Multiplayer rock-paper-scissors

Charlotte Aten

University of Rochester

$$
2021 \text { January } 19
$$

Introduction

■ In the summer of 2017 I lived in a cave in Yosemite National Park.
■ While there I wanted to explain to my friends that I study universal algebra.

- I realized that rock-paper-scissors was a particularly simple way to do that.

Introduction

We will view the game of RPS as a magma $\mathbf{A}:=(A, f)$. We let $A:=\{r, p, s\}$ and define a binary operation $f: A^{2} \rightarrow A$ where $f(x, y)$ is the winning item among $\{x, y\}$.

	r	p	s
r	r	p	r
p	p	p	s
s	r	s	s

Introduction

■ I also realized that I wanted to be able to play with many of my friends at the same time.
■ Naturally, this led me to study the varieties generated by hypertournament algebras.

Talk outline

- Definition of RPS and PRPS magmas
- A numerical constraint relating arity and order
- Regular RPS magmas

■ Hypertournaments

- A generation result
- Automorphisms and congruences of regular RPS magmas
- The search for a basis of the variety generated by tournament algebras

Properties of RPS

The game RPS is
1 conservative,
2 essentially polyadic,
3 strongly fair, and
4 nondegenerate.
These are the properties we want for a multiplayer game, as well.

What does a multiplayer game mean?

■ Suppose we have an n-ary magma $\mathbf{A}:=(A, f)$ where $f: A^{n} \rightarrow A$.

- The selection game for \mathbf{A} has n players, $p_{1}, p_{2}, \ldots, p_{n}$.
- Each player p_{i} simultaneously chooses an item $a_{i} \in A$.
- The winners of the game are all players who chose $f\left(a_{1}, \ldots, a_{n}\right)$.

Properties of RPS: conservativity

■ We say that an operation $f: A^{n} \rightarrow A$ is conservative when for any $a_{1}, \ldots, a_{n} \in A$ we have that $f\left(a_{1}, \ldots, a_{n}\right) \in\left\{a_{1}, \ldots, a_{n}\right\}$.
■ We say that \mathbf{A} is conservative when each round has at least one winning player.

Properties of RPS: essential polyadicity

■ We say that an operation $f: A^{n} \rightarrow A$ is essentially polyadic when there exists some $g: \operatorname{Sb}(A) \rightarrow A$ such that for any $a_{1}, \ldots, a_{n} \in A$ we have $f\left(a_{1}, \ldots, a_{n}\right)=g\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$.
■ We say that \mathbf{A} is essentially polyadic when a round's winning item is determined solely by which items were played, not taking into account which player played which item or how many players chose a particular item (as long at it was chosen at least once).

Properties of RPS: strong fairness

■ Let A_{k} denote the members of A^{n} which have k distinct components for some $k \in \mathbb{N}$.

- We say that f is strongly fair when for all $a, b \in A$ and all $k \in \mathbb{N}$ we have $\left|f^{-1}(a) \cap A_{k}\right|=\left|f^{-1}(b) \cap A_{k}\right|$.
- We say that \mathbf{A} is strongly fair when each item has the same chance of being the winning item when exactly k distinct items are chosen for any $k \in \mathbb{N}$.

Properties of RPS: nondegeneracy

■ We say that f is nondegenerate when $|A|>n$.
■ In the case that $|A| \leq n$ we have that all members of $A_{|A|}$ have the same set of components.

- If \mathbf{A} is essentially polyadic with $|A| \leq n$ it is impossible for \mathbf{A} to be strongly fair unless $|A|=1$.

Variants with more items

The French version of RPS adds one more item: the well. This game is not strongly fair but is conservative and essentially polyadic.

	r	p	s	w
r	r	p	r	w
p	p	p	s	p
s	r	s	s	w
w	w	p	w	w

Variants with more items

The recent variant Rock-Paper-Scissors-Spock-Lizard is conservative, essentially polyadic, strongly fair, and nondegenerate.

	r	p	s	v	I
r	r	p	r	v	r
p	p	p	s	p	I
s	r	s	s	v	s
v	v	p	v	v	I
I	r	I	s	I	I

Result for two-player games

The only "valid" RPS variants for two players use an odd number of items.

