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Introduction

In the summer of 2017 I lived in a cave in Yosemite National
Park.
While there I wanted to explain to my friends that I study
universal algebra.
I realized that rock-paper-scissors was a particularly simple
way to do that.
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Introduction

We will view the game of RPS as a magma A := (A, f). We let
A := {r, p, s} and define a binary operation f:A2 → A where f(x, y)
is the winning item among {x, y}.

r p s
r r p r
p p p s
s r s s
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Introduction

I also realized that I wanted to be able to play with many of
my friends at the same time.
Naturally, this led me to study the varieties generated by
hypertournament algebras.
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Talk outline

Definition of RPS and PRPS magmas
A numerical constraint relating arity and order
Regular RPS magmas
Hypertournaments
A generation result
Automorphisms and congruences of regular RPS magmas
The search for a basis of the variety generated by tournament
algebras
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Properties of RPS

The game RPS is
1 conservative,
2 essentially polyadic,
3 strongly fair, and
4 nondegenerate.

These are the properties we want for a multiplayer game, as well.
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What does a multiplayer game mean?

Suppose we have an n-ary magma A := (A, f) where
f:An → A.
The selection game for A has n players, p1, p2, . . . , pn.
Each player pi simultaneously chooses an item ai ∈ A.
The winners of the game are all players who chose
f(a1, . . . , an).
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Properties of RPS: conservativity

We say that an operation f:An → A is conservative when for
any a1, . . . , an ∈ A we have that f(a1, . . . , an) ∈ {a1, . . . , an}.
We say that A is conservative when each round has at least
one winning player.
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Properties of RPS: essential polyadicity

We say that an operation f:An → A is essentially polyadic
when there exists some g: Sb(A) → A such that for any
a1, . . . , an ∈ A we have f(a1, . . . , an) = g({a1, . . . , an}).
We say that A is essentially polyadic when a round’s winning
item is determined solely by which items were played, not
taking into account which player played which item or how
many players chose a particular item (as long at it was chosen
at least once).
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Properties of RPS: strong fairness

Let Ak denote the members of An which have k distinct
components for some k ∈ N.
We say that f is strongly fair when for all a, b ∈ A and all
k ∈ N we have

∣∣f−1(a) ∩ Ak
∣∣ = ∣∣f−1(b) ∩ Ak

∣∣.
We say that A is strongly fair when each item has the same
chance of being the winning item when exactly k distinct
items are chosen for any k ∈ N.
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Properties of RPS: nondegeneracy

We say that f is nondegenerate when |A| > n.
In the case that |A| ≤ n we have that all members of A|A|
have the same set of components.
If A is essentially polyadic with |A| ≤ n it is impossible for A
to be strongly fair unless |A| = 1.
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Variants with more items

The French version of RPS adds one more item: the well. This
game is not strongly fair but is conservative and essentially
polyadic.

r p s w
r r p r w
p p p s p
s r s s w

w w p w w
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Variants with more items

The recent variant Rock-Paper-Scissors-Spock-Lizard is
conservative, essentially polyadic, strongly fair, and nondegenerate.

r p s v l
r r p r v r
p p p s p l
s r s s v s
v v p v v l
l r l s l l
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Result for two-player games

The only “valid” RPS variants for two players use an odd number
of items.
Proposition
Let A be a selection game with n = 2 which is essentially polyadic,
strongly fair, and nondegenerate and let m := |A|. We have that
m ̸= 1 is odd. Conversely, for each odd m ̸= 1 there exists such a
selection game.

Proof.
We need m |

(m
2
)
.
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PRPS magmas

Definition (PRPS magma)
Let A := (A, f) be an n-ary magma. When A is essentially
polyadic, strongly fair, and nondegenerate we say that A is a PRPS
magma (read “pseudo-RPS magma”). When A is an n-magma of
order m ∈ N with these properties we say that A is a PRPS(m, n)
magma. We also use PRPS and PRPS(m, n) to indicate the
classes of such magmas.
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Result for multiplayer games

Theorem
Let A ∈ PRPS(m, n) and let ϖ(m) denote the least prime dividing
m. We have that n < ϖ(m). Conversely, for each pair (m, n) with
m ̸= 1 such that n < ϖ(m) there exists such a magma.

