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S4-algebras

An S4-algebra is a tuple A = (B,♢) such that

B is a Boolean algebra (with ∧,∨,−, 0, 1)
♢ : B → B is a unary operation satisfying the identities of a closure
operator:

▶ ♢0 = 0
▶ ♢(a ∨ b) = ♢a ∨ ♢b
▶ a ≤ ♢a
▶ ♢♢a ≤ a

We write □ := −♢−, which is an interior operator.

S4-algebras provide algebraic semantics for the modal logic S4, which is
the smallest normal modal logic in one modality ♢ containing

♢⊥ ↔ ⊥
♢(p ∨ q) ↔ ♢p ∨ ♢q

p → ♢p

♢♢p → p

Note: We will conflate formulas with terms

A |= φ means A |= (φ = 1)

A |= φ→ ψ iff A |= φ ≤ ψ
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S4-algebras

If A = (B,♢) is an S4-algebra, we write H□ = □B for the set of
□-fixpoints. In fact,

H□ is a bounded sublattice of B that forms a Heyting algebra, where

Heyting implication is given by a → b = □(−a ∨ b).

This is intimately related to the Gödel translation of intuitionistic
propositional logic (IPC) into the modal logic S4.
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Duality

From any set X , we get a Boolean algebra P(X ).

Conversely, Stone duality gives us a representation theorem:

Every Boolean algebra is representable as a subalgebra of P(X ) for
some set X .

We may identify the precise subalgebra as the clopen subsets in a
certain Stone topology on X .

The duality is implemented as follows:

From B, let X = Uf B; the map a 7→ s(a) = {x : a ∈ x} is an
embedding B ↪→ P(X ).

In fact, {s(a) : a ∈ B} is a clopen basis for a zero-dimensional
compact Hausdorff (Stone) topology on X , and B is isomorphic to
the subalgebra of clopen subets of X .
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Duality

From any relational structure (X ,R) where R is a transitive reflexive
relation (quasiorder) on X (an S4-frame), we get an S4-algebra
(P(X ),♢R) where

♢R(U) = R−1(U) = {x ∈ X : xRy for some y ∈ U}

Conversely, Jónsson–Tarski duality gives a representation theorem:

Every S4-algebra is representable as a subalgebra of (X ,R) for some
S4-frame (X ,R).

We may identify the precise subalgebra as the clopen sets of a Stone
topology on X .

The implementation is

From A = (B,♢), let X = Uf B and define xRy iff x ∩ H□ ⊆ y , the
map a 7→ s(a) = {x : a ∈ x} is an embedding A ↪→ (P(X ),R♢).

In fact, {s(a) : a ∈ B} is a clopen basis for a Stone topology on X ,
and A is isomorphic to the subalgebra of clopen subsets of X .
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Duality

The relation R♢ will turn out to be ‘compatible’ with the topology on X ,
in that it satisfies:

R(x) = {y ∈ X : xRy} is closed

R−1(U) is clopen whenever U is clopen.

A relation on a Stone space satisfying these properties is said to be
continuous.

We say that (X ,R) is a descriptive S4-frame when X is a Stone space and
R is a continuous quasiorder on X .



Duality

In the same way that Stone duality ultimately yeilds a dual categorical
equivalence between

The category Bool of Boolean algebras, with homomorphisms

The category Stone of Stone spaces (zero-dimensional compact
Hausdorff spaces), with continuous maps

We have a dual equivalence between

The category S4 of S4-algebras, with homomorphisms

The category DS4Fr of descriptive S4-frames, with continuous
p-morphisms or bounded morphisms.

A map f : (X ,R) → (X ′,R ′) is p-morphic if it preserves and reflects the
relation, e.g.

xRy implies f (x)R ′ f (y)

f (x)R ′ y ′ implies xRy for
some y with f (y) = y ′.

y y ′

x x ′

f

f

R R′



Duality

Given A = (B,♢), the dual frame or dual space of A is the descriptive
frame F = (X ,R).