Proposition

Let \mathbf{A} be a selection game with $n=2$ which is essentially polyadic, strongly fair, and nondegenerate and let $m:=|A|$. We have that $m \neq 1$ is odd. Conversely, for each odd $m \neq 1$ there exists such a selection game.

Proof.

We need $m \left\lvert\,\binom{ m}{2}\right.$.

PRPS magmas

Definition (PRPS magma)

Let $\mathbf{A}:=(A, f)$ be an n-ary magma. When \mathbf{A} is essentially polyadic, strongly fair, and nondegenerate we say that \mathbf{A} is a PRPS magma (read "pseudo-RPS magma"). When \mathbf{A} is an n-magma of order $m \in \mathbb{N}$ with these properties we say that \mathbf{A} is a $\operatorname{PRPS}(m, n)$ magma. We also use PRPS and $\operatorname{PRPS}(m, n)$ to indicate the classes of such magmas.

Result for multiplayer games

Theorem

Let $\mathbf{A} \in \operatorname{PRPS}(m, n)$ and let $\varpi(m)$ denote the least prime dividing m. We have that $n<\varpi(m)$. Conversely, for each pair (m, n) with $m \neq 1$ such that $n<\varpi(m)$ there exists such a magma.

Proof.

We need $m \left\lvert\, \operatorname{gcd}\left(\left\{\binom{m}{2}, \ldots,\binom{m}{n}\right\}\right)\right.$.

RPS magmas

Definition (RPS magma)

Let $\mathbf{A}:=(A, f)$ be an n-ary magma. When \mathbf{A} is conservative, essentially polyadic, strongly fair, and nondegenerate we say that \mathbf{A} is an RPS magma. When \mathbf{A} is an n-magma of order m with these properties we say that \mathbf{A} is an $\operatorname{RPS}(m, n)$ magma. We also use RPS and $\operatorname{RPS}(m, n)$ to indicate the classes of such magmas.

Both the original game of rock-paper-scissors and the game rock-paper-scissors-Spock-lizard are RPS magmas. The French variant of rock-paper-scissors is not even a PRPS magma.

A game for three players

- We now show how to construct a game for three players.
- This will be a ternary RPS magma $\left(A, f: A^{3} \rightarrow A\right)$.
- Since $n=3$ in this case and we require that $n<\varpi(m)$ we must have that $|A| \geq 5$.
■ Our construction will use the left-addition action of \mathbb{Z}_{5} on itself.
- We will produce an operation $f: \mathbb{Z}_{5}^{3} \rightarrow \mathbb{Z}_{5}$ which is essentially polyadic with $w+f(x, y, z)=f(w+x, w+y, w+z)$ for any $w \in \mathbb{Z}_{5}$.
- Thus, we need only define f on a representative of each orbit of $\binom{\mathbb{Z}_{5}}{1},\binom{\mathbb{Z}_{5}}{2}$, and $\binom{\mathbb{Z}_{5}}{3}$ under this action of \mathbb{Z}_{5}.

A game for three players

First we list the orbits of $\binom{\mathbb{Z}_{5}}{1}$, $\binom{\mathbb{Z}_{5}}{2}$, and $\binom{\mathbb{Z}_{5}}{3}$ under this action of \mathbb{Z}_{5}.

0	01	02	012	013
1	12	13	123	124
2	23	24	234	230
3	34	30	340	341
4	40	41	401	402

A game for three players

Next, we choose a representative for each orbit, say the first one in each row of this table.

0	01	02	012	013
1	12	13	123	124
2	23	24	234	230
3	34	30	340	341
4	40	41	401	402

A game for three players

Choose from each representative a particular element. For example, if our representative is 013 we may choose 0 as our special element. We also could have chosen 1 or 3 , but not 2 or 4 .

