## Multiplayer rock-paper-scissors

Charlotte Aten

University of Rochester

2021 January 19

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

## Introduction

- In the summer of 2017 I lived in a cave in Yosemite National Park.
- While there I wanted to explain to my friends that I study universal algebra.
- I realized that rock-paper-scissors was a particularly simple way to do that.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We will view the game of RPS as a magma  $\mathbf{A} := (A, f)$ . We let  $A := \{r, p, s\}$  and define a binary operation  $f: A^2 \to A$  where f(x, y) is the winning item among  $\{x, y\}$ .

|   | r | р | 5 |  |
|---|---|---|---|--|
| r | r | р | r |  |
| р | p | р | 5 |  |
| S | r | 5 | 5 |  |

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Introduction

I also realized that I wanted to be able to play with many of my friends at the same time.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Naturally, this led me to study the varieties generated by hypertournament algebras.

## Talk outline

- Definition of RPS and PRPS magmas
- A numerical constraint relating arity and order
- Regular RPS magmas
- Hypertournaments
- A generation result
- Automorphisms and congruences of regular RPS magmas
- The search for a basis of the variety generated by tournament algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Properties of RPS

#### The game RPS is

- conservative,
- essentially polyadic,
- 3 strongly fair, and
- 4 nondegenerate.

These are the properties we want for a multiplayer game, as well.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Suppose we have an *n*-ary magma  $\mathbf{A} := (A, f)$  where  $f: A^n \to A$ .
- The selection game for **A** has *n* players,  $p_1, p_2, \ldots, p_n$ .
- Each player  $p_i$  simultaneously chooses an item  $a_i \in A$ .

The winners of the game are all players who chose f(a<sub>1</sub>,..., a<sub>n</sub>).

- We say that an operation f. A<sup>n</sup> → A is conservative when for any a<sub>1</sub>,..., a<sub>n</sub> ∈ A we have that f(a<sub>1</sub>,..., a<sub>n</sub>) ∈ {a<sub>1</sub>,..., a<sub>n</sub>}.
- We say that A is conservative when each round has at least one winning player.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- We say that an operation  $f: A^n \to A$  is essentially polyadic when there exists some  $g: Sb(A) \to A$  such that for any  $a_1, \ldots, a_n \in A$  we have  $f(a_1, \ldots, a_n) = g(\{a_1, \ldots, a_n\})$ .
- We say that A is essentially polyadic when a round's winning item is determined solely by which items were played, not taking into account which player played which item or how many players chose a particular item (as long at it was chosen at least once).

- Let A<sub>k</sub> denote the members of A<sup>n</sup> which have k distinct components for some k ∈ N.
- We say that f is strongly fair when for all  $a, b \in A$  and all  $k \in \mathbb{N}$  we have  $|f^{-1}(a) \cap A_k| = |f^{-1}(b) \cap A_k|$ .
- We say that A is strongly fair when each item has the same chance of being the winning item when exactly k distinct items are chosen for any k ∈ N.

- We say that f is nondegenerate when |A| > n.
- In the case that |A| ≤ n we have that all members of A<sub>|A|</sub> have the same set of components.
- If A is essentially polyadic with |A| ≤ n it is impossible for A to be strongly fair unless |A| = 1.

The French version of RPS adds one more item: the well. This game is not strongly fair but is conservative and essentially polyadic.

|   | r | р | 5 | W |
|---|---|---|---|---|
| r | r | р | r | W |
| р | р | р | 5 | р |
| 5 | r | 5 | 5 | W |
| W | w | р | W | W |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The recent variant Rock-Paper-Scissors-Spock-Lizard is conservative, essentially polyadic, strongly fair, and nondegenerate.

|   | r | р | 5 | V | 1 |
|---|---|---|---|---|---|
| r | r | р | r | V | r |
| р | р | р | 5 | р | 1 |
| 5 | r | 5 | 5 | V | 5 |
| V | v | р | V | V | 1 |
| 1 | r | 1 | 5 | Ι | 1 |

The only "valid" RPS variants for two players use an odd number of items.