Proof.
We need m | gcd

({(m
2
)
, . . . ,

(m
n
)})

.
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RPS magmas

Definition (RPS magma)
Let A := (A, f) be an n-ary magma. When A is conservative,
essentially polyadic, strongly fair, and nondegenerate we say that A
is an RPS magma. When A is an n-magma of order m with these
properties we say that A is an RPS(m, n) magma. We also use
RPS and RPS(m, n) to indicate the classes of such magmas.

Both the original game of rock-paper-scissors and the game
rock-paper-scissors-Spock-lizard are RPS magmas. The French
variant of rock-paper-scissors is not even a PRPS magma.
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A game for three players

We now show how to construct a game for three players.
This will be a ternary RPS magma (A, f:A3 → A).
Since n = 3 in this case and we require that n < ϖ(m) we
must have that |A| ≥ 5.
Our construction will use the left-addition action of Z5 on
itself.
We will produce an operation f:Z3

5 → Z5 which is essentially
polyadic with w + f(x, y, z) = f(w + x,w + y,w + z) for any
w ∈ Z5.
Thus, we need only define f on a representative of each orbit
of

(Z5
1
)
,
(Z5

2
)
, and

(Z5
3
)

under this action of Z5.
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A game for three players

First we list the orbits of
(Z5

1
)
,
(Z5

2
)
, and

(Z5
3
)

under this action of
Z5.

0 01 02 012 013
1 12 13 123 124
2 23 24 234 230
3 34 30 340 341
4 40 41 401 402
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A game for three players

Next, we choose a representative for each orbit, say the first one in
each row of this table.

0 01 02 012 013
1 12 13 123 124
2 23 24 234 230
3 34 30 340 341
4 40 41 401 402
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A game for three players

Choose from each representative a particular element. For
example, if our representative is 013 we may choose 0 as our
special element. We also could have chosen 1 or 3, but not 2 or 4.

0 7→ 0 01 7→ 1 02 7→ 0 012 7→ 0 013 7→ 0
1 12 13 123 124
2 23 24 234 230
3 34 30 340 341
4 40 41 401 402
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A game for three players

Use the left-addition action of Z5 to extend these choices to all
members of

(Z5
1
)
,
(Z5

2
)
, and

(Z5
3
)
.

0 7→ 0 01 7→ 1 02 7→ 0 012 7→ 0 013 7→ 0
1 7→ 1 12 7→ 2 13 7→ 1 123 7→ 1 124 7→ 1
2 7→ 2 23 7→ 3 24 7→ 2 234 7→ 2 230 7→ 2
3 7→ 3 34 7→ 4 30 7→ 3 340 7→ 3 341 7→ 3
4 7→ 4 40 7→ 0 41 7→ 4 401 7→ 4 402 7→ 4
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A game for three players

We can read off a definition for the operation f:Z3
5 → Z5 from this

table. For example, we take 24 7→ 2 to indicate that

f(2, 4, 4) = f(4, 2, 4) = f(4, 4, 2) = f(4, 2, 2) = f(2, 4, 2) = f(2, 2, 4) = 2.

0 7→ 0 01 7→ 1 02 7→ 0 012 7→ 0 013 7→ 0
1 7→ 1 12 7→ 2 13 7→ 1 123 7→ 1 124 7→ 1
2 7→ 2 23 7→ 3 24 7→ 2 234 7→ 2 230 7→ 2
3 7→ 3 34 7→ 4 30 7→ 3 340 7→ 3 341 7→ 3
4 7→ 4 40 7→ 0 41 7→ 4 401 7→ 4 402 7→ 4
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A game for three players

The Cayley table for the 3-magma A := (Z5, f) obtained from this
choice of f is given below.

0 0 1 2 3 4
0 0 1 0 3 0
1 1 1 0 0 4
2 0 0 0 2 4
3 3 0 2 3 3
4 0 4 4 3 0

1 0 1 2 3 4
0 1 1 0 0 4
1 1 1 2 1 4
2 0 2 2 1 1
3 0 1 1 1 3
4 4 4 1 3 4

2 0 1 2 3 4
0 0 0 0 2 4
1 0 2 2 1 1
2 0 2 2 3 2
3 2 1 3 3 2
4 4 1 2 2 2

3 0 1 2 3 4
0 3 0 2 3 3
1 0 1 1 1 3
2 2 1 3 3 2
3 3 1 3 3 4
4 3 3 2 4 4

4 0 1 2 3 4
0 0 4 4 3 0
1 4 4 1 3 4
2 4 1 2 2 2
3 3 3 2 4 4
4 0 4 2 4 4
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α-action magmas