$0 \mapsto 0$	$01 \mapsto 1$	$02 \mapsto 0$	$012 \mapsto 0$	$013 \mapsto 0$
1	12	13	123	124
2	23	24	234	230
3	34	30	340	341
4	40	41	401	402

A game for three players

Use the left-addition action of \mathbb{Z}_{5} to extend these choices to all members of $\binom{\mathbb{Z}_{5}}{1},\binom{\mathbb{Z}_{5}}{2}$, and $\binom{\mathbb{Z}_{5}}{3}$.

$$
\begin{array}{l|l|l|l|l}
0 \mapsto 0 & 01 \mapsto 1 & 02 \mapsto 0 & 012 \mapsto 0 & 013 \mapsto 0 \\
1 \mapsto 1 & 12 \mapsto 2 & 13 \mapsto 1 & 123 \mapsto 1 & 124 \mapsto 1 \\
2 \mapsto 2 & 23 \mapsto 3 & 24 \mapsto 2 & 234 \mapsto 2 & 230 \mapsto 2 \\
3 \mapsto 3 & 34 \mapsto 4 & 30 \mapsto 3 & 340 \mapsto 3 & 341 \mapsto 3 \\
4 \mapsto 4 & 40 \mapsto 0 & 41 \mapsto 4 & 401 \mapsto 4 & 402 \mapsto 4
\end{array}
$$

A game for three players

We can read off a definition for the operation $f: \mathbb{Z}_{5}^{3} \rightarrow \mathbb{Z}_{5}$ from this table. For example, we take $24 \mapsto 2$ to indicate that

$$
\begin{aligned}
& f(2,4,4)=f(4,2,4)=f(4,4,2)=f(4,2,2)=f(2,4,2)=f(2,2,4)=2 . \\
& \begin{array}{l|l|l|l|l}
0 \mapsto 0 & 01 \mapsto 1 & 02 \mapsto 0 & 012 \mapsto 0 & 013 \mapsto 0 \\
1 \mapsto 1 & 12 \mapsto 2 & 13 \mapsto 1 & 123 \mapsto 1 & 124 \mapsto 1 \\
2 \mapsto 2 & 23 \mapsto 3 & 24 \mapsto 2 & 234 \mapsto 2 & 230 \mapsto 2 \\
3 \mapsto 3 & 34 \mapsto 4 & 30 \mapsto 3 & 340 \mapsto 3 & 341 \mapsto 3 \\
4 \mapsto 4 & 40 \mapsto 0 & 41 \mapsto 4 & 401 \mapsto 4 & 402 \mapsto 4
\end{array}
\end{aligned}
$$

A game for three players

The Cayley table for the 3-magma $\mathbf{A}:=\left(\mathbb{Z}_{5}, f\right)$ obtained from this choice of f is given below.

| 0 | 0 | 1 | 2 | 3 | 4 | 1 | 0 | 1 | 2 | 3 | 4 | 2 | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 2 | 4 |
| 1 | 1 | 1 | 0 | 0 | 4 | 1 | 1 | 1 | 2 | 1 | 4 | 1 | 0 | 2 | 2 | 1 | 1 |
| 2 | 0 | 0 | 0 | 2 | 4 | 2 | 0 | 2 | 2 | 1 | 1 | 2 | 0 | 2 | 2 | 3 | 2 |
| 3 | 3 | 0 | 2 | 3 | 3 | 3 | 0 | 1 | 1 | 1 | 3 | 3 | 2 | 1 | 3 | 3 | 2 |
| 4 | 0 | 4 | 4 | 3 | 0 | 4 | 4 | 4 | 1 | 3 | 4 | 4 | 4 | 1 | 2 | 2 | 2 |

3	0	1	2	3	4	4	0	1	2	3	4
0	3	0	2	3	3	0	0	4	4	3	0
1	0	1	1	1	3	1	4	4	1	3	4
2	2	1	3	3	2	2	4	1	2	2	2
3	3	1	3	3	4	3	3	3	2	4	4
4	3	3	2	4	4	4	0	4	2	4	4