#### Proposition

Let **A** be a selection game with n = 2 which is essentially polyadic, strongly fair, and nondegenerate and let m := |A|. We have that  $m \neq 1$  is odd. Conversely, for each odd  $m \neq 1$  there exists such a selection game.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Proof.

We need  $m \mid \binom{m}{2}$ .

#### Definition (PRPS magma)

Let  $\mathbf{A} := (A, f)$  be an *n*-ary magma. When  $\mathbf{A}$  is essentially polyadic, strongly fair, and nondegenerate we say that  $\mathbf{A}$  is a PRPS magma (read "pseudo-RPS magma"). When  $\mathbf{A}$  is an *n*-magma of order  $m \in \mathbb{N}$  with these properties we say that  $\mathbf{A}$  is a PRPS(m, n) magma. We also use PRPS and PRPS(m, n) to indicate the classes of such magmas.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

#### Theorem

Let  $\mathbf{A} \in \mathsf{PRPS}(m, n)$  and let  $\varpi(m)$  denote the least prime dividing m. We have that  $n < \varpi(m)$ . Conversely, for each pair (m, n) with  $m \neq 1$  such that  $n < \varpi(m)$  there exists such a magma.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Proof.

We need  $m \mid \text{gcd}\left(\left\{\binom{m}{2}, \ldots, \binom{m}{n}\right\}\right)$ .

#### Definition (RPS magma)

Let  $\mathbf{A} := (A, f)$  be an *n*-ary magma. When  $\mathbf{A}$  is conservative, essentially polyadic, strongly fair, and nondegenerate we say that  $\mathbf{A}$  is an RPS *magma*. When  $\mathbf{A}$  is an *n*-magma of order *m* with these properties we say that  $\mathbf{A}$  is an RPS(m, n) magma. We also use RPS and RPS(m, n) to indicate the classes of such magmas.

Both the original game of rock-paper-scissors and the game rock-paper-scissors-Spock-lizard are RPS magmas. The French variant of rock-paper-scissors is not even a PRPS magma.

- We now show how to construct a game for three players.
- This will be a ternary RPS magma  $(A, f: A^3 \rightarrow A)$ .
- Since n = 3 in this case and we require that n < ∞(m) we must have that |A| ≥ 5.</p>
- $\blacksquare$  Our construction will use the left-addition action of  $\mathbb{Z}_5$  on itself.
- We will produce an operation  $f: \mathbb{Z}_5^3 \to \mathbb{Z}_5$  which is essentially polyadic with w + f(x, y, z) = f(w + x, w + y, w + z) for any  $w \in \mathbb{Z}_5$ .
- Thus, we need only define f on a representative of each orbit of  $\binom{\mathbb{Z}_5}{1}$ ,  $\binom{\mathbb{Z}_5}{2}$ , and  $\binom{\mathbb{Z}_5}{3}$  under this action of  $\mathbb{Z}_5$ .

First we list the orbits of  $\binom{\mathbb{Z}_5}{1}$ ,  $\binom{\mathbb{Z}_5}{2}$ , and  $\binom{\mathbb{Z}_5}{3}$  under this action of  $\mathbb{Z}_5.$ 

| 0 | 01 | 02 | 012 | 013 |
|---|----|----|-----|-----|
| 1 | 12 | 13 | 123 | 124 |
| 2 | 23 | 24 | 234 | 230 |
| 3 | 34 | 30 | 340 | 341 |
| 4 | 40 | 41 | 401 | 402 |

Next, we choose a representative for each orbit, say the first one in each row of this table.

| 0 | 01 | 02 | 012 | 013 |
|---|----|----|-----|-----|
| 1 | 12 | 13 | 123 | 124 |
| 2 | 23 | 24 | 234 | 230 |
| 3 | 34 | 30 | 340 | 341 |
| 4 | 40 | 41 | 401 | 402 |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Choose from each representative a particular element. For example, if our representative is 013 we may choose 0 as our special element. We also could have chosen 1 or 3, but not 2 or 4.

