On half-homomorphisms of some types of Loops

Dylene Agda Souza de Barros Universidade Federal de Uberlândia

Panglobal Algebra and Logic Seminar 10/22/2024

Half-homomorphism

■ Let (L,*) and (L',\cdot) be two binary algebras. A map $f:L\to L'$ is a half-homomorphism if

$$f(x * y) \in \{f(x) \cdot f(y), f(y) \cdot f(x)\}$$

for every $x, y \in L$.

■ We say that a half-homomorphism is proper if it is neither a homomorphism nor an anti-homomorphism.

Half-homomorphism

- In the year 1957, W.R. Scott proved that there is no proper half-homomorphism between cancellation semi-groups.
- He also gave an example of a loop of order 8 that has a proper half-automorphism, so Scott's result can not be generalized for all loops.

1	2	3	4	5	6	7	8
2	3	8	1	6	5	4	7
3	7	1	8	2	4	5	6
4	6	7	2	1	8	3	5
5	1	2	6	3	7	8	4
6	5	4	7	8	1	2	3
7	8	6	5	4	3	1	2
8	4	5	3	7	2	6	1

Loops

■ A *loop* is a nonempty set L with a binary operation \cdot such that, for every a and $b \in L$, the equations

$$a \cdot x = b$$
 and $y \cdot a = b$

have unique solution and, there exists $1 \in L$ such that

$$1 \cdot x = x \cdot 1 = x$$
, for all $x \in L$.

■ Groups are, precisely, associative loops.

Loops

■ Consider the loop L' given by the following Cayley Table:

1	2	3	4	5	6
2	3	4	5	6	1
3	1	5	6	4	2
4	5	6	1	2	3
5	6	1	2	3	4
6	4	2	3	1	5

■ L' is nonassociative $3 \cdot (3 \cdot 3) = 4$ and $(3 \cdot 3) \cdot 3 = 1$.

Properties of half-isomorphism between loops

- Let $f: L \to L'$ be a half-isomorphism and let H be a subloop of L'. Then
 - i) $f^{-1}(H)$ is a subloop of L.
 - ii) If *H* is commutative, then $f^{-1}(H)$ is commutative and $f^{-1}(H) \cong H$.
 - iii) $f(1_L) = 1_{L'}$.
 - iv) If every element of L' has a two-sided inverse, then every element of L has a two-sided inverse and $x^{-1} = f^{-1}(f(x)^{-1})$.

Properties of half-isomorphism between loops

- Let $f: L \to L'$ be a half-isomorphism and suppose that L' is power associative. Then
 - i) $f(x^n) = f(x)^n$, for every $x \in L$ and $n \in \mathbb{Z}$.
 - ii) L is power associative.
 - iii) If $x \in L$ has finite order, then o(x) = o(f(x))

Special half-isomorphism

Definition

Let L, L' be loops. A half-isomorphism $f: L \to L'$ is called special if the inverse mapping $f^{-1}: L' \to L$ is also a half-isomorphism.

Theorem

Let $f:(L,*) \to (L',\cdot)$ be a half-isomorphism. The following are equivalent:

- (i) f is special;
- (ii) $\{f(x * y), f(y * x)\} = \{f(x) \cdot f(y), f(y) \cdot f(x)\}, \text{ for all } x, y \in L;$
- (iii) For all $x, y \in L$ with x * y = y * x, we have $f(x * y) = f(x) \cdot f(y)$.

■ Let $L = C_6$ be the cyclic group of order 6 and L' be the loop of the previous example.

 $L = C_6$

1	2	3	4	5	6
2	3	4	5	6	1
3	4	5	6	1	2
4	5	6	1	2	3
5	6	1	2	3	4
6	1	2	3	4	5

1	2	3	4	5	6
2	3	4	5	6	1
3	1	5	6	4	2
4	5	6	1	2	3
5	6	1	2	3	4
6	4	2	3	1	5

■ The map $f: L \to L'$ defined by f(x) = x is a half-isomorphism which is not special.

The half-automorphism group

Proposition

Every half-automorphism of a finite loop is special.

Corollary

For a finite loop L, the set HAut(L) of all half-automorphisms of L is a group.