α-action magmas

Definition (α-action magma)

Fix a group G, a set A, and some $n<|A|$. Given a regular group action $\alpha: \mathbf{G} \rightarrow \operatorname{Perm}(A)$ such that each of the k-extensions of α is free for $1 \leq k \leq n$ let $\Psi_{k}:=\left\{\operatorname{Orb}(U) \left\lvert\, U \in\binom{A}{k}\right.\right\}$ where $\operatorname{Orb}(U)$ is the orbit of U under α_{k}. Let $\beta:=\left\{\beta_{k}\right\}_{1 \leq k \leq n}$ be a sequence of choice functions $\beta_{k}: \Psi_{k} \rightarrow\binom{A}{k}$ such that $\beta_{k}(\psi) \in \psi$ for each $\psi \in \Psi_{k}$. Let $\gamma:=\left\{\gamma_{k}\right\}_{1 \leq k \leq n}$ be a sequence of functions $\gamma_{k}: \Psi_{k} \rightarrow A$ such that $\gamma_{k}(\bar{\psi}) \in \beta_{k}(\psi)$ for each $\psi \in \Psi_{k}$. Let g : $\mathrm{Sb}_{\leq n}(A) \rightarrow A$ be given by $g(U):=(\alpha(s))\left(\gamma_{k}(\psi)\right)$ when $U=\left(\alpha_{k}(s)\right)\left(\beta_{k}(\psi)\right)$. Define $f: A^{n} \rightarrow A$ by $f\left(a_{1}, \ldots, a_{n}\right):=g\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$. The α-action magma induced by (β, γ) is $\mathbf{A}:=(A, f)$.

α-action magmas are RPS magmas

Theorem

Let A be an α-action magma induced by (β, γ). We have that $\mathbf{A} \in \mathrm{RPS}$.

Definition (Regular RPS magma)

Let \mathbf{G} be a nontrivial finite group and fix $n<\varpi(|G|)$. We denote by $\mathbf{G}_{n}(\beta, \gamma)$ the left-multiplication-action n-magma induced by (β, γ), which we refer to as a regular RPS magma.

Hypergraphs

Definition (Pointed hypergraph)

A pointed hypergraph $\mathbf{S}:=(S, \sigma, g)$ consists of a hypergraph (S, σ) and a map $g: \sigma \rightarrow S$ such that for each edge $e \in \sigma$ we have that $g(e) \in e$. The map g is called a pointing of (S, σ).

Definition (n-complete hypergraph)
Given a set S we denote by \mathbf{S}_{n} the n-complete hypergraph whose vertex set is S and whose edge set is $\bigcup_{k=1}^{n}\binom{S}{k}$.

Hypertournaments

Definition (Hypertournament)

An n-hypertournament is a pointed hypergraph $\mathbf{T}:=(T, \tau, g)$ where $(T, \tau)=\mathbf{S}_{n}$ for some set S.

U	0	1	2	01	12	23	34	40	02	13	24	30	41
$g(U)$	0	1	2	1	2	3	4	0	0	1	2	3	4

U	012	123	234	340	401	013	124	230	341	402
$g(U)$	0	1	2	3	4	0	1	2	3	4

$\operatorname{RPS}(5,3)$ example

Hypertournament magmas

Definition (Hypertournament magma)

Given an n-hypertournament $\mathbf{T}:=(T, \tau, g)$ the hypertournament magma obtained from \mathbf{T} is the n-magma $\mathbf{A}:=(T, f)$ where for $u_{1}, \ldots, u_{n} \in T$ we define

$$
f\left(u_{1}, \ldots, u_{n}\right):=g\left(\left\{u_{1}, \ldots, u_{n}\right\}\right)
$$

Definition (Hypertournament magma)

A hypertournament magma is an n-magma which is conservative and essentially polyadic.

Tournaments

- Tournaments are the $n=2$ case of a hypertournament.
- Hedrlín and Chvátal introduced the $n=2$ case of a hypertournament magma in 1965.
- There has been a lot of work on varieties generated by tournament magmas. See for example the survey by Crvenković et al. (1999).