| $0\mapsto 0$ | $01\mapsto 1$ | $02 \mapsto 0$ | $012 \mapsto 0$ | $013\mapsto 0$ |
|--------------|---------------|----------------|-----------------|----------------|
| 1            | 12            | 13             | 123             | 124            |
| 2            | 23            | 24             | 234             | 230            |
| 3            | 34            | 30             | 340             | 341            |
| 4            | 40            | 41             | 401             | 402            |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Use the left-addition action of  $\mathbb{Z}_5$  to extend these choices to all members of  $\binom{\mathbb{Z}_5}{1}$ ,  $\binom{\mathbb{Z}_5}{2}$ , and  $\binom{\mathbb{Z}_5}{3}$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We can read off a definition for the operation  $f: \mathbb{Z}_5^3 \to \mathbb{Z}_5$  from this table. For example, we take  $24 \mapsto 2$  to indicate that

$$f(2,4,4) = f(4,2,4) = f(4,4,2) = f(4,2,2) = f(2,4,2) = f(2,2,4) = 2.$$

| $0\mapsto0$  | $01\mapsto 1$ | $02 \mapsto 0$ | $012\mapsto 0$  | $013\mapsto 0$ |
|--------------|---------------|----------------|-----------------|----------------|
| $1\mapsto 1$ | $12\mapsto 2$ | $13\mapsto 1$  | $123\mapsto 1$  | $124\mapsto 1$ |
| $2\mapsto 2$ | $23\mapsto 3$ | $24 \mapsto 2$ | $234 \mapsto 2$ | $230\mapsto 2$ |
| $3\mapsto 3$ | $34\mapsto 4$ | $30 \mapsto 3$ | $340 \mapsto 3$ | $341\mapsto 3$ |
| $4\mapsto 4$ | $40\mapsto 0$ | $41\mapsto 4$  | $401\mapsto 4$  | $402\mapsto 4$ |
|              |               | 1              | 1               |                |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Cayley table for the 3-magma  $\mathbf{A} := (\mathbb{Z}_5, f)$  obtained from this choice of f is given below.

| 0 | 0 | 1 | 2 | 3 | 4 | 1 | 0 | 1 | 2 | 3 | 4 | 2 | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 2 | 4 |
| 1 | 1 | 1 | 0 | 0 | 4 | 1 | 1 | 1 | 2 | 1 | 4 | 1 | 0 | 2 | 2 | 1 | 1 |
| 2 | 0 | 0 | 0 | 2 | 4 | 2 | 0 | 2 | 2 | 1 | 1 | 2 | 0 | 2 | 2 | 3 | 2 |
| 3 | 3 | 0 | 2 | 3 | 3 | 3 | 0 | 1 | 1 | 1 | 3 | 3 | 2 | 1 | 3 | 3 | 2 |
| 4 | 0 | 4 | 4 | 3 | 0 | 4 | 4 | 4 | 1 | 3 | 4 | 4 | 4 | 1 | 2 | 2 | 2 |
|   |   |   | 3 | 0 | 1 | 2 | 3 | 4 | 4 | 0 | 1 | 2 | 3 | 4 |   |   |   |
|   |   |   | 0 | 3 | 0 | 2 | 3 | 3 | 0 | 0 | 4 | 4 | 3 | 0 |   |   |   |
|   |   |   | 1 | 0 | 1 | 1 | 1 | 3 | 1 | 4 | 4 | 1 | 3 | 4 |   |   |   |
|   |   |   | 2 | 2 | 1 | 3 | 3 | 2 | 2 | 4 | 1 | 2 | 2 | 2 |   |   |   |
|   |   |   | 3 | 3 | 1 | 3 | 3 | 4 | 3 | 3 | 3 | 2 | 4 | 4 |   |   |   |
|   |   |   | 4 | 3 | 3 | 2 | 4 | 4 | 4 | 0 | 4 | 2 | 4 | 4 |   |   |   |