Loops

- \blacksquare A loop L is said to be
 - a Moufang loop if (xy)(zx) = (x(yz))x, for every x, y and $z \in L$;
 - a left Bol loop if (x(yx))z = x(y(xz)), for every x, y and $z \in L$;
 - a right Bol loop if x((yz)y) = ((xy)z)y, for every x, y and $z \in L$;
 - an automorphic loop if $Inn(L) \leq Aut(L)$.

When does Scott's result hold?

- Moufang loops of odd order Gagola and Giuliani (2012);
- Finite automorphic Moufang loops Grichkov, Giuliani, Rasskazova and Sabinina (2016);
- If Q is a Moufang loop such that Q/N(Q) is 2—divisible, then every half-isomorphism from Q is either an isomorphism or anti-isomorphism Kinyon, Stuhl and Vojtěchovský (2016);
- Automorphic loops of odd order Giuliani and dos Anjos (2023).

But...

- Conditions for the existence of proper half-automorphisms for certain Moufang loops of even order, including Chein loops Gagola and Giuliani (2013);
- Half-automorphism group for a class of automorphic loops of even order Giuliani and dos Anjos (2020);
- Half-automorphism group for some Chein loops dos Anjos (to appear)
- Half-automorphism group for some Bol loops B. and dos Anjos (2022)
- Half-automorphism group of some code loops B. and Miguel Pires (to appear)

Bol loops

■ A right Bol loop is a loop that satisfies the right Bol identity

$$x((yz)y)=((xy)z)y,$$

and a left Bol loop is a loop that satisfies the left Bol identity

$$(x(yx))z = x(y(xz)).$$

- If *L* is a Bol loop and if it has an anti-automorphism, then *L* is a Moufang loop.
- If φ is a half-automorphism of a Bol loop L that is not Moufang, then φ is either a proper half-automorphism or an automorphism of L.

Proposition (Foguel, Kinyon, Phillips)

Let G be a group, $H \le G$, and $B \subset G$ a right transversal of H in G. If B is a twisted subgroup of G, then B with the operation

$$x \cdot y = z$$
, if $xy = hz$, for some $h \in H$, (1)

is a Bol loop. Conversely, if H is core-free and (B,\cdot) is a Bol loop, then B is a twisted subgroup of G.

- Let M be an abelian group. The *generalized dihedral group of* M can be defined by $D(M) = M \cup Mr$, where $r \notin M$, $r^2 = 1$ and $rxr = x^{-1}$, for every $x \in M$.
- We have that $H = 0 \times 0 \times \{1, r\}$ is a subgroup of order 2 of the direct product $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times D(M)$.
- The set

$$B = \{(0, 0, x), (l, s, rx) \mid x \in M, l, s \in \mathbb{Z}_2, (l, s) \neq (0, 0)\}.$$

is a right transversal of H in G which contains (0,0,1), the identity of G. Also, B is a twisted subgroup of G.

■ The set $B = \{(0,0,x), (l,s,rx) | x \in M, l,s \in \mathbb{Z}_2, (l,s) \neq (0,0)\}$ is a Bol loop with the following operation

$$\begin{array}{lcl} (0,0,{\sf x})\cdot(0,0,{\sf y}) & = & (0,0,{\sf xy}), \\ (0,0,{\sf x})\cdot(l,{\sf s},{\sf ry}) & = & (l,{\sf s},{\sf rx}^{-1}{\sf y}), \\ (l,{\sf s},{\sf rx})\cdot(0,0,{\sf y}) & = & (l,{\sf s},{\sf rxy}), \\ (1,1,{\sf rx})\cdot(1,1,{\sf ry}) & = & (0,0,{\sf x}^{-1}{\sf y}), \\ (l,{\sf s},{\sf rx})\cdot(u,{\sf v},{\sf ry}) & = & (l+u,{\sf s}+{\sf v},{\sf rx}^{-1}{\sf y}). \end{array}$$

■ Let M be an abelian group. Define $L_M = \mathbb{Z}_2 \times \mathbb{Z}_2 \times M$ and consider the following operation on L_M :

$$(l,s,x)*(u,v,y) =$$

$$\begin{cases} (l,s,xy), & \text{if } u=v=0, \\ (l+u,s+v,x^{-1}y), & \text{otherwise.} \end{cases}$$

The Bol loop

Let M be a finite abelian group with exponent greater than 2 and $L_M = K \times M$, where $K = \{1, a, b, c\}$ is the Klein group. Then the set L_M with the operation

$$(1,x) * (1,y) = (1,xy)$$

 $(A,x) * (1,y) = (A,xy)$
 $(1,x) * (B,y) = (B,x^{-1}y)$
 $(A,x) * (B,y) = (AB,x^{-1}y),$

where $A, B \neq 1$, is a Bol loop which is not a Moufang loop.