Definition (α-action magma)
Fix a group G, a set A, and some n < |A|. Given a regular group
action α:G → Perm(A) such that each of the k-extensions of α is
free for 1 ≤ k ≤ n let Ψk :=

{
Orb(U)

∣∣∣ U ∈
(A

k
)}

where Orb(U) is
the orbit of U under αk. Let β := {βk}1≤k≤n be a sequence of
choice functions βk: Ψk →

(A
k
)

such that βk(ψ) ∈ ψ for each
ψ ∈ Ψk. Let γ := {γk}1≤k≤n be a sequence of functions
γk: Ψk → A such that γk(ψ) ∈ βk(ψ) for each ψ ∈ Ψk. Let
g: Sb≤n(A) → A be given by g(U) := (α(s))(γk(ψ)) when
U = (αk(s))(βk(ψ)). Define f:An → A by
f(a1, . . . , an) := g({a1, . . . , an}). The α-action magma induced by
(β, γ) is A := (A, f).
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α-action magmas are RPS magmas

Theorem
Let A be an α-action magma induced by (β, γ). We have that
A ∈ RPS.

Definition (Regular RPS magma)
Let G be a nontrivial finite group and fix n < ϖ(|G|). We denote
by Gn(β, γ) the left-multiplication-action n-magma induced by
(β, γ), which we refer to as a regular RPS magma.
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Hypergraphs

Definition (Pointed hypergraph)
A pointed hypergraph S := (S, σ, g) consists of a hypergraph (S, σ)
and a map g:σ → S such that for each edge e ∈ σ we have that
g(e) ∈ e. The map g is called a pointing of (S, σ).

Definition (n-complete hypergraph)
Given a set S we denote by Sn the n-complete hypergraph whose
vertex set is S and whose edge set is

∪n
k=1

(S
k
)
.
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Hypertournaments

Definition (Hypertournament)
An n-hypertournament is a pointed hypergraph T := (T, τ, g)
where (T, τ) = Sn for some set S.

U 0 1 2 01 12 23 34 40 02 13 24 30 41
g(U) 0 1 2 1 2 3 4 0 0 1 2 3 4

U 012 123 234 340 401 013 124 230 341 402
g(U) 0 1 2 3 4 0 1 2 3 4

RPS(5, 3) example
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Hypertournament magmas

Definition (Hypertournament magma)
Given an n-hypertournament T := (T, τ, g) the hypertournament
magma obtained from T is the n-magma A := (T, f) where for
u1, . . . , un ∈ T we define

f(u1, . . . , un) := g({u1, . . . , un}).

Definition (Hypertournament magma)
A hypertournament magma is an n-magma which is conservative
and essentially polyadic.
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Tournaments

Tournaments are the n = 2 case of a hypertournament.
Hedrlín and Chvátal introduced the n = 2 case of a
hypertournament magma in 1965.
There has been a lot of work on varieties generated by
tournament magmas. See for example the survey by
Crvenković et al. (1999).
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Class containment relationships

Proposition
Let n > 1. We have that RPSn ⊊ PRPSn, RPSn ⊊ Tourn, and
neither of PRPSn and Tourn contains the other. Moreover,
RPSn = PRPSn ∩Tourn.
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A generation result

We denote by Tn the variety of algebras generated by Tourn.
This is equivalent to having

Tn = HSP(Tourn) = Mod(Id(Tourn)).

Similarly, we define Rn to be the variety of algebras generated
by RPSn.
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A generation result

Theorem
Let n > 1. We have that Tn = Rn. Moreover Tn is generated by
the class of finite regular RPSn magmas.