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへ⊙

#### Definition ( $\alpha$ -action magma)

Fix a group **G**, a set A, and some n < |A|. Given a regular group action  $\alpha$ : **G**  $\rightarrow$  **Perm**(*A*) such that each of the *k*-extensions of  $\alpha$  is free for  $1 \le k \le n$  let  $\Psi_k \coloneqq \left\{ \operatorname{Orb}(U) \mid U \in \binom{A}{k} \right\}$  where  $\operatorname{Orb}(U)$  is the orbit of U under  $\alpha_k$ . Let  $\beta := \{\beta_k\}_{1 \le k \le n}$  be a sequence of choice functions  $\beta_k: \Psi_k \to {\binom{A}{k}}$  such that  $\beta_k(\psi) \in \psi$  for each  $\psi \in \Psi_k$ . Let  $\gamma := \{\gamma_k\}_{1 \le k \le n}$  be a sequence of functions  $\gamma_k: \Psi_k \to A$  such that  $\gamma_k(\overline{\psi}) \in \beta_k(\psi)$  for each  $\psi \in \Psi_k$ . Let g: Sb<sub><n</sub>(A)  $\rightarrow$  A be given by  $g(U) := (\alpha(s))(\gamma_k(\psi))$  when  $U = (\alpha_k(s))(\beta_k(\psi))$ . Define  $f: A^n \to A$  by  $f(a_1, \ldots, a_n) := g(\{a_1, \ldots, a_n\})$ . The  $\alpha$ -action magma induced by  $(\beta, \gamma)$  is  $\mathbf{A} := (A, f)$ .

#### Theorem

Let **A** be an  $\alpha$ -action magma induced by  $(\beta, \gamma)$ . We have that **A**  $\in$  RPS.

#### Definition (Regular RPS magma)

Let **G** be a nontrivial finite group and fix  $n < \varpi(|G|)$ . We denote by **G**<sub>n</sub>( $\beta, \gamma$ ) the left-multiplication-action *n*-magma induced by  $(\beta, \gamma)$ , which we refer to as a *regular* RPS *magma*.

#### Definition (Pointed hypergraph)

A pointed hypergraph  $\mathbf{S} := (S, \sigma, g)$  consists of a hypergraph  $(S, \sigma)$ and a map  $g: \sigma \to S$  such that for each edge  $e \in \sigma$  we have that  $g(e) \in e$ . The map g is called a *pointing* of  $(S, \sigma)$ .

#### Definition (*n*-complete hypergraph)

Given a set S we denote by  $\mathbf{S}_n$  the *n*-complete hypergraph whose vertex set is S and whose edge set is  $\bigcup_{k=1}^n {S \choose k}$ .

#### Definition (Hypertournament)

An *n*-hypertournament is a pointed hypergraph  $\mathbf{T} := (T, \tau, g)$  where  $(T, \tau) = \mathbf{S}_n$  for some set *S*.

| U                 | 0  | 1 | 2   | 01  | 12 | 23 | 34  | 40  | 02  | 13 | 24 | 30  | 41  |
|-------------------|----|---|-----|-----|----|----|-----|-----|-----|----|----|-----|-----|
| g(U)              | 0  | 1 | 2   | 1   | 2  | 3  | 4   | 0   | 0   | 1  | 2  | 3   | 4   |
| U                 | 01 | 2 | 123 | 234 | 34 | 40 | 401 | 013 | 124 | 23 | 30 | 341 | 402 |
| g(U)              | 0  |   | 1   | 2   |    | 3  | 4   | 0   | 1   |    | 2  | 3   | 4   |
| RPS(5, 3) example |    |   |     |     |    |    |     |     |     |    |    |     |     |

#### Definition (Hypertournament magma)

Given an *n*-hypertournament  $\mathbf{T} := (T, \tau, g)$  the hypertournament magma obtained from **T** is the *n*-magma  $\mathbf{A} := (T, f)$  where for  $u_1, \ldots, u_n \in T$  we define

$$f(u_1,\ldots,u_n) \coloneqq g(\{u_1,\ldots,u_n\}).$$

#### Definition (Hypertournament magma)

A hypertournament magma is an *n*-magma which is conservative and essentially polyadic.