Class containment relationships

Proposition

Let $n>1$. We have that $\mathrm{RPS}_{n} \subsetneq \mathrm{PRPS}_{n}, \mathrm{RPS}_{n} \subsetneq$ Tour $_{n}$, and neither of PRPS_{n} and Tour ${ }_{n}$ contains the other. Moreover, $\mathrm{RPS}_{n}=\mathrm{PRPS}_{n} \cap$ Tour $_{n}$.

A generation result

■ We denote by \mathcal{T}_{n} the variety of algebras generated by Tour $_{n}$.

- This is equivalent to having

$$
\mathcal{T}_{n}=\operatorname{HSP}\left(\operatorname{Tour}_{n}\right)=\operatorname{Mod}\left(\operatorname{Id}\left(\operatorname{Tour}_{n}\right)\right)
$$

- Similarly, we define \mathcal{R}_{n} to be the variety of algebras generated by RPS_{n}.

A generation result

Theorem

Let $n>1$. We have that $\mathcal{T}_{n}=\mathcal{R}_{n}$. Moreover \mathcal{T}_{n} is generated by the class of finite regular RPS_{n} magmas.

Proof.

Every finite hypertournament can be embedded in a finite regular balanced hypertournament.

A generation result

■ Trivially we have that $\mathcal{R}_{n} \leq \mathcal{T}_{n}$.

- Since n-hypertournament magmas are conservative we have that $\operatorname{Tour}_{n}=\epsilon$ if and only if each n-hypertournament magma of order m models epsilon, where m is the number of variables appearing in ϵ.
- It then suffices to show that each finite n-hypertournament magma belongs to \mathcal{R}_{n}.
- It would be very convenient if each finite n-hypertournament embedded into the hypertournament associated to a finite regular RPS magma.
- This turns out to be the case.

A generation result

■ Note that in a regular binary RPS magma $\mathbf{G}_{2}(\beta, \gamma)$ we have that

$$
f(e, x)=x f\left(x^{-1}, e\right)
$$

so exactly one of $f(e, x)=e$ or $f\left(x^{-1}, e\right)=e$ holds.

- Note also that the orbit of $\{x, y\}$ contains $\left\{e, x^{-1} y\right\}$ and $y^{-1} x, e$, where $x^{-1} y$ and $y^{-1} x$ are inverses.
■ We need then only define a map λ specifying for each pair of inverses $\left\{x, x^{-1}\right\}$ whether $f(e, x)=e$ or $f\left(e, x^{-1}\right)=e$ in order to specify $\mathbf{G}_{2}(\beta, \gamma)$.
- We can think of $\lambda\left(\left\{x, x^{-1}\right\}\right)$ as choosing the «positive direction» with respect to x and x^{-1}.

A generation result

In order to do this in general we need an n-ary analogue of inverses.

Definition (Obverse k-set)

Given $n>1$, a nontrivial finite group \mathbf{G} with $n<\varpi(|G|)$, $1 \leq k \leq n-1$, and $U, V \in\binom{G \backslash\{e\}}{k}$ we say that V is an obverse of U when $U=\left\{a_{1}, \ldots, a_{k}\right\}$ and there exists some $a_{i} \in U$ such that $V=\left\{a_{i}^{-1}\right\} \cup\left\{a_{i}^{-1} a_{j} \mid i \neq j\right\}$. We denote by $\operatorname{Obv}(U)$ the set consisting of all obverses V of U, as well as U itself.

The obverses of a set U are the nonidentity elements in the members of $\operatorname{Orb}(U \cup\{e\}) \backslash(U \cup\{e\})$ which contain e.

A generation result

In order to specify $\mathbf{G}_{n}(\beta, \gamma)$ it suffices to choose the member $\left\{a_{1}, \ldots, a_{k}\right\}$ of each collection of obverses for which
$f\left(e, \ldots, e, a_{1}, \ldots, a_{k}\right)=e$.

