{Z}_p)\}. \end{array}$$

Warning's First Theorem

Theorem [EA, Moosbauer 2021]

Let p be a prime, let A be a finite abelian p-group with |A| > 1, and let f_1, \ldots, f_r : $A^n \to A$ be functions with

$$n > \sum_{i=1}^{r} \mathsf{FDEG}(f_i).$$

Then p divides
$$v = |\{a \in A^n \mid f_1(a) = \cdots = f_r(a) = 0\}|.$$

Proof:

$$\begin{array}{l} \blacksquare \hspace{0.1cm} \chi: A \to \mathbb{Z}_p \hspace{0.1cm} \text{has degree } \delta(A, \mathbb{Z}_p). \\ \blacksquare \hspace{0.1cm} a \mapsto \prod_{i=1}^r \chi \left(f_i(a_1, \ldots, a_n) \right) \hspace{0.1cm} \text{has degree} \leq \sum_{i=1}^r \mathsf{FDEG}(f_i) \hspace{0.1cm} \delta(A, \mathbb{Z}_p). \\ \blacksquare \hspace{0.1cm} \text{Hence } a \mapsto \prod_{i=1}^r \chi(f_i(a_1, \ldots, a_n)) \hspace{0.1cm} \text{has degree} < n \delta(A, \mathbb{Z}_p) = \delta(A^n, \mathbb{Z}_p). \\ \blacksquare \hspace{0.1cm} \text{By the Sum-Lemma } [v]_p = \sum_{a \in A^n} \prod_{i=1}^r \chi(f_i(a_1, \ldots, a_n)) = 0. \end{array}$$

Warning's First Theorem

Setting A := F, we obtain:

Theorem (Warning 1935; Moreno and Moreno 1995)

Let p be a prime, let F be a finite field of characteristic p, let $r, n \in \mathbb{N}$, and let $f_1, \ldots, f_r \in F[x_1, \ldots, x_n]$. We assume that $n > \sum_{j=1}^r \deg_p(f_j)$. Then p divides $|V(f_1, \ldots, f_r)|$.

Warning's First Thm for noncommutative rings [EA, Moosbauer 2021]

Let $p \in \mathbb{P}$, let $\alpha \in \mathbb{N}$, let R be a (not necessarily commutative) ring with $|R| = p^{\alpha}$, let $n \in \mathbb{N}$, let $X = \{x_1, \ldots, x_n\}$, and let f_1, \ldots, f_r be polynomial expressions over R in the variables X. If $n > \sum_{i=1}^r \deg(f_i)$, then p divides $|V(f_1, \ldots, f_r)|$.

Warning's First Theorem with restricted domain

Restricted Domain versions have been established, e.g., by [P.L. Clark, 2014] and [D. Brink, 2011].

Theorem [EA, Moosbauer 2021]

Let p be a prime, $\alpha \in \mathbb{N}$, and let F be a finite field with $q = p^{\alpha}$ elements. Let $f_1, \ldots, f_r \in F[x_1, \ldots, x_n]$, let A be a subgroup of $(F^n, +)$ with p^M elements. We assume that

$$M > \alpha \sum_{j=1}^{r} \deg_p(f_j).$$

Then p divides the cardinality of $\{a \in A \mid f_1(a) = \cdots = f_r(a) = 0\}$.

Warning's Second Theorem

Theorem (E. Warning, 1935)

F a finite field, $f_1, \ldots, f_s \in F[x_1, \ldots, x_n]$. If $V(f_1, \ldots, f_s) \neq \emptyset$, then $\#V(f_1, \ldots, f_n) \ge |F|^{n - \sum_{i=1}^s \deg(f_i)}$.

Remarks:

- 1. Warning considered the case s = 1 (Satz 3).
- 2. The bound can be attained: $\#V(x_1, \ldots, x_s) = |F|^{n-s}$.

Warning's Second Theorem is useful

Let F be a finite field.

■ The problem

Input $f \in F[x_i \mid i \in \mathbb{N}]$ (possibly not in expanded form). Output YES iff $V(f) \neq \emptyset$

is NP-complete.

■ Its fixed parameter version for fixed degree *D* with

Input $f \in F[x_i \mid i \in \mathbb{N}]$ with $\deg(f) \leq D$

is in RP (randomized polynomial time). **Proof:** If *f* has *N* variables and is solvable, then a random $a \in F^n$ is a solution with probability $\geq |F|^{-D}$.

