THE DEGREE AS A MEASURE OF COMPLEXITY OF FUNCTIONS ON A UNIVERSAL ALGEBRA

Erhard Aichinger
PALS, February 16, 2021

Institute for Algebra, Austrian Science Fund FWF P33878
JㅡU

Outline

In this talk, we will

1. discuss the degree of a function between abelian groups,
2. use it to derive properties of algebraic sets (= solution sets of polynomial equations),
3. relate degree to supernilpotency.

Polynomial Equations over Finite Fields

The Chevalley-Warning Theorem

Theorem (C. Chevalley and E. Warning 1935)
Let $p \in \mathbb{P}, m \in \mathbb{N}, q:=p^{m}$, let $f_{1}, \ldots, f_{r} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$, and let

$$
v:=\#\left\{\boldsymbol{a} \in \mathbb{F}_{q}^{n} \mid f_{1}(\boldsymbol{a})=\cdots=f_{r}(\boldsymbol{a})=0\right\} .
$$

We assume $n>\sum_{i=1}^{r} \operatorname{deg}\left(f_{i}\right)$. Then

1. $v \neq 1$ (Chevalley).
2. p divides v (Warning's First Theorem).

Proof of Chevalley's Theorem

■ Suppose that $\boldsymbol{a} \in \mathbb{F}_{q}^{n}$ is the only solution of $f_{1}(\boldsymbol{a})=\cdots=f_{r}(\boldsymbol{a})=0$.
■ Then $g(\boldsymbol{x})=\prod_{i=1}^{r}\left(1-f_{i}(\boldsymbol{x}+\boldsymbol{a})^{q-1}\right)$ satisfies $g(\mathbf{0})=1$ and $g(\boldsymbol{b})=0$ for $\boldsymbol{b} \neq \mathbf{0}$.

- Hence $g(\boldsymbol{x})$ and $\prod_{i=1}^{n}\left(1-x_{i}^{q-1}\right)$ induce the same function.
- Hence $\operatorname{deg}(g) \geq n(q-1)$.

■ Thus $\sum_{i=1}^{r} \operatorname{deg}\left(f_{i}\right)(q-1) \geq n(q-1)$.

- Contradiction to $\sum_{i=1}^{r} \operatorname{deg}\left(f_{i}\right)<n$.

Proof of Chevalley's Theorem

Let $\chi: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}, \chi(0)=1, \chi(a)=0$ for $a \in \mathbb{F}_{q}^{n} \backslash\{0\}$.
We need an argument for:

Lemma

Every polynomial $p \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ that induces χ has total degree $\geq n(q-1)$.

Proof using Alon's Combinatorial Nullstellensatz [N. Alon 1999]:
Suppose $\operatorname{deg}(p)<n(q-1)$.
Then the coefficient of $x_{1}^{q-1} \cdots x_{n}^{q-1}$ in $f:=p\left(x_{1}, \ldots, x_{n}\right)-\prod_{i=1}^{n}\left(1-x_{i}^{q-1}\right)$ does not vanish.
Hence Alon's Theorem tells that f is not the zero-function. Hence p does not induce χ.

Proof of Chevalley's Theorem

Lemma

Every polynomial $p \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ that induces χ has total degree $\geq n(q-1)$.
Proof using Warning's argument:
For $i<q-1$, we have $\sum_{a \in \mathbb{F}_{q}} a^{i}=0$.
Hence for each $f \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{deg}(f)<n(q-1)$, we have
$\sum_{\boldsymbol{a} \in \mathbb{F}_{q}^{n}} f(\boldsymbol{a})=0$.
Since $\sum_{\boldsymbol{a} \in \mathbb{F}_{q}^{n}} \chi(\boldsymbol{a})=1$, we have $\operatorname{deg}(p) \geq n(q-1)$.

The Chevalley-Warning Theorem

Lemma

For each $f \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{deg}(f)<n(q-1)$, we have $\sum_{\boldsymbol{a} \in \mathbb{F}_{q}^{n}} f(\boldsymbol{a})=0$.

The number of solutions of $f_{1}(\boldsymbol{x})=\cdots f_{r}(\boldsymbol{x})=0$ modulo p is given by

$$
[v]_{p}=\sum_{\boldsymbol{a} \in \mathbb{F}_{q}^{n}} \prod_{i=1}^{r}\left(1-f_{i}(\boldsymbol{a})^{q-1}\right)
$$

Hence if $\sum_{i=1}^{r} \operatorname{deg}\left(f_{i}\right)(q-1)<n(q-1)$, then p divides v (Warning's First Theorem).

Functional degree

Definition of the degree for functions

We try to generalize the total degree of a polynomial function.
Setup: We let A, B be abelian groups, $f: A \rightarrow B$. (In the Chevalley-Warning
Theorems $A=\mathbb{F}_{q}^{n}$ and $B=\mathbb{F}_{q}$.)
Goal:

- Find a definition for $\operatorname{FDEG}(f)$.
- Argue that the definition is useful.

Definition of the degree of a function

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.
Definition through difference operator:
■ For $a \in A, \Delta_{a}(f)(x):=f(x+a)-f(x)$.
■ $\operatorname{FDEG}(f):=$ the minimal $n \in \mathbb{N}_{0}$ with $\Delta_{a_{1}} \Delta_{a_{2}} \cdots \Delta_{a_{n+1}} f=0$ for all $a_{1}, \ldots, a_{n+1} \in A$.

■ Intuitive: $f: \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial of degree $\leq 2 \Leftrightarrow f^{\prime \prime \prime}=0$.

- Problems:
$\square \Delta_{a}(f \circ g)=$? ("Chain rule")
$\square f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{3}, f(0)=1, f(1)=2$ satisfies $\Delta_{1} f=f$. Hence $\operatorname{FDEG}(f)=\infty$.