Proposition

If M is an elementary abelian 2-group, then $(L_M,*)$ is also an elementary abelian 2-group. If M is not an elementary abelian 2-group, then $(L_M,*)$ is a nonassociative, noncommutative Bol loop, which is not Moufang.

■ Recall that $f: L_M \to L_M$ is a half-automorphism of L_M if f is a bijection of L_M and $f(XY) \in \{f(X)f(Y), f(Y)f(X)\}$, for every X and Y in L_M .

Proposition

Let $(1, M) = \{(1, x) \in L_M; x \in M\}$ and let f be a half-automorphism of L_M . Then f(1, M) = (1, M).

Proposition

Let f be a half-autmorphism of L_M . For every $x \in M$, consider $f''(x) \in M$ as (1, f''(x)) = f(1, x). Then $f'': M \to M$ is an automorphism of M.

- Since the set (K, 1) is a subgroup of L_M isomorphic to K, f(K, 1) is a subloop of L_M of order 4, and it is a group isomorphic to K.
- Let $\mathcal{H}_M = \{ H \leq L_M ; H \cong K, |H \cap (1, M)| = 1 \}$.

Proposition

Let f be a half-automorphism of L_M . Then $f(K, 1) \in \mathcal{H}_M$.

Proposition

```
Let H \in \mathcal{H}_{M}. There are three possibilities:

(i) H = (K, 1),

(ii) H = \{(1, 1), (A, x), (B, x), (C, 1)\}, with \{A, B, C\} = \{a, b, c\} and o(x) = 2,

(iii) H = \{(1, 1), (A, x), (B, y), (C, xy)\}, with \{A, B, C\} = \{a, b, c\} and x \neq y are elements of order equal to 2.

In particular, if M has odd order, then \mathcal{H}_{M} = \{(K, 1)\}.
```

Corollary

Let f be a half-automorphism of L_M . Then there exist a unique $f' \in Aut(K)$ and $x,y \in M$ such that $o(x),o(y) \leq 2$ and

$$f(A,1)=(f'(A), \alpha_{(X,Y)}(A))$$
, for every $A\in K$,

where
$$\alpha_{(x,y)}(1) = 1$$
, $\alpha_{(x,y)}(a) = x$, $\alpha_{(x,y)}(b) = y$ and $\alpha_{(x,y)}(c) = xy$.

Remark

The mapping $\alpha_{(\mathbf{x},\mathbf{y})}: \mathbf{K} \to \mathbf{M}$ is a homomorphism and $(1,\alpha_{(\mathbf{x},\mathbf{y})}(\mathbf{A})) \in \mathcal{Z}(\mathbf{L}_{\mathbf{M}})$, for every $\mathbf{A} \in \mathbf{K}$.

- Every element (A, x) in L_M can be written as (A, 1)(1, x);
- There are $f' \in Aut(K)$ and $u, v \in M$ such that $f(A, 1) = (f'(A), \alpha_{(u,v)}(A))$, where $o(u), o(v) \le 2$. For $A \ne 1$,

$$f({\sf A},{\sf X})=f(({\sf A},1)(1,{\sf X}))\in\{(f'({\sf A}),1)(1,f''({\sf X})),(1,f''({\sf X}))(f'({\sf A}),1)\}\text{, and so}$$
 and so

$$\textit{f}(\textit{A}, \textit{x}) \in \{(\textit{f}'(\textit{A}), \textit{f}''(\textit{x})\alpha_{(\textit{u},\textit{v})}(\textit{A})), (\textit{f}'(\textit{A}), \textit{f}''(\textit{x}^{-1})\alpha_{(\textit{u},\textit{v})}(\textit{A}))\}.$$