Such (and better) results were used in [Kawałek and Krzaczkowski, 2020] to provide a linear time Monte-Carlo algorithm to solve equations over nilpotent groups.

Improvements of Warning's Second Theorem

Theorem (E. Warning, 1935)

F a finite field, $f_1, \ldots, f_s \in F[x_1, \ldots, x_n]$. If $V(f_1, \ldots, f_s) \neq \emptyset$, then $\#V(f_1, \ldots, f_s) \ge |F|^{n - \sum_{i=1}^s \deg(f_i)}$.

■ [Heath-Brown, 2011]: if $V(f_1, ..., f_s)$ is not a linear manifold and $|F| \ge 4$, then $\#V(f_1, ..., f_n) \ge 2q^{n-d}$. $(q := |F|, d := \sum_{i=1}^s \deg(f_i))$ ■ [Moreno Moreno 1995]: $\deg(f)$ can be replaced by the *p*-weight degree $\deg_p(f)$, where $p = \operatorname{char}(F)$,

$$\deg_p(x_1^{\alpha_1}\cdots x_N^{\alpha_N}) := \sum_{n=1}^N s_p(\alpha_n),$$

 $s_p(n)$ is the digit sum in base p.

Warning's Second Theorem for abelian groups

Theorem (E. Warning, 1935)

F a finite field,
$$f_1, \ldots, f_s \in F[x_1, \ldots, x_n]$$
.
If $V(f_1, \ldots, f_s) \neq \emptyset$, then $\#V(f_1, \ldots, f_s) \ge |F|^{n - \sum_{i=1}^s \deg(f_i)}$.

Theorem [EA, Moosbauer 2021]

Let $f_1, \ldots, f_r \colon \mathbb{Z}_p^{\alpha} \to \mathbb{Z}_p^{\beta}$. If $V(f_1, \ldots, f_r) \neq \emptyset$, then

$$#V(f_1,\ldots,f_r) \ge p^{\alpha-\beta\sum_{i=1}^r \mathsf{FDEG}(f_i)}.$$

Supernilpotency

Definition

Let $k \in \mathbb{N}$. The algebra A is *k*-supernilpotent if

 $\begin{array}{l} \forall n_1, \ldots, n_{k+1} \in \mathbb{N}_0, \forall \ \sum_{i=1}^{k+1} n_i \text{-ary term functions } t \text{ of } \mathbf{A}, \\ \forall \langle (a_1^{(i)}, a_2^{(i)}) \mid i \in \{1, \ldots, k+1\} \rangle \in \prod_{i=1}^k (A^{n_i} \times A^{n_i}), \text{ the following holds:} \end{array}$

If for all $f : \{1, \ldots, k\} \rightarrow \{1, 2\}$ such that f is not constantly 2, we have

$$t(a_{f(1)}^{(1)}, \dots, a_{f(k)}^{(k)}, a_1^{(k+1)}) = t(a_{f(1)}^{(1)}, \dots, a_{f(k)}^{(k)}, a_2^{(k+1)}),$$

then

$$t(a_2^{(1)}, \dots, a_2^{(k)}, a_1^{(k+1)}) = t(a_2^{(1)}, \dots, a_2^{(k)}, a_2^{(k+1)}).$$

Definition

The algebra \mathbf{A} is 1-supernilpotent if

 $\forall n_1, n_2 \in \mathbb{N}_0, \forall n_1 + n_2\text{-ary term functions } t \text{ of } \mathbf{A}, \\ \forall a_1^{(1)}, a_2^{(1)} \in A^{n_1}, a_1^{(2)}, a_2^{(2)} \in A^{n_2}, \text{ the following holds:}$

$$t(a_1^{(1)}, a_1^{(2)}) = t(a_1^{(1)}, a_2^{(2)}) \Longrightarrow t(a_2^{(1)}, a_1^{(2)}) = t(a_2^{(1)}, a_2^{(2)}).$$

Hence A is 1-supernilpotent iff it is abelian.

Definition

The algebra \mathbf{A} is 1-supernilpotent if

 $\forall n_1, n_2 \in \mathbb{N}_0, \forall n_1 + n_2$ -ary term functions t of \mathbf{A} , $\forall \boldsymbol{a}, \boldsymbol{b} \in A^{n_1}, \boldsymbol{c}, \boldsymbol{d} \in A^{n_2}$, the following holds:

$$t(\boldsymbol{a},\boldsymbol{c})=t(\boldsymbol{a},\boldsymbol{d})\Longrightarrow t(\boldsymbol{b},\boldsymbol{c})=t(\boldsymbol{b},\boldsymbol{d}).$$

Hence A is 1-supernilpotent iff it is abelian.