The definition of the degree

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.
Definition through an abstract version of the difference operator:
[Vaughan-Lee 1983, Freese McKenzie 1987 (Chapter 14)]
■ Group ring $\mathbb{Z}[A]:=\left\{\sum_{a \in A} z_{a} \tau_{a} \mid\left(z_{a}\right)_{a \in A} \in \mathbb{Z}^{(A)}\right\}$.
■ $\mathbb{Z}[A]$ acts on B^{A} by

$$
\begin{aligned}
\left(\tau_{a} * f\right)(x) & =f(x+a) \\
\left(\left(\sum_{a \in A} z_{a} \tau_{a}\right) * f\right)(x) & =\sum_{a \in A} z_{a} f(x+a) \\
\left(\left(\tau_{a}-1\right) * f\right)(x) & =f(x+a)-f(x)
\end{aligned}
$$

■ In this way, B^{A} is a $\mathbb{Z}[A]$-module.

The definition of the degree

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.
Definition through an abstract version of the difference operator:
[Vaughan-Lee 1983, Freese McKenzie 1987 (Chapter 14)]
■ $\left(\left(\tau_{a}-1\right) * f\right)(x):=f(x+a)-f(x)$.
■ $I:=$ augmentation ideal of $\mathbb{Z}[A]=$ ideal generated by $\left\{\tau_{a}-1 \mid a \in A\right\}=$ $\left\{\sum_{a \in A} z_{a} \tau_{a} \in \mathbb{Z}[A] \mid \sum_{a \in A} z_{a}=0\right\}$
■ $\operatorname{FDEG}(f):=\min \left(\left\{n \in \mathbb{N}_{0} \mid I^{n+1} * f=0\right\} \cup\{\infty\}\right)$.

The definition of the degree

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.
Definition through a functional equation: For functions on \mathbb{R}, we have:

Theorem (Fréchet 1909)

A polynomial of degree n in x is a continuous function verifying the identity

$$
\begin{aligned}
f\left(x_{1}+x_{2}+\ldots+x_{n+1}\right) & -\sum_{n} f\left(x_{i_{1}}+\ldots+x_{i_{n}}\right) \\
& +\sum_{n-1} f\left(x_{i_{1}}+\ldots+x_{i_{n-1}}\right)-\ldots \\
& +(-1)^{n} \sum_{n} f\left(x_{i_{1}}\right)+(-1)^{n+1} f(0) \equiv 0
\end{aligned}
$$

whatever the constants x_{1}, \ldots, x_{n+1} are without satisfying the analogous identities obtained by replacing the integer n with a smaller integer.

The definition of the degree

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.
Definition through a functional equation:
We define $\operatorname{FDEG}(f)$ to be the smallest $m \in \mathbb{N}_{0}$ such that

$$
f\left(\sum_{i=1}^{m+1} x_{i}\right)=\sum_{S \subset[m+1]}(-1)^{m-|S|} f\left(\sum_{j \in S} x_{j}\right)
$$

for all $x_{1}, \ldots, x_{m+1} \in A$.
$m=0: f\left(x_{1}\right)=f(0)$.
$m=1: f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)-f(0)$.
$m=2$:
$f\left(x_{1}+x_{2}+x_{3}\right)=f\left(x_{1}+x_{2}\right)+f\left(x_{1}+x_{3}\right)+f\left(x_{2}+x_{3}\right)-f\left(x_{1}\right)-f\left(x_{2}\right)-f\left(x_{3}\right)+f(0)$.

The functional degree

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.
Lemma
All three definitions yield the same degree.

Definition of the functional degree

$\operatorname{FDEG}(f):=\min \left(\left\{n \in \mathbb{N}_{0} \mid(\operatorname{Aug}(\mathbb{Z}[A]))^{n+1} * f=0\right\} \cup\{\infty\}\right)$.

■ $\operatorname{Fdeg}(f)=0 \Leftrightarrow f$ is constant.
■ $\operatorname{FDEG}(f)=1 \Leftrightarrow f=c+h$ with c constant, h group homomorphism.

- Let $p \in \mathbb{P}$ and assume that A, B are finite abelian p-groups. Then $\operatorname{FDEG}(f)<\infty$. Reason: Nilpotency of $\operatorname{Aug}\left(\mathbb{Z}_{p^{\beta}}[A]\right)$.

The degree of concrete functions

- Polynomials over prime fields:
$A=\mathbb{F}_{p}^{N}, B=\mathbb{F}_{p}, f \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{N}\right]$ with all exponents $\leq p-1$.
Then $\operatorname{FDEG}(\bar{f})$ is the total degree of f.
- Polynomials over finite fields:

On \mathbb{F}_{25}, x^{5} induces a homomorphism (\Rightarrow degree 1).
$\square \mathbb{F}_{q} \ldots$ field with q elements of characteristic p.
\square For $n \in \mathbb{N}, s_{p}(n)$ is the digit sum in base p.

$$
s_{5}(25)=1, s_{5}(10)=2, s_{5}(24)=8 .
$$

\square [Moreno Moreno 1995] The p-weight degree of $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is defined by

$$
\operatorname{deg}_{p}\left(x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}}\right):=\sum_{n=1}^{N} s_{p}\left(\alpha_{n}\right)
$$

The functional degree of polynomial functions

Theorem

\mathbb{F} a field, $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$.

- If $|\mathbb{F}|=q=p^{m}$, and if all exponents are at most $q-1$, then
$\operatorname{FDEG}(\bar{f})=\operatorname{deg}_{p}(f)$.
- If \mathbb{F} is infinite of characteristic $p \in \mathbb{P}$, then $\operatorname{FDEG}(\bar{f})=\operatorname{deg}_{p}(f)$.
- If \mathbb{F} is of characteristic 0 , then $\operatorname{FDEG}(\bar{f})=\operatorname{deg}(f)$.

Properties of the functional degree

For a function $f:(A,+) \longrightarrow(B,+)$, the functional degree does not use any syntactic representation of f.

Lemma

$\square \operatorname{FdEG}(f+g) \leq \max (\operatorname{FDEG}(f), \operatorname{FDEG}(g))$.

- If $(B,+, \cdot)$ is a ring, then $\operatorname{FDEG}(f \cdot g) \leq \operatorname{FDEG}(f)+\operatorname{FDEG}(g)$.