Definition (n-sign function)

Given $n>1$ and a nontrivial group \mathbf{G} with $n<\varpi(|G|)$ let $\operatorname{Sgn}_{n}(\mathbf{G})$ denote the set of all choice functions on

$$
\left\{\operatorname{Obv}(U) \left\lvert\,(\exists k \in\{1, \ldots, n-1\})\left(U \in\binom{G \backslash\{e\}}{k}\right)\right.\right\}
$$

We refer to a member $\lambda \in \operatorname{Sgn}_{n}(\mathbf{G})$ as an n-sign function on \mathbf{G}.
We then write $\mathbf{G}_{n}(\lambda)$ instead of $\mathbf{G}_{n}(\beta, \gamma)$.

A generation result

■ Now we can give the embedding which finishes our proof that $\mathcal{T}_{n}=\mathcal{R}_{n}$.

- Consider a finite hypertournament $\mathbf{T}:=(T, \tau, g)$.

■ Take $\mathbf{G}:=\bigoplus_{u \in T} \mathbb{Z}_{\alpha_{u}}$ where $n<\varpi\left(\alpha_{u}\right)$ and $\mathbb{Z}_{\alpha_{u}}=\langle u\rangle$.
■ We define an n-sign function $\lambda \in \operatorname{Sgn}_{n}(\mathbf{G})$.
■ When $g\left(\left\{u_{1}, \ldots, u_{k}\right\}\right)=u_{1}$ we define

$$
\lambda\left(\operatorname{Obv}\left(\left\{u_{i}-u_{1} \mid i \neq 1\right\}\right)\right):=\left\{u_{i}-u_{1} \mid i \neq 1\right\} .
$$

- Any values may be chosen for other orbits.
- The n-hypertournament corresponding to $\mathbf{G}_{n}(\lambda)$ contains a copy of \mathbf{T}.

A generation result

- We have now seen that the finite regular RPS n-magmas generate $\mathcal{T}_{n}=\mathbf{V}\left(\right.$ Tour $\left._{n}\right)$.
■ In particular we need only use magmas of the form $\mathbf{G}_{n}(\lambda)$ where:
$1 \mathbf{G}=\mathbb{Z}_{\kappa(n)}^{m}$ where $\kappa(n)$ is the least prime strictly greater than n or
$2 \mathbf{G}=\mathbb{Z}_{\alpha(m)}$ where $\alpha(m):=\prod_{k=\ell}^{m+\ell-1} p_{k}$ where p_{k} is the $k^{\text {th }}$ prime and $\kappa(n)=p_{\ell}$.
- In particular, we have that \mathcal{T}_{2} is generated by regular RPS magmas of the form $\left(\mathbb{Z}_{3}^{m}\right)_{2}(\lambda)$.

Automorphisms

Proposition

Let $\mathbf{A}:=\mathbf{G}_{n}(\lambda)$ be a regular RPS magma. There is a canonical embedding of \mathbf{G} into $\operatorname{Aut}(\mathbf{A})$.

Proof.

By construction.

Exceptional automorphisms

Proposition

For each arity $n \in \mathbb{N}$ with $n \neq 1$ and each group \mathbf{G} of composite order $m \in \mathbb{N}$ with $n<\varpi(m)$ there exists a regular $\operatorname{RPS}(m, n)$ magma $\mathbf{A}:=\mathbf{G}_{n}(\lambda)$ such that $|\mathbf{A u t}(\mathbf{A})|>|\mathbf{G}|$.

Proof.

Count the members of $\operatorname{RPS}(\mathbf{G}, n)$ (there are $\left.\prod_{k=1}^{n} k^{\frac{1}{m}\binom{m}{k}}\right)$ and arrive at a contradiction were there no exceptional automorphisms.

Exceptional automorphisms

Proposition

For each arity $n \in \mathbb{N}$ and each odd prime p such that $1 \neq n \leq p-2$ there exists a regular $\operatorname{RPS}(p, n)$ magma $\mathbf{A}:=\left(\mathbb{Z}_{p}\right)_{n}(\lambda)$ such that $|\mathbf{A u t}(\mathbf{A})|>|\mathbf{G}|$.