Definition

The algebra A is 2-supernilpotent if

 $\forall n_1, n_2, n_3 \in \mathbb{N}_0, \forall \sum_{i=1}^3 n_i$ -ary term functions t of \mathbf{A} , $\forall \langle (\boldsymbol{a}^{(i)}, \boldsymbol{b}^{(i)}) \mid i \in \{1, \dots, 3\} \rangle \in \prod_{i=1}^k (A^{n_i} \times A^{n_i})$, the following holds:

$$t(\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}, \boldsymbol{a}^{(3)}) = t(\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}, \boldsymbol{b}^{(3)}) \\ t(\boldsymbol{b}^{(1)}, \boldsymbol{a}^{(2)}, \boldsymbol{a}^{(3)}) = t(\boldsymbol{b}^{(1)}, \boldsymbol{a}^{(2)}, \boldsymbol{b}^{(3)}) \\ t(\boldsymbol{a}^{(1)}, \boldsymbol{b}^{(2)}, \boldsymbol{a}^{(3)}) = t(\boldsymbol{a}^{(1)}, \boldsymbol{b}^{(2)}, \boldsymbol{b}^{(3)}) \\ \end{cases} \right\} \Longrightarrow t(\boldsymbol{b}^{(1)}, \boldsymbol{b}^{(2)}, \boldsymbol{a}^{(3)}) = t(\boldsymbol{b}^{(2)}, \boldsymbol{b}^{(2)}, \boldsymbol{b}^{(3)}).$$

Comments on "supernilpotent"

- Supernilpotent expanded groups were defined in [Aichinger, Ecker 2006].
- Supernilpotent algebras were defined in [Aichinger, Mudrinski 2010] as those satisfying [1,...,1] = 0 for the higher commutator operation from [Bulatov 2001].
- For algebras with Mal'cev term, supernilpotent implies nilpotent (nested commutator property (HC8)) [EA, Mudrinski 2010].
- $\blacksquare Supernilpotent \Rightarrow Nilpotent:$
 - □ not true in general [Moore, Moorhead 2019].
 - □ true for finite algebras [Kearnes, Szendrei 2020] and Taylor algebras [Wires 2019 and Moorhead 2021].

Theorem

Let $k \in \mathbb{N}$, A an algebra. TFAE:

- 1. A is k-supernilpotent.
- **2.** A satisfies [1, ..., 1] = 0 (*k* + 1 times 1).

Supernilpotent algebras in congruence modular varieties

Definition

A term $w(x_1, \ldots, x_{r+1})$ in the language of \mathbf{A} is a commutator term of rank r for \mathbf{A} if

$$\mathbf{A} \models w(z, x_2, \dots, x_r, z) \approx w(x_1, z, \dots, x_r, z) \approx \dots \approx w(x_1, x_2, \dots, z, z) \approx z.$$

A commutator term $w(x_1, \ldots, x_{r+1})$ is called trivial if $\mathbf{A} \models w(x_1, \ldots, x_r, z) \approx z$.

A commutator term in the language of (A + constants) is a commutator polynomial.

Theorem

Let $k \in \mathbb{N}$, A an algebra in a congruence modular variety. TFAE:

- 1. A is k-supernilpotent.
- 2. A is nilpotent, and all nontrivial commutator polynomials are of rank $\leq k$.

For (1) \Rightarrow (2), [Wires 2019] produces a Mal'cev term. Then apply [EA, Mudrinski 2010].

Two descriptions of supernilpotency in cp varieties in terms of

■ identities (as opposed to quasi-identities),

invariant relations

can be found in [Opršal 2016].

Theorem

Let $k \in \mathbb{N}$, A a finite algebra in a congruence modular variety. TFAE:

- 1. A is k-supernilpotent.
- 2. A is nilpotent, and all nontrivial commutator terms are of rank $\leq k$.
- 3. $f(n) = \log_2(|Clo_n(\mathbf{A})|)$ is a polynomial of degree k.

Proof: Use [Berman, Blok 1987], [Freese, McKenzie 1987], [Hobby McKenzie 1988], [EA, Mudrinski 2010], [Wires 2019].

