Enumeration of groups

(and quasigroups, semigroups, ...)

and quandles
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Semigroups
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Semigroups
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Quasigroups

(A057991)
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Groups of order 2, log, scale
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p-groups: order n = pk

[Graham Higman 1960]
e quasipolynomial: # ~ 2¢(logn)’
o H# > pz%kz(k—ﬁ)
by constructing many factors of the form FG,/(x", [x, y]?, [[x, y], z])

by counting polycyclic presentations (based on subnormal series with cyclic factors)

[Charles Sims 1965]

— 2
® =77
2 43 3
o # < p27k +o(k?) (~ % of the book)

general groups: order n = pr‘, denote K = max k;
[Laszlé Pyber 1993]

2 2
o # < n(f_i_o(l))K (~ % of the book)

The book: [Blackburn, Neumann, Venkataraman: Enumeration of finite groups].



Quandles
A binary algebra (Q, ) is called a quandle if

@ X*¥x X=X

e all left translations Ly(y) = x * y are automorphisms.

Motivation:

@ algebra (group conjugation, affine forms), geometry (symmetric
spaces), math physics (discrete solutions to the Yang-Baxter
equation), ...

@ coloring invariants of knots:

>

= by (Zs,2x — y).



From groups to quandles (examples)

A binary algebra (@, *) is called a quandle if
@ XkX =X

e all left translations Ly(y) = x * y are automorphisms.

Affine quandles: A abelian group, f € Aut(A) ~ Aff(A,f) = (A, *)

xxy =(1=F)x)+f(y)

Conjugation quandles: G group ~» Cjg(G) = (G, x) with

X%y = ny_l



From quandles to permutation groups

A binary algebra (Q, %) is called a quandle if

@ Xk X =X

@ all left translations Ly(y) = x % y are automorphisms.

(left) multiplication group: LMIt(Q) = (Lx : x € Q) < Aut(Q)
(left) displacement group: Dis(Q) = (LXL;1 x,y € Q) ILMIt(Q)

A quandle Q is called connected if LMIt(Q) acts transitively.



Quandles
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Quandles
(A181769)

[Blackburn 2013]
4 < 21.56n%+0(n?)

# > 2%n2—o(n2)

|[Ashford, Riordan 2017]
4 < b o()

# semigroups, quasigroups >> # quandles >> # groups
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Quasigroup quandles
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Connected and quasigroup quandles

1 0 1 1 3 2 5 3 8
9 10 11 0 7 9 15 12 17
9 0 21 42 34 0 65 13 27
29 17 11 0 15 73 35 13
39 26 41 9 45 0 45

1 0 1 1 3 0 5 2 8
9 1 11 0 5 9 15 0 17
7 0 21 2 34 0 62 7 27
29 8 11 0 15 9 35 0 13
39 0 41 9 36 0 45

[Etingof, Soloviev, Guralnik 2001]
(# of order p) = p —2
[McCarron / Hulpke, Vojtéchovsky, S. 2016]

(# of size 2p) = 0, except 6, 10

|[ESG / Grana / Nagy]
order p, p> = affine
quasigroup of order 2% where k < 6 or k = 7 = affine




Joyce-Blackburn representation

[Vojt&chovsky, Yang 2019]

Let G be a permutation group on a set X. There is a 1-1 correspondence
between

@ quandles on X with LMIt(Q) = G

@ quandle envelopes over G, i.e., tuples (px : x € X/G) such that
px € Z(Gy) and (Up) = G

Isomorphism theorem: G < Sx up to conjugacy, py up to .....



Joyce-Blackburn representation
[Vojtéchovsky, Yang 2019]

Let G be a permutation group on a set X. There is a 1-1 correspondence
between

@ quandles on X with LMIt(Q) = G

@ quandle envelopes over G, i.e., tuples (py : x € X/G) such that
o € Z(G,) and (UsS) = G

Isomorphism theorem: G < Sx up to conjugacy, px up to .....

It defines a group action on envelopes, but it is difficult to handle. Hence,
@ imprecise handling ~» asymptotic upper bounds [Blackburn]| [AR]
@ computer calculations with subgroups of S, ~ enumeration up to 12

@ computer calculations with transitive subgroups of S,, ~~ enumeration
of connected quandles up to 47

@ theory of transitive groups ~» theorems [ESG] [G]| [Nagy] [HSV] ...

@ separate handling of special cases ~» enumeration for 13 and more



2-reductive
quandles

medial
quandles
1 1
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Reductive quandles

[Jedlitka, Pilitowska, S., Zamojska-Dzienio 2015] [Bonatto, S. 2025]
A quandle is called n-reductive if composition of any n right translations is

a constant mapping, i.e., Ry, o...0o R, = c.

In particular, 2-reductive means (yx1)x2 = (zx1)x2.

Theorem. [BS]
A quandle is n-reductive if and only if it is strongly solvable of length < n.



Reductive quandles

[Jedli¢ka, Pilitowska, S., Zamojska-Dzienio 2015] [Bonatto, S. 2025]
A quandle is called n-reductive if composition of any n right translations is
a constant mapping, i.e., Ry, 0...0o Ry, = c.

In particular, 2-reductive means (yx1)x2 = (zx1)x2.

Theorem. [BS]
A quandle is n-reductive if and only if it is strongly solvable of length < n.

Enumeration of medial 2-reductive quandles [JPSZ]:
@ representing medial quandles as disjoint union of affine quandles
@ leads to a manageable isomorphism theorem

@ in the 2-reductive case, Burnside's orbit counting can be used

Conjecture. There are ‘very few' non-reductive quandles.

Question. Is strong solvability related to explosion in the number of
models, in some general sense?
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