Properties of the functional degree

Theorem [Leibman 2002]

Let $(A,+),(B,+),(C,+)$ be abelian groups, let $f: A \rightarrow B$ and $g: B \rightarrow C$ with $\operatorname{FdEG}(f)<\infty$ and $\operatorname{FDEG}(g)<\infty$. Then $\operatorname{FdEG}(g \circ f) \leq \operatorname{FDEG}(g) \cdot \operatorname{FdEG}(f)$.

Self-contained proof in [EA, Moosbauer, 2021].
The proof needs the following claim (stated here for $m=2$): If there are $g_{1}, g_{2}, g_{3}: A^{2} \rightarrow B$ such that for all $x_{1}, x_{2}, x_{3} \in A^{3}$,

$$
h\left(x_{1}+x_{2}+x_{3}\right)=g_{1}\left(x_{2}, x_{3}\right)+g_{2}\left(x_{1}, x_{3}\right)+g_{3}\left(x_{1}, x_{2}\right),
$$

then $\operatorname{FDEG}(h) \leq 2$.

Characterization of the degree

Theorem (cf. [EA, Moosbauer, 2021])

Let $(A,+)$ and $(B,+)$ be abelian groups, let $f: A \rightarrow B$, and let $m \in \mathbb{N}_{0}$. Then the following are equivalent:

1. $\operatorname{FDEG}(f) \leq m$.
2. For every $k>m$, we have $f\left(\sum_{i=1}^{k} x_{i}\right)=\sum_{S \subset[k]}(-1)^{k-|S|+1} f\left(\sum_{j \in S} x_{j}\right)$.
3. There exist functions $g_{1}, \ldots, g_{m+1}: A^{m+1} \rightarrow B$ such that for all $x_{1}, \ldots, x_{m+1} \in A$, we have

$$
f\left(\sum_{i=1}^{m+1} x_{i}\right)=\sum_{i=1}^{m+1} g_{i}\left(x_{1}, \ldots, x_{m+1}\right)
$$

and for each $i \in[m+1]$, the function g_{i} does not depend on its i th argument.

Maximal degree

For two abelian groups A, B, we define

$$
\delta(A, B):=\sup \left(\left\{\operatorname{FDEG}(f) \mid f \in B^{A}\right\}\right) .
$$

Theorem [EA, Moosbauer 2021]

$\square \delta(A, B)<\infty \Longleftrightarrow|A|=1$ or $|B|=1$ or $\exists p \in \mathbb{P}: A$ is a finite p-group and B is a p-group of finite exponent.

- If $\exp (B)=n \in \mathbb{N}$, then $\delta(A, B)=\underbrace{\min \left\{m \in \mathbb{N} \mid\left(\operatorname{Aug}\left(\mathbb{Z}_{n}[A]\right)\right)^{m}=0\right\}}_{\text {nilpotency index of } \operatorname{Aug}\left(\mathbb{Z}_{n}[A]\right)}-1$.
- If $\exp (B)=n \in \mathbb{N}$, then the characteristic function $\chi(0)=b$ (of order n) and $\chi(a)=0$ for $a \neq 0$ has degree $\delta(A, B)$.

General results on $\delta(A, B)$

$$
\delta(A, B):=\sup \left(\left\{\operatorname{FDEG}(f) \mid f \in B^{A}\right\}\right) .
$$

Lemma (EA, Moosbauer 2021)

Let A, B be abelian groups.

- $\delta\left(A, \mathbb{Z}_{p^{\beta}}\right) \leq \beta \delta\left(A, \mathbb{Z}_{p}\right)$.

■ $\delta\left(A_{1} \times A_{2}, B\right) \leq \delta\left(A_{1}, B\right)+\delta\left(A_{2}, B\right)$.

Known results on $\delta(A, B)$

$$
\delta(A, B):=\sup \left(\left\{\operatorname{FDEG}(f) \mid f \in B^{A}\right\}\right)=\left(\text { nilpotency index of } \operatorname{Aug}\left(\mathbb{Z}_{\exp (B)}[A]\right)\right)-1
$$

Known results on $\delta(A, B)$

$$
\delta(A, B):=\sup \left(\left\{\operatorname{FDEG}(f) \mid f \in B^{A}\right\}\right)=\left(\text { nilpotency index of } \operatorname{Aug}\left(\mathbb{Z}_{\exp (B)}[A]\right)\right)-1
$$

$\delta(A, B)$	$B=\mathbb{Z}_{p}$	$B=\mathbb{Z}_{p^{\beta}}$
A is not a p-group	∞	∞

Known results on $\delta(A, B)$

$$
\delta(A, B):=\sup \left(\left\{\operatorname{FDEG}(f) \mid f \in B^{A}\right\}\right)=\left(\text { nilpotency index of } \operatorname{Aug}\left(\mathbb{Z}_{\exp (B)}[A]\right)\right)-1
$$

$\delta(A, B)$	$B=\mathbb{Z}_{p}$	$B=\mathbb{Z}_{p^{\beta}}$
A is not a p-group	∞	∞
$A=\mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	
	Karpilovsky 1987	

Known results on $\delta(A, B)$

$$
\delta(A, B):=\sup \left(\left\{\operatorname{FDEG}(f) \mid f \in B^{A}\right\}\right)=\left(\text { nilpotency index of } \operatorname{Aug}\left(\mathbb{Z}_{\exp (B)}[A]\right)\right)-1
$$

$\delta(A, B)$	$B=\mathbb{Z}_{p}$	$B=\mathbb{Z}_{p^{\beta}}$
A is not a p-group	∞	∞
$A=\mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha}-(\beta-1) p^{\alpha-1}-1$
	Karpilovsky 1987	R. Wilson 2006

Known results on $\delta(A, B)$

$$
\delta(A, B):=\sup \left(\left\{\operatorname{FDEG}(f) \mid f \in B^{A}\right\}\right)=\left(\text { nilpotency index of } \operatorname{Aug}\left(\mathbb{Z}_{\exp (B)}[A]\right)\right)-1
$$