Supernilpotent expanded groups

Theorem

Let $k \in \mathbb{N}$, A an expanded group. TFAE:

- 1. A is k-supernilpotent.
- 2. For every $p \in \mathsf{Pol}_{k+1}(\mathbf{A})$ with

$$\forall a_1, \dots, a_{k+1} : 0 \in \{a_1, \dots, a_{k+1}\} \Rightarrow p(a_1, \dots, a_{k+1}) = 0$$

we have $\forall a \in A^{k+1} : p(a) = 0$. (Every nonzero absorbing polynomial function has at most *k* arguments).

Supernilpotent expanded abelian groups

Theorem

Let $k \in \mathbb{N}$, A an expansion of an abelian group. TFAE:

- 1. A is k-supernilpotent.
- 2. Every nonzero absorbing polynomial function has at most k arguments.
- **3**. Every function in $Clo(\mathbf{A})$ has functional degree at most k.

Theorem

Let $k \in \mathbb{N}$, \mathbb{A} a field, and let $\mathbf{A} = (A, +, -, 0, F)$ with $F \subseteq \mathsf{Pol}(\mathbb{A})$. TFAE:

- 1. A is k-supernilpotent.
- 2. Every nonzero absorbing polynomial function has at most k arguments.
- 3. Every function in $Clo(\mathbf{A})$ has functional degree at most k.
- 4. Every function in $Clo(\mathbf{A})$ can be represented by a polynomial in $\mathbb{A}[x_1, x_2 \dots]$ each of whose monomials contains only k variables.

The Structure of Supernilpotent Algebras

Structure of supernilpotent algebras

Theorem [Kearnes 1999], [Berman, Blok 1987], [Freese, McKenzie 1987]

A in a cm variety, finitely many basic operations. Then A is supernilpotent \iff A is nilpotent and isomorphic to a product of algebras of prime power order.

Our goal: Find f such that

k-nilpotent and prime power order $\implies f(k, .)$ -supernilpotent.

Bounds on the supernilpotency degree

Examples:

- \blacksquare *k*-nilpotent groups and rings are *k*-supernilpotent.
- For each $k \in \mathbb{N}$ and $m \ge 2$, there is a *k*-nilpotent expanded group of of supernilpotency class m^{k-1} [EA, Mudrinski 2013].

 We will now outline a proof of nilpotent & prime power order ⇒ supernilpotent.
 Can we do it for

- Expanded groups?
- Expansions of elementary abelian groups = reducts of fields?

Reducts of Fields

Clones of polynomials

For $A, B \subseteq \mathbb{K}[x_i \mid i \in \mathbb{N}] = \bigcup_{n \in \mathbb{N}} \mathbb{K}[x_1, \dots, x_n]$, we define (following [Couceiro, Foldes 2009])

 $AB = \{p(q_1,\ldots,q_n) \mid n \in \mathbb{N}, p \in A \cap \mathbb{K}[x_1,\ldots,x_n], q_1,\ldots,q_n \in B\}.$

 $C \subseteq \mathbb{K}[x_i \mid i \in \mathbb{N}]$ is a **clone of polynomials** if for each $i \in \mathbb{N}$, $x_i \in C$ and $CC \subseteq C$. A polynomial *f* is **homovariate** if all of its monomials contain the same variables.

■ $5x_1x_2^3x_4 - 2x_1^{17}x_2x_4^3 + x_1^6x_2^3x_4^{20}$, $x_2 + 6x_2^4$, and 2 are all homovariate. ■ None of $x_1 + x_2$, $1 + 3x_1^3 + x_1^5$ is homovariate.

Clones of polynomials

The function defined by

$$f(x_1, x_2, x_4) := 5x_1x_2^3x_4 - 2x_1^{17}x_2x_4^3 + x_1^6x_2^3x_4^{20}$$

is absorbing, meaning that f(0, y, z) = f(x, 0, z) = f(x, y, 0) = 0 for all x, y, z.

Theorem [EA, 2019]

Let \mathbb{K} be a field, let $F \subseteq \mathbb{K}[x_i \mid i \in \mathbb{N}]$, $\deg(f) \leq n$ for all $f \in F$. Let $L := \operatorname{Clop}(\{x_1+x_2, -x_1, 0\})$. Then there exists a set $H \subseteq \mathbb{K}[x_1, \ldots, x_n]$ of homovariate polynomials such that

$$L \operatorname{Clop}(H) = \operatorname{Clop}(F \cup \{x_1 + x_2, -x_1, 0\})$$

and $deg(h) \leq n$ for all $h \in H$.