Then if $f' \in Aut(K)$, $f'' \in Aut(M)$ and $u, v \in M$ are elements such that $o(u), o(v) \le 2$, we define $F^+_{(f',f'',u,v)}, F^-_{(f',f'',u,v)} : L_M \to L_M$ by

$$\mathit{F}^{+}_{(\mathit{f}',\mathit{f}'',\mathit{u},\mathit{v})}(\mathit{A},\mathit{x}) = (\mathit{f}'(\mathit{A}),\mathit{f}''(\mathit{x})\alpha_{(\mathit{u},\mathit{v})}(\mathit{A})) \quad \text{and} \quad$$

$$F_{(f',f'',u,v)}^{-}(A,x) = \begin{cases} (f'(A),f''(x)\alpha_{(u,v)}(A)), & \text{if } A = 1, \\ (f'(A),f''(x^{-1})\alpha_{(u,v)}(A)), & \text{otherwise.} \end{cases}$$

For making the notation easier, we will write $f^+_{(u,v)}$ and $f^-_{(u,v)}$ instead of $F^+_{(f',f'',u,v)}$ and $F^-_{(f',f'',u,v)}$, respectively.

Proposition

 $f_{(u,v)}^+$ is an automorphism and $f_{(u,v)}^-$ is a proper half-automorphism of L_M.

Proposition

Let g be an automorphism of L_M . Then $g = g_{(u,v)}^+$.

Proposition

Let g be a proper half-automorphism of L_M . Then $g = g^-_{(u,v)}$.

Half-automorphism group of L_M

Proposition

 $Half(L_M) \cong C_2 \times Aut(L_M)$.

Half-automorphism group of L_M

Proposition

Let
$$\mathcal{A} = \{F_{(f',f'',1,1)}^+ \mid f' \in \operatorname{Aut}(K), f'' \in \operatorname{Aut}(M)\}$$
. Then $\mathcal{A} \cong \operatorname{Aut}(K) \times \operatorname{Aut}(M)$.

■ In the case that |M| is odd, then there is no element of order 2 in M.

Theorem

Let $L_M = K \times M$ be the Bol loop where K is the Klein group and M is an abelian group of odd order. Then

$$Aut(L_M) \cong S_3 \times Aut(M)$$
 and $Half(L_M) \cong C_2 \times S_3 \times Aut(M)$.

Half-automorphism group of L_M when |M| is even

- Then $M = C_{2^{i_1}} \times C_{2^{i_2}} \times ... \times C_{2^{i_s}} \times M_1$, where M_1 is an abelian group of odd order, $s \ge 1$ and $i_i \ge 1$, for all j.
- The set $H = \{x \in M \mid o(x) \le 2\}$ is a subgroup of M of exponent 2 with $|H| = 2^s$.
- Denote by I_K and I_M the identity mappings of K and M and consider $\mathcal{B} = \{F_{(I_K,I_M,x,y)}^+ \mid x,y \in H\}.$ subgroup of $Aut(L_M)$.
- Also, $|A \cap B| = 1$, and so, $|AB| = |A| \cdot |B| = 2^{2s} \cdot |Aut(K)| \cdot |Aut(M)|$

Half-automorphism group of L_M

Proposition

Let K be the Klein group, let M be an abelian group of even order and let $L_M = K \times M$ be the associated Bol loop. Then $Aut(L_M) = AB = BA$.

Proposition

Using the notation above,

- (a) $\mathcal{B} \cong \mathsf{H} \times \mathsf{H} \cong \mathsf{C}_2^{2\mathsf{s}}$,
- (b) $\mathcal{B} \triangleleft Aut(L_M)$ and
- (c) $\operatorname{Aut}(L_{\mathsf{M}})/\mathcal{B} \cong \mathcal{A}$.

Half-automorphism group of L_M

■ $Aut(L_M) \cong \mathcal{A} \overset{\sigma}{\ltimes} \mathcal{B}$.

Theorem

Let M be a finite abelian group of even order and exponent greater than 2. Write $M = C_{2^{i_1}} \times C_{2^{i_2}} \times ... \times C_{2^{i_s}} \times M_1$, where M_1 is an abelian group of odd order, $s \ge 1$ and $i_j \ge 1$, for all j. Then

$$Aut(L_M)\cong \mathcal{A}\stackrel{\sigma}{\ltimes}\mathcal{B}$$
 and $Half(L_M)\cong C_2\times (\mathcal{A}\stackrel{\sigma}{\ltimes}\mathcal{B})$,

where $A \cong S_3 \times Aut(M)$ and $B \cong C_2^{2s}$.