$\delta(A, B)$	$B=\mathbb{Z}_{p}$	$B=\mathbb{Z}_{p^{\beta}}$
A is not a p-group	∞	∞
$A=\mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha}-(\beta-1) p^{\alpha-1}-1$
	Karpilovsky 1987	R. Wilson 2006
$A=\left(\mathbb{Z}_{p}\right)^{n}$	$n(p-1)$	
	Karpilovski 1987	

Known results on $\delta(A, B)$

$$
\delta(A, B):=\sup \left(\left\{\operatorname{FDEG}(f) \mid f \in B^{A}\right\}\right)=\left(\text { nilpotency index of } \operatorname{Aug}\left(\mathbb{Z}_{\exp (B)}[A]\right)\right)-1
$$

$\delta(A, B)$	$B=\mathbb{Z}_{p}$	$B=\mathbb{Z}_{p^{\beta}}$
A is not a p-group	∞	∞
$A=\mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha}-(\beta-1) p^{\alpha-1}-1$
	Karpilovsky 1987	R. Wilson 2006
$A=\left(\mathbb{Z}_{p}\right)^{n}$	$n(p-1)$	$\leq \beta n(p-1)$
	Karpilovski 1987	

Known results on $\delta(A, B)$

$$
\delta(A, B):=\sup \left(\left\{\operatorname{FDEG}(f) \mid f \in B^{A}\right\}\right)=\left(\text { nilpotency index of } \operatorname{Aug}\left(\mathbb{Z}_{\exp (B)}[A]\right)\right)-1
$$

$\delta(A, B)$	$B=\mathbb{Z}_{p}$	$B=\mathbb{Z}_{p^{\beta}}$
A is not a p-group	∞	∞
$A=\mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha}-(\beta-1) p^{\alpha-1}-1$
	Karpilovsky 1987	R. Wilson 2006
$A=\left(\mathbb{Z}_{p}\right)^{n}$	$n(p-1)$	$\leq \beta n(p-1)$
	Karpilovski 1987	$(\beta+n-1)(p-1)$

Known results on $\delta(A, B)$

$$
\delta(A, B):=\sup \left(\left\{\operatorname{FDEG}(f) \mid f \in B^{A}\right\}\right)=\left(\text { nilpotency index of } \operatorname{Aug}\left(\mathbb{Z}_{\exp (B)}[A]\right)\right)-1
$$

$\delta(A, B)$	$B=\mathbb{Z}_{p}$	$B=\mathbb{Z}_{p^{\beta}}$
A is not a p-group	∞	∞
$A=\mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha}-(\beta-1) p^{\alpha-1}-1$
	Karpilovsky 1987	R. Wilson 2006
$A=\left(\mathbb{Z}_{p}\right)^{n}$	$n(p-1)$	$\leq \beta n(p-1)$
	Karpilovski 1987	$(\beta+n-1)(p-1)$
$A=\prod_{i=1}^{n} \mathbb{Z}_{p^{\alpha_{i}}}$	$\sum_{i=1}^{n}\left(p^{\alpha_{i}}-1\right)$	
	Karpilovsky 1987	

Known results on $\delta(A, B)$

$$
\delta(A, B):=\sup \left(\left\{\operatorname{FDEG}(f) \mid f \in B^{A}\right\}\right)=\left(\text { nilpotency index of } \operatorname{Aug}\left(\mathbb{Z}_{\exp (B)}[A]\right)\right)-1
$$

$\delta(A, B)$	$B=\mathbb{Z}_{p}$	$B=\mathbb{Z}_{p^{\beta}}$
A is not a p-group	∞	∞
$A=\mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha}-(\beta-1) p^{\alpha-1}-1$
	Karpilovsky 1987	R. Wilson 2006
$A=\left(\mathbb{Z}_{p}\right)^{n}$	$n(p-1)$	$\leq \beta n(p-1)$
	Karpilovski 1987	$(\beta+n-1)(p-1)$
$A=\prod_{i=1}^{n} \mathbb{Z}_{p^{\alpha_{i}}}$	$\sum_{i=1}^{n}\left(p^{\alpha_{i}}-1\right)$	$<\infty$
	Karpilovsky 1987	OPEN

Equations over abelian groups

Warning's First Theorem

Abstract version Warning's Sum Lemma

Let p be a prime, let A be a finite abelian p-group, $f: A \rightarrow \mathbb{Z}_{p}$.
If $\operatorname{FDEG}(f)<\delta\left(A, \mathbb{Z}_{p}\right)$, then $\sum_{x \in A} f(x)=0$.

Proof:

■et $I:=\left\langle\tau_{a}-1 \mid a \in A\right\rangle=\operatorname{Aug}(\mathbb{Z}[A])$.
■ $\mathbb{Z}[A] * \chi=\mathbb{Z}_{p}^{A}$ and $\mathbb{Z}[A] * \chi=\langle\chi\rangle_{\text {vector-space }}+I * \chi$. Hence $I * \chi$ has codim 1 in \mathbb{Z}_{p}^{A}.
■ $I * \chi \subseteq\left\{f \mid \sum_{a \in A} f(a)=0\right\}$ because $\sum_{x \in A}\left(\tau_{a}-1\right) * f(x)=\sum_{x \in A} f(x+a)-f(x)=0$.
■ $I * \chi \subseteq\left\{f \mid \operatorname{FDEG}(f)<\delta\left(A, \mathbb{Z}_{p}\right)\right\}$.

- Hence $\left\{f \mid \sum_{a \in A} f(a)=0\right\}=\left\{f \mid \operatorname{FDEG}(f)<\delta\left(A, \mathbb{Z}_{p}\right)\right\}$.

Warning's First Theorem

Theorem [EA, Moosbauer 2021]

Let p be a prime, let A be a finite abelian p-group with $|A|>1$, and let f_{1}, \ldots, f_{r} : $A^{n} \rightarrow A$ be functions with

$$
n>\sum_{i=1}^{r} \operatorname{FDEG}\left(f_{i}\right)
$$

Then p divides $v=\left|\left\{\boldsymbol{a} \in A^{n} \mid f_{1}(\boldsymbol{a})=\cdots=f_{r}(\boldsymbol{a})=0\right\}\right|$.