Nilpotency and Supernilpotency

Let *C* be a clone of polynomials on \mathbb{K} that contains $x_1 + x_2$ and $-x_1$. Let $H \subseteq \mathbb{K}[x_1, \ldots, x_n]$ be such that all $h \in H$ are homovariate, and $L \operatorname{Clop}(H) = C$.

- If the algebra $\mathbf{K} = (\mathbb{K}, \overline{C})$ is *k*-nilpotent, then each function in $\overline{\operatorname{Clop}(H)}$ depends on $\leq n^{k-1}$ arguments.
- The algebra $\mathbf{K} = (\mathbb{K}, \overline{C})$ is *s*-supernilpotent if each absorbing polynomial function of \mathbf{K} depends on $\leq s$ arguments.

On the implication nilpotent \Rightarrow supernilpotent

Let *C* be a clone of polynomials on \mathbb{K} that contains $x_1 + x_2$ and $-x_1$. Let $H \subseteq \mathbb{K}[x_1, \dots, x_n]$ be such that all $h \in H$ are homovariate, and $L \operatorname{Clop}(H) = C$.

Then:

 $\mathbf{K} = (\mathbb{K}, \overline{C})$ is *k*-nilpotent

- \Rightarrow each function in $\overline{\operatorname{Clop}(H)}$ depends on $\leq n^{k-1}$ arguments
- ⇒ each absorbing polynomial function of $\mathbf{K} = (K, \overline{L \operatorname{Clop}(H)})$ depends on $\leq n^{k-1}$ arguments ⇒ \mathbf{K} is n^{k-1} -supernilpotent.

Expansions of additive groups of fields

Theorem

Let (A, +, *) be a field, and let $\mathbf{A} = (A, +, -, 0, (f_i)_{i \in I})$ be an algebra. Assume

- For each $i \in I$, $\deg(f_i) \leq n$,
- **A** is nilpotent of class at most k.

Then all absorbing polynomial functions of A are of essential arity at most n^{k-1} .

Theorem [EA, 2019]

Let $\mathbb{A} = (A, +, *)$ be a field, and let $\mathbf{A} = (A, +, -, 0, (f_i)_{i \in I})$ be an expansion of

(A, +) with polynomial functions of \mathbb{A} of total degree $\leq n$. Then:

If A is k-nilpotent, it is n^{k-1} -supernilpotent.

Coordinatization

We have seen a result on the structure of **nilpotent expansions of** $((\mathbb{Z}_p)^n, +)$.

It would be nice to have a result on **nilpotent algebras of prime power order in congruence modular varieties**.

To this end, we will expand such algebras with a group operation.

Coordinatization

Theorem. Let $\mathbf{A} = (A, (f_i)_{i \in \mathbb{N}})$ be a nilpotent algebra in a congruence modular variety, $|A| = p^n$ with p prime.

Then there exists $+ : A \times A \rightarrow A$ and $* : A \times A \rightarrow A$ such that

$$\blacksquare (A, +, *) \text{ is a field and hence } (A, +) \cong (\mathbb{Z}_p^n, +).$$

A' = $(A, (f_i)_{i \in \mathbb{N}}, +)$ is nilpotent.

Structure of nilpotent algebras

Theorem

Let A be a finite nilpotent algebra in a congruence modular variety that is a direct product of algebras of prime power order, with all fundamental operations of arity at most m, |A| > 1. Let

$$s := \left(m(|A| - 1) \right)^{(\log_2(|A|) - 1)}.$$

Then A is *s*-supernilpotent and there is a polynomial $p \in \mathbb{R}[x]$ of degree $\leq s$ such that the free spectrum satisfies

$$f_{\mathbf{A}}(n) = \operatorname{Clo}_n(\mathbf{A}) = 2^{p(n)}$$
 for all $n \in \mathbb{N}$.

Theorem (Vaughan-Lee 1983, Freese McKenzie 1987, EA+JM 2019)

A: nilpotent, in cm variety, prime power order $q = p^{\alpha}$, all fundamental operations at most *m*-ary. h := height of Con(A).

Then A is supernilpotent of degree at most $(m \alpha(p-1))^{h-1}$.

- The old bound was $(m(p^{\alpha}-1))^{h-1}$.
- We can take h as the p-nilpotency degree of A.

Written Material:

- E. Aichinger. Bounding the free spectrum of nilpotent algebras of prime power order. *Israel Journal of Mathematics* 230 (2019): 919-947.
- E. Aichinger and J. Moosbauer, Chevalley-Warning type results on abelian groups, *Journal of Algebra* 569 (2021): 30-66.