Proof.

Multiplication by a primitive root modulo p yields an automorphism for an appropriate choice of λ.

No exceptional automorphisms

Proposition

For each odd prime p and any $\lambda \in \operatorname{Sgn}_{p-1}\left(\mathbb{Z}_{p}\right)$ we have that $\boldsymbol{\operatorname { A u t }}\left(\left(\mathbb{Z}_{p}\right)_{p-1}(\lambda)\right) \cong \mathbb{Z}_{p}$.

Corollary

Given an odd prime p the number of isomorphism classes of magmas of the form $\left(\mathbb{Z}_{p}\right)_{p-1}(\lambda)$ is

$$
\prod_{k=1}^{p-1} k^{\frac{1}{p}\binom{p}{k}-1}
$$

For $p=3$ we have 1 , for $p=5$ we have 6 , and for $p=7$ we have 2073600.

Congruences

Theorem

Let $\theta \in \operatorname{Con}(\mathbf{A})$ for a regular $\operatorname{RPS}(m, n)$ magma $\mathbf{A}:=\mathbf{G}_{n}(\lambda)$. Given any $a \in A$ we have that $a / \theta=a H$ for some subgroup $\mathbf{H} \leq \mathbf{G}$.

- One can show by using 2-divisibility that the principal congruence $\theta:=\operatorname{Cg}(\{(e, a)\})$ has only one nontrivial class, which is e / θ. This class contains $\mathrm{Sg}^{\mathrm{G}}(\{a\})$.

Congruences

Theorem

Let $\theta \in \operatorname{Con}(\mathbf{A})$ for a regular $\operatorname{RPS}(m, n)$ magma $\mathbf{A}:=\mathbf{G}_{n}(\lambda)$. Given any $a \in A$ we have that $a / \theta=a H$ for some subgroup $\mathbf{H} \leq \mathbf{G}$.

- Any congruence $\theta \in \operatorname{Con}(\mathbf{A})$ has for e / θ a union of cyclic subgroups of \mathbf{G}. Suppose that $a, b \in e / \theta$ and $a b \notin e / \theta$.
- Note that $\theta \geq \operatorname{Cg}\left(\left\{(e, a),\left(e, b^{-1}\right)\right\}\right)$. Observe that

$$
\begin{aligned}
\operatorname{Cg}\left(\left\{(e, a),\left(e, b^{-1}\right)\right\}\right) & =b^{-1} \operatorname{Cg}(\{(b, b a),(b, e)\}) \\
& \geq b^{-1} \operatorname{Cg}(\{(e, b a)\}) \\
& \geq b^{-1} \operatorname{Cg}(\{(e, b a b a)\}) \\
& \geq \operatorname{Cg}\left(\left\{\left(b^{-1}, a b a\right)\right\}\right)
\end{aligned}
$$

so we have that e / θ contains aba.

Congruences

Theorem

Let $\theta \in \operatorname{Con}(\mathbf{A})$ for a regular $\operatorname{RPS}(m, n)$ magma $\mathbf{A}:=\mathbf{G}_{n}(\lambda)$. Given any $a \in A$ we have that $a / \theta=a H$ for some subgroup $\mathbf{H} \leq \mathbf{G}$.

- We have $\langle a\rangle,\langle b\rangle \subset e / \theta$ and $a b \notin e / \theta$ yet $a b a \in e / \theta$.
- Since θ is a congruence either $a b$ dominates everything in e / θ $(f(a b, x)=a b$ for all $x \in e / \theta$, which we write as $a b \rightarrow x$) or everything in e / θ dominates $a b$.
■ In the former case, we have $a b \rightarrow a b a$ so $e \rightarrow a$.
- We also have $a b \rightarrow e$ so $e \rightarrow b^{-1} a^{-1}$.
- This implies that $b^{-1} \rightarrow b^{-1} a^{-1}$ and hence $e \rightarrow a^{-1}$, which is impossible since $e \rightarrow a$.
- The argument in the latter case is identical.