Proof:

■ $\chi: A \rightarrow \mathbb{Z}_{p}$ has degree $\delta\left(A, \mathbb{Z}_{p}\right)$.
■ $\boldsymbol{a} \mapsto \prod_{i=1}^{r} \chi\left(f_{i}\left(a_{1}, \ldots, a_{n}\right)\right)$ has degree $\leq \sum_{i=1}^{r} \operatorname{FDEG}\left(f_{i}\right) \delta\left(A, \mathbb{Z}_{p}\right)$.

- Hence $\boldsymbol{a} \mapsto \prod_{i=1}^{r} \chi\left(f_{i}\left(a_{1}, \ldots, a_{n}\right)\right)$ has degree $<n \delta\left(A, \mathbb{Z}_{p}\right)=\delta\left(A^{n}, \mathbb{Z}_{p}\right)$.

■ By the Sum-Lemma $[v]_{p}=\sum_{\boldsymbol{a} \in A^{n}} \prod_{i=1}^{r} \chi\left(f_{i}\left(a_{1}, \ldots, a_{n}\right)\right)=0$.

Warning's First Theorem

Setting $A:=F$, we obtain:

Theorem (Warning 1935; Moreno and Moreno 1995)

Let p be a prime, let F be a finite field of characteristic p, let $r, n \in \mathbb{N}$, and let $f_{1}, \ldots, f_{r} \in F\left[x_{1}, \ldots, x_{n}\right]$. We assume that $n>\sum_{j=1}^{r} \operatorname{deg}_{p}\left(f_{j}\right)$. Then p divides $\left|V\left(f_{1}, \ldots, f_{r}\right)\right|$.

Warning's First Thm for noncommutative rings [EA, Moosbauer 2021]

Let $p \in \mathbb{P}$, let $\alpha \in \mathbb{N}$, let R be a (not necessarily commutative) ring with $|R|=p^{\alpha}$, let $n \in \mathbb{N}$, let $X=\left\{x_{1}, \ldots, x_{n}\right\}$, and let f_{1}, \ldots, f_{r} be polynomial expressions over R in the variables X. If $n>\sum_{i=1}^{r} \operatorname{deg}\left(f_{i}\right)$, then p divides $\left|V\left(f_{1}, \ldots, f_{r}\right)\right|$.

Warning's First Theorem with restricted domain

Restricted Domain versions have been established, e.g., by [P.L. Clark, 2014] and [D. Brink, 2011].

Theorem [EA, Moosbauer 2021]

Let p be a prime, $\alpha \in \mathbb{N}$, and let F be a finite field with $q=p^{\alpha}$ elements. Let $f_{1}, \ldots, f_{r} \in F\left[x_{1}, \ldots, x_{n}\right]$, let A be a subgroup of $\left(F^{n},+\right)$ with p^{M} elements. We assume that

$$
M>\alpha \sum_{j=1}^{r} \operatorname{deg}_{p}\left(f_{j}\right)
$$

Then p divides the cardinality of $\left\{\boldsymbol{a} \in A \mid f_{1}(\boldsymbol{a})=\cdots=f_{r}(\boldsymbol{a})=0\right\}$.

Warning's Second Theorem

Theorem (E. Warning, 1935)

F a finite field, $f_{1}, \ldots, f_{s} \in F\left[x_{1}, \ldots, x_{n}\right]$.
If $V\left(f_{1}, \ldots, f_{s}\right) \neq \varnothing$, then $\# V\left(f_{1}, \ldots, f_{n}\right) \geq|F|^{n-\sum_{i=1}^{s} \operatorname{deg}\left(f_{i}\right)}$.
Remarks:

1. Warning considered the case $s=1$ (Satz 3).
2. The bound can be attained: $\# V\left(x_{1}, \ldots, x_{s}\right)=|F|^{n-s}$.

Warning's Second Theorem is useful

Let F be a finite field.

- The problem

Input $f \in F\left[x_{i} \mid i \in \mathbb{N}\right]$ (possibly not in expanded form). Output YES iff
$V(f) \neq \varnothing$
is NP-complete.
■ Its fixed parameter version for fixed degree D with
Input $f \in F\left[x_{i} \mid i \in \mathbb{N}\right]$ with $\operatorname{deg}(f) \leq D$
is in RP (randomized polynomial time). Proof: If f has N variables and is solvable, then a random $a \in F^{n}$ is a solution with probability $\geq|F|^{-D}$.

■ Such (and better) results were used in [Kawałek and Krzaczkowski, 2020] to provide a linear time Monte-Carlo algorithm to solve equations over nilpotent groups.

Improvements of Warning's Second Theorem

Theorem (E. Warning, 1935)
F a finite field, $f_{1}, \ldots, f_{s} \in F\left[x_{1}, \ldots, x_{n}\right]$.
If $V\left(f_{1}, \ldots, f_{s}\right) \neq \varnothing$, then $\# V\left(f_{1}, \ldots, f_{s}\right) \geq|F|^{n-\sum_{i=1}^{s} \operatorname{deg}\left(f_{i}\right)}$.
■ [Heath-Brown, 2011]: if $V\left(f_{1}, \ldots, f_{s}\right)$ is not a linear manifold and $|F| \geq 4$, then $\# V\left(f_{1}, \ldots, f_{n}\right) \geq 2 q^{n-d} . \quad\left(q:=|F|, d:=\sum_{i=1}^{s} \operatorname{deg}\left(f_{i}\right)\right)$

- [Moreno Moreno 1995]: $\operatorname{deg}(f)$ can be replaced by the p-weight degree $\operatorname{deg}_{p}(f)$, where $p=\operatorname{char}(F)$,

$$
\operatorname{deg}_{p}\left(x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}}\right):=\sum_{n=1}^{N} s_{p}\left(\alpha_{n}\right)
$$

$s_{p}(n)$ is the digit sum in base p.