- Tournaments are the n = 2 case of a hypertournament.
- Hedrlín and Chvátal introduced the n = 2 case of a hypertournament magma in 1965.
- There has been a lot of work on varieties generated by tournament magmas. See for example the survey by Crvenković et al. (1999).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let n > 1. We have that  $\text{RPS}_n \subsetneq \text{PRPS}_n$ ,  $\text{RPS}_n \subsetneq \text{Tour}_n$ , and neither of  $\text{PRPS}_n$  and  $\text{Tour}_n$  contains the other. Moreover,  $\text{RPS}_n = \text{PRPS}_n \cap \text{Tour}_n$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

We denote by \$\mathcal{T}\_n\$ the variety of algebras generated by Tour\_n.
This is equivalent to having

$$\mathcal{T}_n = \mathsf{HSP}(\mathsf{Tour}_n) = \mathsf{Mod}(\mathsf{Id}(\mathsf{Tour}_n)).$$

■ Similarly, we define *R<sub>n</sub>* to be the variety of algebras generated by RPS<sub>n</sub>.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

#### Theorem

Let n > 1. We have that  $T_n = \mathcal{R}_n$ . Moreover  $T_n$  is generated by the class of finite regular RPS<sub>n</sub> magmas.

#### Proof.

Every finite hypertournament can be embedded in a finite regular balanced hypertournament.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## A generation result

- Trivially we have that  $\mathcal{R}_n \leq \mathcal{T}_n$ .
- Since *n*-hypertournament magmas are conservative we have that  $\text{Tour}_n \models \epsilon$  if and only if each *n*-hypertournament magma of order *m* models epsilon, where *m* is the number of variables appearing in  $\epsilon$ .
- It then suffices to show that each finite *n*-hypertournament magma belongs to R<sub>n</sub>.
- It would be very convenient if each finite *n*-hypertournament embedded into the hypertournament associated to a finite regular RPS magma.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This turns out to be the case.

## A generation result

Note that in a regular binary RPS magma G<sub>2</sub>(β, γ) we have that

$$f(e,x) = xf(x^{-1},e)$$

so exactly one of f(e, x) = e or  $f(x^{-1}, e) = e$  holds.

- Note also that the orbit of  $\{x, y\}$  contains  $\{e, x^{-1}y\}$  and  $y^{-1}x$ , e, where  $x^{-1}y$  and  $y^{-1}x$  are inverses.
- We need then only define a map λ specifying for each pair of inverses {x, x<sup>-1</sup>} whether f(e, x) = e or f(e, x<sup>-1</sup>) = e in order to specify G<sub>2</sub>(β, γ).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We can think of λ({x, x<sup>-1</sup>}) as choosing the «positive direction» with respect to x and x<sup>-1</sup>.

In order to do this in general we need an *n*-ary analogue of inverses.

#### Definition (Obverse k-set)

Given n > 1, a nontrivial finite group **G** with  $n < \varpi(|G|)$ ,  $1 \le k \le n-1$ , and  $U, V \in \binom{G \setminus \{e\}}{k}$  we say that V is an *obverse* of Uwhen  $U = \{a_1, \ldots, a_k\}$  and there exists some  $a_i \in U$  such that  $V = \{a_i^{-1}\} \cup \{a_i^{-1}a_j \mid i \ne j\}$ . We denote by Obv(U) the set consisting of all obverses V of U, as well as U itself.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The obverses of a set U are the nonidentity elements in the members of  $Orb(U \cup \{e\}) \setminus (U \cup \{e\})$  which contain e.

In order to specify  $\mathbf{G}_n(\beta, \gamma)$  it suffices to choose the member  $\{a_1, \ldots, a_k\}$  of each collection of obverses for which  $f(e, \ldots, e, a_1, \ldots, a_k) = e$ .