■ Thus, e / θ is a subgroup of \mathbf{G}.

λ-convex subgroups

Definition (λ-convex subgroup)

Given a group \mathbf{G}, an n-sign function $\lambda \in \operatorname{Sgn}_{n}(\mathbf{G})$, and a subgroup $\mathbf{H} \leq \mathbf{G}$ we say that \mathbf{H} is λ-convex when there exists some $a \in G$ such that $a / \theta=a H$ for some $\theta \in \operatorname{Con}\left(\mathbf{G}_{n}(\lambda)\right)$.

λ-convex subgroups

Proposition

Let \mathbf{G} be a finite group of order m and let $n<\varpi(m)$. Take $\lambda \in \operatorname{Sgn}_{n}(\mathbf{G})$ and $\mathbf{H} \leq \mathbf{G}$. The following are equivalent:
1 The subgroup \mathbf{H} is λ-convex.
2 There exists a congruence $\psi \in \operatorname{Con}\left(\mathbf{G}_{n}(\lambda)\right)$ such that $e / \psi=H$.
3 Given $1 \leq k \leq n-1$ and $b_{1}, \ldots, b_{k} \notin H$ either $e \rightarrow\left\{b_{1} h_{1}, \ldots, b_{k} h_{k}\right\}$ for every choice of $h_{1}, \ldots, h_{k} \in H$ or $\left\{b_{1} h_{1}, \ldots, b_{k} h_{k}\right\} \rightarrow e$ for every choice of $h_{1}, \ldots, h_{k} \in H$.

λ-convex subgroups

Theorem
Suppose that $\mathbf{H}, \mathbf{K} \leq \mathbf{G}$ are both λ-convex. We have that $\mathbf{H} \leq \mathbf{K}$ or $\mathbf{K} \leq \mathbf{H}$.

λ-coset poset

Definition (λ-coset poset)

Given $\lambda \in \operatorname{Sgn}_{n}(\mathbf{G})$ set

$$
P_{\lambda}:=\{a H \mid a \in G \text { and } \mathbf{H} \text { is } \lambda \text {-convex }\}
$$

and define the λ-coset poset to be $\mathbf{P}_{\lambda}:=\left(P_{\lambda}, \subset\right)$.

Lattices of maximal antichains

- Dilworth showed that the maximal antichains of a finite poset form a distributive lattice.
- Freese (1974) gives a succinct treatment of this.
- Given a finite poset $\mathbf{P}:=(P, \leq)$ let $\mathbf{L}(\mathbf{P})$ be the lattice whose elements are maximal antichains in \mathbf{P} where if $U, V \in L(\mathbf{P})$ then we say that $U \leq V$ in $\mathbf{L}(\mathbf{P})$ when for every $u \in U$ there exists some $v \in V$ such that $u \leq v$ in \mathbf{P}.

Theorem

We have that $\operatorname{Con}\left(\mathbf{G}_{n}(\lambda)\right) \cong \mathbf{L}\left(\mathbf{P}_{\lambda}\right)$.

The search for a basis

■ By the year 2000 Ježek, Marković, Maróti, and McKenzie had shown that \mathcal{T}_{2} was not finitely based.

- To this author's knowledge no equational base for \mathcal{T}_{2} has ever been described (aside from trivialities like taking $\operatorname{ld}\left(\right.$ Tour $\left._{2}\right)$).
- Recall that an identity ϵ in m variables holds in \mathcal{T}_{2} if and only if it holds in each tournament magma of order m.
- We can use our generation result to see that $\mathcal{T}_{2} \models \epsilon$ if and only if ϵ holds in each regular RPS_{2} magma of the form $\left(\mathbb{Z}_{3}^{m}\right)_{2}(\lambda)$.
- These magmas are much larger than tournaments of order m, but we may have a better chance of understanding their structure and hence their equational theories.

Thank you.