Warning's Second Theorem for abelian groups

Theorem (E. Warning, 1935)

F a finite field, $f_{1}, \ldots, f_{s} \in F\left[x_{1}, \ldots, x_{n}\right]$.
If $V\left(f_{1}, \ldots, f_{s}\right) \neq \varnothing$, then $\# V\left(f_{1}, \ldots, f_{s}\right) \geq|F|^{n-\sum_{i=1}^{s} \operatorname{deg}\left(f_{i}\right)}$.

Theorem [EA, Moosbauer 2021]
Let $f_{1}, \ldots, f_{r}: \mathbb{Z}_{p}{ }^{\alpha} \rightarrow \mathbb{Z}_{p}{ }^{\beta}$. If $V\left(f_{1}, \ldots f_{r}\right) \neq \varnothing$, then

$$
\# V\left(f_{1}, \ldots, f_{r}\right) \geq p^{\alpha-\beta \sum_{i=1}^{r} \operatorname{FDEG}\left(f_{i}\right)} .
$$

Supernilpotency

Supernilpotent algebras

Definition

Let $k \in \mathbb{N}$. The algebra \mathbf{A} is k-supernilpotent if
$\forall n_{1}, \ldots, n_{k+1} \in \mathbb{N}_{0}, \forall \sum_{i=1}^{k+1} n_{i}$-ary term functions t of \mathbf{A}, $\forall\left\langle\left(a_{1}^{(i)}, a_{2}^{(i)}\right) \mid i \in\{1, \ldots, k+1\}\right\rangle \in \prod_{i=1}^{k}\left(A^{n_{i}} \times A^{n_{i}}\right)$, the following holds:

If for all $f:\{1, \ldots, k\} \rightarrow\{1,2\}$ such that f is not constantly 2 , we have

$$
t\left(a_{f(1)}^{(1)}, \ldots, a_{f(k)}^{(k)}, a_{1}^{(k+1)}\right)=t\left(a_{f(1)}^{(1)}, \ldots, a_{f(k)}^{(k)}, a_{2}^{(k+1)}\right),
$$

then

$$
t\left(a_{2}^{(1)}, \ldots, a_{2}^{(k)}, a_{1}^{(k+1)}\right)=t\left(a_{2}^{(1)}, \ldots, a_{2}^{(k)}, a_{2}^{(k+1)}\right)
$$

Supernilpotent algebras

Definition

The algebra \mathbf{A} is 1-supernilpotent if
$\forall n_{1}, n_{2} \in \mathbb{N}_{0}, \forall n_{1}+n_{2}$-ary term functions t of \mathbf{A}, $\forall a_{1}^{(1)}, a_{2}^{(1)} \in A^{n_{1}}, a_{1}^{(2)}, a_{2}^{(2)} \in A^{n_{2}}$, the following holds:

$$
t\left(a_{1}^{(1)}, a_{1}^{(2)}\right)=t\left(a_{1}^{(1)}, a_{2}^{(2)}\right) \Longrightarrow t\left(a_{2}^{(1)}, a_{1}^{(2)}\right)=t\left(a_{2}^{(1)}, a_{2}^{(2)}\right)
$$

Hence \mathbf{A} is 1-supernilpotent iff it is abelian.

Supernilpotent algebras

Definition

The algebra \mathbf{A} is 1 -supernilpotent if
$\forall n_{1}, n_{2} \in \mathbb{N}_{0}, \forall n_{1}+n_{2}$-ary term functions t of \mathbf{A}, $\forall \boldsymbol{a}, \boldsymbol{b} \in A^{n_{1}}, \boldsymbol{c}, \boldsymbol{d} \in A^{n_{2}}$, the following holds:

$$
t(\boldsymbol{a}, \boldsymbol{c})=t(\boldsymbol{a}, \boldsymbol{d}) \Longrightarrow t(\boldsymbol{b}, \boldsymbol{c})=t(\boldsymbol{b}, \boldsymbol{d})
$$

Hence \mathbf{A} is 1-supernilpotent iff it is abelian.

Supernilpotent algebras

Definition

The algebra \mathbf{A} is 2 -supernilpotent if
$\forall n_{1}, n_{2}, n_{3} \in \mathbb{N}_{0}, \forall \sum_{i=1}^{3} n_{i}$-ary term functions t of \mathbf{A}, $\forall\left\langle\left(\boldsymbol{a}^{(i)}, \boldsymbol{b}^{(i)}\right) \mid i \in\{1, \ldots, 3\}\right\rangle \in \prod_{i=1}^{k}\left(A^{n_{i}} \times A^{n_{i}}\right)$, the following holds:

$$
\left.\begin{array}{l}
t\left(\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}, \boldsymbol{a}^{(3)}\right)=t\left(\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}, \boldsymbol{b}^{(3)}\right) \\
t\left(\boldsymbol{b}^{(1)}, \boldsymbol{a}^{(2)}, \boldsymbol{a}^{(3)}\right)=t\left(\boldsymbol{b}^{(1)}, \boldsymbol{a}^{(2)}, \boldsymbol{b}^{(3)}\right) \\
t\left(\boldsymbol{a}^{(1)}, \boldsymbol{b}^{(2)}, \boldsymbol{a}^{(3)}\right)=t\left(\boldsymbol{a}^{(1)}, \boldsymbol{b}^{(2)}, \boldsymbol{b}^{(3)}\right)
\end{array}\right\} \Longrightarrow t\left(\boldsymbol{b}^{(1)}, \boldsymbol{b}^{(2)}, \boldsymbol{a}^{(3)}\right)=t\left(\boldsymbol{b}^{(2)}, \boldsymbol{b}^{(2)}, \boldsymbol{b}^{(3)}\right) .
$$

Comments on "supernilpotent"

■ Supernilpotent expanded groups were defined in [Aichinger, Ecker 2006].

- Supernilpotent algebras were defined in [Aichinger, Mudrinski 2010] as those satisfying $[1, \ldots, 1]=0$ for the higher commutator operation from [Bulatov 2001].
- For algebras with Mal'cev term, supernilpotent implies nilpotent (nested commutator property (HC8)) [EA, Mudrinski 2010].
■ Supernilpotent \Rightarrow Nilpotent:
\square not true in general [Moore, Moorhead 2019].
\square true for finite algebras [Kearnes, Szendrei 2020] and Taylor algebras [Wires 2019 and Moorhead 2021].