Subalgebras of A correspond to quotients of F by correct partitions,
which are ‘compatible’ equivalence relations = kernels of continuous
p-morphsisms.

Quotients or homomomorphic images of B correspond to closed
generated subframes of F (subframes closed under R).

We also have dual characterizations of simplicity and subdirect
irreducibility:

x ∈ X is a root if R(x) = X , F is strongly rooted if it has an open set
of roots.

A is subdirectly irreducible iff F is strongly rooted.

A is simple iff F iff every point of X is a root (X is an R-cluster).
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Duality

For an S4-algebra A, define the depth of A to be the longest length of a
proper R-chain in F. If there is no longest length, the depth is ω.

A variety V ⊆ S4 has depth ≤ n if the depth of any algebra A ∈ V is
bounded by n. If V contains algebra of arbitrary depth, then it is of depth
ω.

Depth is controlled by the well-known identities:

P1 = ♢□q1 → □q1 Pn = ♢(□qn → ¬Pn−1) → □qn

Theorem

V |= Pn iff the depth of V is ≤ n

Theorem (Segerberg–Maksimova)

V ⊆ S4 is locally finite iff V |= Pn for some n.



Duality

The subvariety lattice of S4:

S4

... Grz.3

S4[3]
...

S4[2] Grz.3[3]

S5 Grz.3[2]

Grz.3[1]

V[n] = V + Pn, S5 = S4[1]

Grz.3[n] is the variety generated by
the chain of length n, and is the
minimal variety of depth n.

Since Grz.3 is the unique minimal
non-locally-finite subvariety of S4,
local finiteness is decidable (given
V = S4+ φ, decide if V ⊇ Grz.3)
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Monadic S4-algebras

An monadic S4-algebra or MS4-algebra is a tuple A = (B,♢, ∃) such that

B is a Boolean algebra (with ∧,∨,−, 0, 1)
♢ is an S4-operator (a closure operator)

∃ is an S5-operator (an S4-operator satisfying P1 := ∃∀a ≤ ∀a)
∃♢a ≤ ♢∃a
We write □ := −♢− and ∀ = −∃−

MS4-algebras provide semantics for the one-variable fragment of the
standard predicate-logic extension of S4 propositional logic (QS4). The
translation is, e.g.

∃♢p → ♢∃p T7−→ ∃x ♢p(x) → ♢∃x p(x)

and φ is a theorem of MS4 iff T (φ) is a theorem of QS4.
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Monadic S4-algebras

A descriptive MS4-frame is a tuple (X ,R,E ) where

X is Stone space

R is a continuous quasi-order on X

E is a continuous equivalence relation on X

RE ⊆ ER
E

E

RR

Jónsson–Tarski duality again yields a dual equivalence between

The category MS4 of MS4-algebras, with homomorphisms

The category DMS4Fr of descriptive MS4-frames with continuous
p-morphisms

▶ Such morphisms are p-morphic with respect to both R and E .

Thus every MS4-algebra (B,♢,∃) can be thought of as the algebra of
clopen subsets of (X ,R,E ), where

♢U = R−1(U) ∃U = E (U)



Monadic S4-algebras

For any A = (B,♢,∃), let

B0 = ∃B be the set of ∃-fixpoints
♢0 = ♢|B0 the restriction of ♢

Then A0 = (B0,♢0) an S4-subalgebra of (B,♢). This follows from the
fact that ∃♢ ≤ ♢∃.

Dually, for any (X ,R,E ), let

X0 = X/E

R0 defined by αR0 β iff ∀x ∈ α,∃y ∈ β, xRy .

Then (X0,R0) is a descriptive S4-frame. This follows from the fact that
RE ⊆ ER.
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Monadic S4-algebras

In an algebra A = (B,♢, ∃), define ♦ = ♢∃
In a descriptive frame F = (X ,R,E ), define Q = ER

We may act as if ♦ is an S4-operator/closure operator on B that
corresponds dually to the quasi-order Q. We have the dual operator
■ = −♦−.