Proof.
Every finite hypertournament can be embedded in a finite regular
balanced hypertournament.
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A generation result

Trivially we have that Rn ≤ Tn.
Since n-hypertournament magmas are conservative we have
that Tourn |= ϵ if and only if each n-hypertournament magma
of order m models epsilon, where m is the number of variables
appearing in ϵ.
It then suffices to show that each finite n-hypertournament
magma belongs to Rn.
It would be very convenient if each finite n-hypertournament
embedded into the hypertournament associated to a finite
regular RPS magma.
This turns out to be the case.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A generation result

Note that in a regular binary RPS magma G2(β, γ) we have
that

f(e, x) = xf(x−1, e)

so exactly one of f(e, x) = e or f(x−1, e) = e holds.
Note also that the orbit of {x, y} contains

{
e, x−1y

}
and

y−1x, e, where x−1y and y−1x are inverses.
We need then only define a map λ specifying for each pair of
inverses

{
x, x−1} whether f(e, x) = e or f(e, x−1) = e in order

to specify G2(β, γ).
We can think of λ(

{
x, x−1}) as choosing the «positive

direction» with respect to x and x−1.
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A generation result

In order to do this in general we need an n-ary analogue of inverses.

Definition (Obverse k-set)
Given n > 1, a nontrivial finite group G with n < ϖ(|G|),
1 ≤ k ≤ n− 1, and U,V ∈

(G\{e}
k

)
we say that V is an obverse of U

when U = {a1, . . . , ak} and there exists some ai ∈ U such that
V = {a−1

i } ∪ { a−1
i aj | i ̸= j }. We denote by Obv(U) the set

consisting of all obverses V of U, as well as U itself.

The obverses of a set U are the nonidentity elements in the
members of Orb(U ∪ {e}) \ (U ∪ {e}) which contain e.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A generation result

In order to specify Gn(β, γ) it suffices to choose the member
{a1, . . . , ak} of each collection of obverses for which
f(e, . . . , e, a1, . . . , ak) = e.

Definition (n-sign function)
Given n > 1 and a nontrivial group G with n < ϖ(|G|) let Sgnn(G)
denote the set of all choice functions on{

Obv(U)
∣∣∣∣ (∃k ∈ {1, . . . , n − 1})

(
U ∈

(
G \ {e}

k

))}
.

We refer to a member λ ∈ Sgnn(G) as an n-sign function on G.

We then write Gn(λ) instead of Gn(β, γ).
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A generation result

Now we can give the embedding which finishes our proof that
Tn = Rn.
Consider a finite hypertournament T := (T, τ, g).
Take G :=

⊕
u∈T Zαu where n < ϖ(αu) and Zαu = ⟨u⟩.

We define an n-sign function λ ∈ Sgnn(G).
When g({u1, . . . , uk}) = u1 we define

λ(Obv({ ui − u1 | i ̸= 1 })) := { ui − u1 | i ̸= 1 }.

Any values may be chosen for other orbits.
The n-hypertournament corresponding to Gn(λ) contains a
copy of T.
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A generation result

We have now seen that the finite regular RPS n-magmas
generate Tn = V(Tourn).
In particular we need only use magmas of the form Gn(λ)
where:

1 G = Zm
κ(n) where κ(n) is the least prime strictly greater than n

or
2 G = Zα(m) where α(m) :=

∏m+ℓ−1
k=ℓ pk where pk is the kth

prime and κ(n) = pℓ.

In particular, we have that T2 is generated by regular RPS
magmas of the form (Zm

3 )2(λ).
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Automorphisms

Proposition
Let A := Gn(λ) be a regular RPS magma. There is a canonical
embedding of G into Aut(A).

Proof.
By construction.
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Exceptional automorphisms

Proposition
For each arity n ∈ N with n ̸= 1 and each group G of composite
order m ∈ N with n < ϖ(m) there exists a regular RPS(m, n)
magma A := Gn(λ) such that |Aut(A)| > |G|.

Proof.
Count the members of RPS(G, n) (there are

∏n
k=1 k 1

m(
m
k)) and

arrive at a contradiction were there no exceptional
automorphisms.
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Exceptional automorphisms

Proposition
For each arity n ∈ N and each odd prime p such that
1 ̸= n ≤ p − 2 there exists a regular RPS(p, n) magma
A := (Zp)n(λ) such that |Aut(A)| > |G|.

Proof.
Multiplication by a primitive root modulo p yields an
automorphism for an appropriate choice of λ.
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No exceptional automorphisms

Proposition
For each odd prime p and any λ ∈ Sgnp−1(Zp) we have that
Aut((Zp)p−1(λ)) ∼= Zp.

Corollary
Given an odd prime p the number of isomorphism classes of
magmas of the form (Zp)p−1(λ) is

p−1∏
k=1

k
1
p(

p
k)−1

.