Supernilpotent algebras

Theorem

Let $k \in \mathbb{N}$, A an algebra. TFAE:

1. \mathbf{A} is k-supernilpotent.
2. A satisfies $[1, \ldots, 1]=0(k+1$ times 1$)$.

Supernilpotent algebras in congruence modular varieties

Definition

A term $w\left(x_{1}, \ldots, x_{r+1}\right)$ in the language of \mathbf{A} is a commutator term of rank r for A if

$$
\mathbf{A} \models w\left(z, x_{2}, \ldots, x_{r}, z\right) \approx w\left(x_{1}, z, \ldots, x_{r}, z\right) \approx \cdots \approx w\left(x_{1}, x_{2}, \ldots, z, z\right) \approx z
$$

A commutator term $w\left(x_{1}, \ldots, x_{r+1}\right)$ is called trivial if $\mathbf{A} \models w\left(x_{1}, \ldots, x_{r}, z\right) \approx z$.

A commutator term in the language of ($\mathbf{A}+$ constants) is a commutator polynomial.

Supernilpotent algebras

Theorem

Let $k \in \mathbb{N}$, A an algebra in a congruence modular variety. TFAE:

1. \mathbf{A} is k-supernilpotent.
2. \mathbf{A} is nilpotent, and all nontrivial commutator polynomials are of rank $\leq k$.

For $(1) \Rightarrow(2)$, [Wires 2019] produces a Mal'cev term. Then apply [EA, Mudrinski 2010].
Two descriptions of supernilpotency in cp varieties in terms of

- identities (as opposed to quasi-identities),
- invariant relations
can be found in [Opršal 2016].

Supernilpotent algebras

Theorem

Let $k \in \mathbb{N}$, A a finite algebra in a congruence modular variety. TFAE:

1. \mathbf{A} is k-supernilpotent.
2. \mathbf{A} is nilpotent, and all nontrivial commutator terms are of rank $\leq k$.
3. $f(n)=\log _{2}\left(\left|\operatorname{Clo}_{n}(\mathbf{A})\right|\right)$ is a polynomial of degree k.

Proof: Use [Berman, Blok 1987], [Freese, McKenzie 1987], [Hobby McKenzie 1988], [EA, Mudrinski 2010], [Wires 2019].

Supernilpotent expanded groups

Theorem

Let $k \in \mathbb{N}$, A an expanded group. TFAE:

1. \mathbf{A} is k-supernilpotent.
2. For every $p \in \operatorname{Pol}_{k+1}(\mathbf{A})$ with

$$
\forall a_{1}, \ldots, a_{k+1}: 0 \in\left\{a_{1}, \ldots, a_{k+1}\right\} \Rightarrow p\left(a_{1}, \ldots, a_{k+1}\right)=0
$$

we have $\forall \boldsymbol{a} \in A^{k+1}: p(\boldsymbol{a})=0$. (Every nonzero absorbing polynomial function has at most k arguments).

Supernilpotent expanded abelian groups

Theorem

Let $k \in \mathbb{N}, \mathbf{A}$ an expansion of an abelian group. TFAE:

1. \mathbf{A} is k-supernilpotent.
2. Every nonzero absorbing polynomial function has at most k arguments.
3. Every function in $\operatorname{Clo}(\mathbf{A})$ has functional degree at most k.

Theorem

Let $k \in \mathbb{N}$, \mathbb{A} a field, and let $\mathbf{A}=(A,+,-, 0, F)$ with $F \subseteq \operatorname{Pol}(\mathbb{A})$. TFAE:

1. \mathbf{A} is k-supernilpotent.
2. Every nonzero absorbing polynomial function has at most k arguments.
3. Every function in $\operatorname{Clo}(\mathbf{A})$ has functional degree at most k.
4. Every function in $\operatorname{Clo}(\mathbf{A})$ can be represented by a polynomial in $\mathbb{A}\left[x_{1}, x_{2} \ldots\right]$ each of whose monomials contains only k variables.

The Structure of Supernilpotent Algebras

Structure of supernilpotent algebras

Theorem [Kearnes 1999], [Berman, Blok 1987], [Freese, McKenzie 1987]
A in a cm variety, finitely many basic operations. Then A is supernilpotent \Longleftrightarrow A is nilpotent and isomorphic to a product of algebras of prime power order.

Our goal: Find f such that
k-nilpotent and prime power order $\Longrightarrow f(k,$.$) -supernilpotent.$

Bounds on the supernilpotency degree

Examples:
■ k-nilpotent groups and rings are k-supernilpotent.

- For each $k \in \mathbb{N}$ and $m \geq 2$, there is a k-nilpotent expanded group of of supernilpotency class m^{k-1} [EA, Mudrinski 2013].

We will now outline a proof of nilpotent \& prime power order \Longrightarrow supernilpotent.
Can we do it for
■ Expanded groups?

- Expansions of elementary abelian groups = reducts of fields?

Reducts of Fields

Clones of polynomials

For $A, B \subseteq \mathbb{K}\left[x_{i} \mid i \in \mathbb{N}\right]=\bigcup_{n \in \mathbb{N}} \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, we define (following [Couceiro, Foldes 2009])

$$
A B=\left\{p\left(q_{1}, \ldots, q_{n}\right) \mid n \in \mathbb{N}, p \in A \cap \mathbb{K}\left[x_{1}, \ldots, x_{n}\right], q_{1}, \ldots, q_{n} \in B\right\}
$$

$C \subseteq \mathbb{K}\left[x_{i} \mid i \in \mathbb{N}\right]$ is a clone of polynomials if for each $i \in \mathbb{N}, x_{i} \in C$ and $C C \subseteq C$.
A polynomial f is homovariate if all of its monomials contain the same variables.

- $5 x_{1} x_{2}^{3} x_{4}-2 x_{1}^{17} x_{2} x_{4}^{3}+x_{1}^{6} x_{2}^{3} x_{4}^{20}, x_{2}+6 x_{2}^{4}$, and 2 are all homovariate.