This is the appropriate notion to get an analogous characterization of
simplicity and subdirect irreducibility:

A is subdirectly irreducible iff F is strongly Q-rooted

A is simple iff F every point of X is a Q-root (X is a Q-cluster).
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Monadic S4-algebras

A variety V is semisimple if every subdirectly irreducible algebra is simple.

The previous characterization yields that V ⊆ MS4 is semisimple iff any of
the following equivalent conditions hold

any Q-rooted dual frame from V is a Q-cluster

In any dual frame from V, Q is an equivalence relation

V has Q-depth 1, e.g. V |= P♦
1 := ■♦p ≤ ♦p.

Theorem

MS4S := MS4+(■♦a ≤ ♦a) is the largest semisimple subvariety of MS4.

Theorem (Bezhanishvili, M.)

MS4S is finitely approximable (generated by its finite members), and so
the logic MS4S has the finite model property and is decidable.

This generalizes the analogous situation for two well-known logics that are
actually extensions of the logic MS4S.

S4u – S4 augmented with a universal modality)

S52 – the product of the modal logic S5 with itself.
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Monadic S4-algebras

We will speak of the depth of an MS4-algebra (B,♢,∃) or a variety of
MS4-algebras always meaning the depth of the S4-reduct (B,♢) or,
equivalently, the R-depth of the dual frame.

A direct analogue of the Segerberg–Maksimova theorem does not hold;
already MS4[1] = S52 is not locally finite.

This was first noticed by Henkin, Monk and Tarski in their study of
cylindric algebras.

S52 = the variety of two-dimensional diagonal-free cylindric algebras.



Monadic S4-algebras

In S52-frames, the relations are two commuting equivalence relations
(X ,E1,E2).

Henkin–Monk–Tarski give a one-generated infinite subalgebra of the
(P(ω × ω),E1,E2) where the equivalence classes of E1 and E2 are rows
and columns.
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Monadic S4-algebras

We characterize the dual frame of this algebra, in order to give an explicit
example of an MS4-algebra and descriptive MS4-frame that is
one-generated and infinite.

...
...

...
...

...
...

. . .

. . .

. . .

. . .

. . .

. . .k1
k2

g



Monadic S4-algebras

The layers of a quasiorder can be defined as

D1 = maxX Dn+1 = max

(
X −

n⋃
i=1

Di

)

For descriptive S4-frames,

1 D1 is always closed.

2 If F is finitely generated, then every finite layer is clopen, and consists
of isolated points.

This example shows that finitely generated MS4-algebras can have limit
points of finite depth; we do not know if it remains true that the layers
themselves are clopen in this case.

We would also like to know if there is an MS4-frame whose layers only
consist of limit points.



Monadic S4-algebras

Since every proper subvariety of S52 is locally finite, and every layer of an
MS4-algebra is an S52-frame, this suggests the reasonable conjecture that
a variety of MS4-algebras is locally finite if

1 It is finite depth (necessary)

2 Every layer is locally finite as an S52-frame (“finite width”)

This conjecture fails drastically in general, but first some positive results.



Monadic S4-algebras

We give the following opaque characterization of local finiteness:

Theorem (Bezhanishvili, M.)

V ⊆ MS4 is locally finite iff

1 It is finite depth (V |= Pn for some n)

2 There is a uniform bound f : N → N such that, for every n-generated
s.i. A ∈ V, the algebra A0 is f (n)-generated as an S4-algebra.

Using this criterion, we obtain

Theorem

A variety V ⊆ MS4+ alt0k is locally finite iff it is finite depth.

This generalizes the previously known results for S4u = MS4+ alt01.
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Monadic S4-algebras

S52 is the variety of S52-algebras: tuples (B,∃1, ∃2) where the ∃i are
unrelated S5-operators.