- Let $M = C_3$, the cyclic group of order 3. Then L_M is a nonassociative Bol loop of order 12, which is recognized by the command "RightBolLoop(12, 3)" in the library of loops of the LOOPS package.
- Since $Aut(M) = C_2$, we have that $Aut(L_M) \cong C_2 \times S_3$ and $Half(L_M) \cong C_2^2 \times S_3$
- L_M has 24 half-automorphisms, from which 12 are proper.

*	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	1	4	3	6	5	8	10	11	9	12	7
3	3	5	6	2	4	1	10	9	12	11	7	8
4	4	6	5	1	3	2	9	11	7	12	8	10
5	5	3	2	6	1	4	12	7	10	8	9	11
6	6	4	1	5	2	3	11	12	8	7	10	9
7	7	9	11	8	12	10	1	5	4	6	3	2
8	8	10	12	7	11	9	2	1	6	5	4	3
9	9	7	8	11	10	12	4	3	1	2	5	6
10	10	8	7	12	9	11	3	2	5	1	6	4
11	11	12	10	9	8	7	6	4	2	3	1	5
12	12	11	9	10	7	8	5	6	3	4	2	1

■ The automorphisms of L_M are the permutations:

■ The proper half-automorphisms of L_M are the permutations:

- Let M be the group $C_4 \times C_2$. This group is recognized by the command "SmallGroup(8,2)" in GAP. The Bol loop L_M is nonassociative and has order 32.
- Since $Aut(M) = D_8$, the dihedral group of order 8, we have that

$$Aut(L_M) \cong (S_3 \times D_8) \overset{\sigma}{\ltimes} C_2^4 \text{ and } Half(L_M) \cong C_2 \times ((S_3 \times D_8) \overset{\sigma}{\ltimes} C_2^4)$$

■ L_M has 1536 half-automorphisms, from which 768 are proper.

Obrigada pela atenção!

References

- D. A. S. de Barros, G. S. dos anjos. *Half-automorphism group of a class of Bol Loops*, Communications in Algebra, **51**(3), (2023), 1229-1241.
- G.S. dos Anjos. *Half-automorphism group of Chein loops*, to appear in Acta Sci. Math. (Szeged).
- M.L. Merlini Giuliani, G.S. dos Anjos, *Half-isomorphisms of dihedral automorphic loops*, Communications in Algebra, **48**, (2020), no. 3, 1150-1162.
- T. Foguel, M.K. Kinyon, J.D. Phillips. On twisted subgroups and Bol loops of odd order, Rocky Mountain J. Math., **36** (1), (2006), 183–212
- The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.10.1, 2019. http://www.gap-system.org

References

- G.P. Nagy, P. Vojtěchovský. LOOPS: Computing with quasigroups and loops in GAP, version 3.4.0, package for GAP, https://cs.du.edu/~petr/loops/
- S. Gagola III, M.L. Merlini Giuliani *Half-isomorphisms of Moufang loops of odd order*, Journal of Algebra and Its Applications, **11**, (2012), 194-199.
- S. Gagola III, M.L. Merlini Giuliani *On half-automorphisms of certain Moufang loops with even order*, Journal of Algebra, **386**, (2013), 131-141.
- A. Grishkov, M.L. Merlini Giuliani, M. Rasskazova, L. Sabinina Half-isomorphisms of finite Automorphic Moufang loops, Communications in Algebra, 44, (2016), 4252-4261.
- M. Kinyon, I. Stuhl, P. Vojtěchovský *Half-Isomorphisms of Moufang Loops*, Journal of Algebra, **450**, (2016), 152-161.

References

- M.L. Merlini Giuliani, G.S. dos Anjos, *Lie automorphic loops under half-automorphisms*, Journal of Algebra and Its Applications, **19**, (2020), no. 11, 2050221.
- M.L. Merlini Giuliani, P. Plaumann, L. Sabinina *Half-automorphisms of Cayley-Dickson loops*, In: Falcone, G., ed., Lie Groups, Differential Equations and Geometry. Cham: Springer (2017), 109-125.
- H.O. Pflugfelder, *Quasigroups and Loops: Introduction*, Sigma Series in Pure Math. 7, Heldermann, 1990.
- D.A. Robinson, Bol loops, Trans. Amer. Math. Soc., 123, (1966), 341–354.
- W.R. Scott Half-homomorphisms of groups, Proc. Amer. Math. Soc., 8, (1957), 1141-1144.