■ None of $x_{1}+x_{2}, 1+3 x_{1}^{3}+x_{1}^{5}$ is homovariate.

Clones of polynomials

The function defined by

$$
f\left(x_{1}, x_{2}, x_{4}\right):=5 x_{1} x_{2}^{3} x_{4}-2 x_{1}^{17} x_{2} x_{4}^{3}+x_{1}^{6} x_{2}^{3} x_{4}^{20}
$$

is absorbing, meaning that $f(0, y, z)=f(x, 0, z)=f(x, y, 0)=0$ for all x, y, z.

Theorem [EA, 2019]

Let \mathbb{K} be a field, let $F \subseteq \mathbb{K}\left[x_{i} \mid i \in \mathbb{N}\right], \operatorname{deg}(f) \leq n$ for all $f \in F$. Let $L:=$ $\operatorname{Clop}\left(\left\{x_{1}+x_{2},-x_{1}, 0\right\}\right)$. Then there exists a set $H \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ of homovariate polynomials such that

$$
L \operatorname{Clop}(H)=\operatorname{Clop}\left(F \cup\left\{x_{1}+x_{2},-x_{1}, 0\right\}\right)
$$

and $\operatorname{deg}(h) \leq n$ for all $h \in H$.

Nilpotency and Supernilpotency

Let C be a clone of polynomials on \mathbb{K} that contains $x_{1}+x_{2}$ and $-x_{1}$. Let $H \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be such that all $h \in H$ are homovariate, and $L \operatorname{Clop}(H)=C$.

■ If the algebra $\mathbf{K}=(\mathbb{K}, \bar{C})$ is k-nilpotent, then each function in $\overline{\operatorname{Clop}(H)}$ depends on $\leq n^{k-1}$ arguments.

- The algebra $\mathbf{K}=(\mathbb{K}, \bar{C})$ is s-supernilpotent if each absorbing polynomial function of \mathbf{K} depends on $\leq s$ arguments.

On the implication nilpotent \Rightarrow supernilpotent

Let C be a clone of polynomials on \mathbb{K} that contains $x_{1}+x_{2}$ and $-x_{1}$. Let $H \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be such that all $h \in H$ are homovariate, and $L \operatorname{Clop}(H)=C$.

Then:
$\mathbf{K}=(\mathbb{K}, \bar{C})$ is k-nilpotent
\Rightarrow each function in $\overline{\operatorname{Clop}(H)}$ depends on $\leq n^{k-1}$ arguments
\Rightarrow each absorbing polynomial function of $\mathbf{K}=(K, \overline{L \operatorname{Clop}(H)})$
depends on $\leq n^{k-1}$ arguments
$\Rightarrow \mathbf{K}$ is n^{k-1}-supernilpotent.

Expansions of additive groups of fields

Theorem

Let $(A,+, *)$ be a field, and let $\mathbf{A}=\left(A,+,-, 0,\left(f_{i}\right)_{i \in I}\right)$ be an algebra. Assume
■ For each $i \in I, \operatorname{deg}\left(f_{i}\right) \leq n$,

- A is nilpotent of class at most k.

Then all absorbing polynomial functions of \mathbf{A} are of essential arity at most n^{k-1}.

Theorem [EA, 2019]

Let $\mathbb{A}=(A,+, *)$ be a field, and let $\mathbf{A}=\left(A,+,-, 0,\left(f_{i}\right)_{i \in I}\right)$ be an expansion of $(A,+)$ with polynomial functions of \mathbb{A} of total degree $\leq n$. Then:

- If \mathbf{A} is k-nilpotent, it is n^{k-1}-supernilpotent.

Coordinatization

Coordinatization

We have seen a result on the structure of nilpotent expansions of $\left(\left(\mathbb{Z}_{p}\right)^{n},+\right)$.
It would be nice to have a result on nilpotent algebras of prime power order in congruence modular varieties.

To this end, we will expand such algebras with a group operation.

Coordinatization

Theorem. Let $\mathbf{A}=\left(A,\left(f_{i}\right)_{i \in \mathbb{N}}\right)$ be a nilpotent algebra in a congruence modular variety, $|A|=p^{n}$ with p prime.

Then there exists $+: A \times A \rightarrow A$ and $*: A \times A \rightarrow A$ such that

- $(A,+, *)$ is a field and hence $(A,+) \cong\left(\mathbb{Z}_{p}^{n},+\right)$.
- $\mathbf{A}^{\prime}=\left(A,\left(f_{i}\right)_{i \in \mathbb{N}},+\right)$ is nilpotent.

Structure of nilpotent algebras

Theorem

Let A be a finite nilpotent algebra in a congruence modular variety that is a direct product of algebras of prime power order, with all fundamental operations of arity at most $m,|A|>1$. Let

$$
s:=(m(|A|-1))^{\left(\log _{2}(|A|)-1\right)} .
$$

Then \mathbf{A} is s-supernilpotent and there is a polynomial $p \in \mathbb{R}[x]$ of degree $\leq s$ such that the free spectrum satisfies

$$
f_{\mathbf{A}}(n)=\operatorname{Clo}_{n}(\mathbf{A})=2^{p(n)} \text { for all } n \in \mathbb{N} .
$$

Theorem (Vaughan-Lee 1983, Freese McKenzie 1987, EA+JM 2019)

A: nilpotent, in cm variety, prime power order $q=p^{\alpha}$, all fundamental operations at most m-ary. $\quad h:=$ height of $\operatorname{Con}(\mathbf{A})$.
Then \mathbf{A} is supernilpotent of degree at most $(m \alpha(p-1))^{h-1}$.

- The old bound was $\left(m\left(p^{\alpha}-1\right)\right)^{h-1}$.

■ We can take h as the p-nilpotency degree of \mathbf{A}.

Written Material:

■ E. Aichinger. Bounding the free spectrum of nilpotent algebras of prime power order. Israel Journal of Mathematics 230 (2019): 919-947.
■ E. Aichinger and J. Moosbauer, Chevalley-Warning type results on abelian groups, Journal of Algebra 569 (2021): 30-66.