For p = 3 we have 1, for p = 5 we have 6, and for p = 7 we have
2073600.
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Congruences

Theorem
Let θ ∈ Con(A) for a regular RPS(m, n) magma A := Gn(λ). Given
any a ∈ A we have that a/θ = aH for some subgroup H ≤ G.

One can show by using 2-divisibility that the principal
congruence θ := Cg({(e, a)}) has only one nontrivial class,
which is e/θ. This class contains SgG({a}).
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Congruences

Theorem
Let θ ∈ Con(A) for a regular RPS(m, n) magma A := Gn(λ). Given
any a ∈ A we have that a/θ = aH for some subgroup H ≤ G.

Any congruence θ ∈ Con(A) has for e/θ a union of cyclic
subgroups of G. Suppose that a, b ∈ e/θ and ab /∈ e/θ.
Note that θ ≥ Cg({(e, a), (e, b−1)}). Observe that

Cg({(e, a), (e, b−1)}) = b−1 Cg({(b, ba), (b, e)})
≥ b−1 Cg({(e, ba)})
≥ b−1 Cg({(e, baba)})
≥ Cg({(b−1, aba)})

so we have that e/θ contains aba.
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Congruences

Theorem
Let θ ∈ Con(A) for a regular RPS(m, n) magma A := Gn(λ). Given
any a ∈ A we have that a/θ = aH for some subgroup H ≤ G.

We have ⟨a⟩, ⟨b⟩ ⊂ e/θ and ab /∈ e/θ yet aba ∈ e/θ.
Since θ is a congruence either ab dominates everything in e/θ
(f(ab, x) = ab for all x ∈ e/θ, which we write as ab → x) or
everything in e/θ dominates ab.
In the former case, we have ab → aba so e → a.
We also have ab → e so e → b−1a−1.
This implies that b−1 → b−1a−1 and hence e → a−1, which is
impossible since e → a.
The argument in the latter case is identical.
Thus, e/θ is a subgroup of G.
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λ-convex subgroups

Definition (λ-convex subgroup)
Given a group G, an n-sign function λ ∈ Sgnn(G), and a subgroup
H ≤ G we say that H is λ-convex when there exists some a ∈ G
such that a/θ = aH for some θ ∈ Con(Gn(λ)).
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λ-convex subgroups

Proposition
Let G be a finite group of order m and let n < ϖ(m). Take
λ ∈ Sgnn(G) and H ≤ G. The following are equivalent:

1 The subgroup H is λ-convex.
2 There exists a congruence ψ ∈ Con(Gn(λ)) such that

e/ψ = H.
3 Given 1 ≤ k ≤ n − 1 and b1, . . . , bk /∈ H either

e → {b1h1, . . . , bkhk} for every choice of h1, . . . , hk ∈ H or
{b1h1, . . . , bkhk} → e for every choice of h1, . . . , hk ∈ H.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

λ-convex subgroups

Theorem
Suppose that H,K ≤ G are both λ-convex. We have that H ≤ K
or K ≤ H.
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λ-coset poset

Definition (λ-coset poset)
Given λ ∈ Sgnn(G) set

Pλ := { aH | a ∈ G and H is λ-convex }

and define the λ-coset poset to be Pλ := (Pλ,⊂).
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Lattices of maximal antichains

Dilworth showed that the maximal antichains of a finite poset
form a distributive lattice.
Freese (1974) gives a succinct treatment of this.
Given a finite poset P := (P,≤) let L(P) be the lattice whose
elements are maximal antichains in P where if U,V ∈ L(P)
then we say that U ≤ V in L(P) when for every u ∈ U there
exists some v ∈ V such that u ≤ v in P.

Theorem
We have that Con(Gn(λ)) ∼= L(Pλ).
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The search for a basis

By the year 2000 Ježek, Marković, Maróti, and McKenzie had
shown that T2 was not finitely based.
To this author’s knowledge no equational base for T2 has ever
been described (aside from trivialities like taking Id(Tour2)).
Recall that an identity ϵ in m variables holds in T2 if and only
if it holds in each tournament magma of order m.
We can use our generation result to see that T2 |= ϵ if and
only if ϵ holds in each regular RPS2 magma of the form
(Zm

3 )2(λ).
These magmas are much larger than tournaments of order m,
but we may have a better chance of understanding their
structure and hence their equational theories.
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Thank you.