Dually, these correspond to frames (X ,E1,E2) where the Ei are
unrelated equivalence relations.

S52 is the product of S5 with itself (= commutivity axiom)

S52 is the fusion of S5 with itself (= no axioms relating the
modalities)



Monadic S4-algebras

A characterization of local finiteness in S52 is wide-open.

Fusions do not preserve local finiteness

In general, only highly restrictive sufficient conditions are known to
guarantee a fusion to be locally finite.

Let Λ(V) denote the lattice of subvarieties of a variety V.

Theorem (Bezhanishvili, M.)

There is a translation T : Λ(S52) → Λ(MS4S[2]) that preserves and
reflects local finiteness (that is, V is locally finite iff T (V) is locally finite)

In particular, characterizing local finiteness even in MS4S[2] is as hard as
the corresponding problem for S52.
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Monadic S4-algebras

Proof in one slide

. . .

F

. . .

. . .

T (F)



Monadic S4-algebras

Some other consequences:

MS4 is the expanding relativized product (or semiproduct) of S4 and
S5 (impose left commutivity axiom ∃♢ → ♢∃).
Our construction actually extends to the full product, where one
imposes the full commutivity condition ∃♢ ↔ ♢∃.
By adding a “bottom rail” to the translation, one can ensure that the
relations R and E actually commute in the resulting frame.



Monadic S4-algebras

We also provide an example demonstrating that local finiteness of layers
(as S52-algebras) is not even sufficient for local finiteness already in
depth-3:

. . .

. . .

. . .

g
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M+S4-algebras

The following formulas are well-known in the study of intuitionistic
predicate logic

Cas := ∀x((P(x) → ∀yP(y)) → ∀yP(y)) → ∀xP(x)

K := ∀x¬¬P(x) → ¬¬∀xP(x)

Both give rise to distinct intermediate predicate logics, and Cas is strictly
weaker than K.



M+S4-algebras

Cas plays a role in extending the translations

IPC
Gödel translation−−−−−−−−−−→ Grz

splitting translation−−−−−−−−−−−→ GL

where

IPC = Intuitionistic propositional logic

Grz = S4 + grz is the Grzegorczyk logic

GL = K4 + Löb’s axiom = the logic of the Peano Arithmetic
provability predicate.



M+S4-algebras

Let

MCas = ∀((p → ∀p) → ∀p) → ∀p
▶ the monadic version of the Casari formula

MCast = ■(□(□p → ■p) → ■p) → ■p
▶ the Gödel translation of MCas
▶ (■ = □∀)

Bezhanishvili, Brantley and Ilin showed that these formulas are exactly
what is required to lift the previous translations to the monadic setting:

MIPC +MCas︸ ︷︷ ︸
M+IPC

Gödel translation−−−−−−−−−−→ MGrz +MCast︸ ︷︷ ︸
M+Grz

splitting translation−−−−−−−−−−−→ MGL

And MGL retains an arithmetical completeness theorem. (So the Casari
formula is required to obtain a faithful provability interpretation of MIPC).
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And MGL retains an arithmetical completeness theorem. (So the Casari
formula is required to obtain a faithful provability interpretation of MIPC).



M+S4-algebras

It is natural then to examine the variety M+S4 = MS4 +MCast .

Roughly, M+S4-frames do not have dirty clusters,
an E -class containing properly R-related points.

Moreover,

Theorem (M.)

In an M+S4-frame F, every layer of finite depth is E -saturated, and
hence every layer is a (refined) S52-frame.

There is a unique minimal subvariety of MS4 of depth ω.
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M+S4-algebras

Finally, the local finiteness situation already seems more under control:

Theorem (M.)

V ⊆ M+S4 is locally finite iff

1 V is of finite depth (decidable)

2 VT is locally finite – equivalently, VT ⊂ S52.

Here VT is a subvariety of S52 defined semantically from the layers of
algebras in V; work is ongoing to investigate the decidability of (2).



M+S4-algebras

Thanks!
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