#### Definition (*n*-sign function)

Given n > 1 and a nontrivial group **G** with  $n < \varpi(|G|)$  let  $Sgn_n(G)$  denote the set of all choice functions on

$$\left\{ \left. \mathsf{Obv}(\mathit{U}) \; \middle| \; (\exists k \in \{1, \ldots, n-1\}) \left( \mathit{U} \in \binom{\mathsf{G} \setminus \{e\}}{k} \right) \right\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We refer to a member  $\lambda \in \text{Sgn}_n(\mathbf{G})$  as an *n-sign function* on  $\mathbf{G}$ .

We then write  $\mathbf{G}_n(\lambda)$  instead of  $\mathbf{G}_n(\beta, \gamma)$ .

## A generation result

- Now we can give the embedding which finishes our proof that  $T_n = \mathcal{R}_n$ .
- Consider a finite hypertournament  $\mathbf{T} \coloneqq (T, \tau, g)$ .
- Take  $\mathbf{G} := \bigoplus_{u \in \mathcal{T}} \mathbb{Z}_{\alpha_u}$  where  $n < \varpi(\alpha_u)$  and  $\mathbb{Z}_{\alpha_u} = \langle u \rangle$ .
- We define an *n*-sign function  $\lambda \in \text{Sgn}_n(\mathbf{G})$ .
- When  $g({u_1, \ldots, u_k}) = u_1$  we define

$$\lambda(\mathsf{Obv}(\{ u_i - u_1 \mid i \neq 1 \})) := \{ u_i - u_1 \mid i \neq 1 \}.$$

- Any values may be chosen for other orbits.
- The *n*-hypertournament corresponding to G<sub>n</sub>(λ) contains a copy of T.

- We have now seen that the finite regular RPS *n*-magmas generate  $T_n = \mathbf{V}(\text{Tour}_n)$ .
- In particular we need only use magmas of the form G<sub>n</sub>(λ) where:
  - **1**  $\mathbf{G} = \mathbb{Z}_{\kappa(n)}^{m}$  where  $\kappa(n)$  is the least prime strictly greater than n or

- **2**  $\mathbf{G} = \mathbb{Z}_{\alpha(m)}$  where  $\alpha(m) := \prod_{k=\ell}^{m+\ell-1} p_k$  where  $p_k$  is the  $k^{\text{th}}$  prime and  $\kappa(n) = p_\ell$ .
- In particular, we have that T<sub>2</sub> is generated by regular RPS magmas of the form (Z<sup>m</sup><sub>3</sub>)<sub>2</sub>(λ).

Let  $\mathbf{A} := \mathbf{G}_n(\lambda)$  be a regular RPS magma. There is a canonical embedding of  $\mathbf{G}$  into  $\mathbf{Aut}(\mathbf{A})$ .

Proof.

By construction.

For each arity  $n \in \mathbb{N}$  with  $n \neq 1$  and each group **G** of composite order  $m \in \mathbb{N}$  with  $n < \varpi(m)$  there exists a regular  $\operatorname{RPS}(m, n)$ magma  $\mathbf{A} := \mathbf{G}_n(\lambda)$  such that  $|\operatorname{Aut}(\mathbf{A})| > |\mathbf{G}|$ .

#### Proof.

Count the members of RPS(**G**, *n*) (there are  $\prod_{k=1}^{n} k^{\frac{1}{m}\binom{m}{k}}$ ) and arrive at a contradiction were there no exceptional automorphisms.

For each arity  $n \in \mathbb{N}$  and each odd prime p such that  $1 \neq n \leq p-2$  there exists a regular  $\operatorname{RPS}(p, n)$  magma  $\mathbf{A} := (\mathbb{Z}_p)_n(\lambda)$  such that  $|\operatorname{Aut}(\mathbf{A})| > |\mathbf{G}|$ .

#### Proof.

Multiplication by a primitive root modulo p yields an automorphism for an appropriate choice of  $\lambda$ .

## No exceptional automorphisms

#### Proposition

For each odd prime p and any  $\lambda \in \text{Sgn}_{p-1}(\mathbb{Z}_p)$  we have that  $\text{Aut}((\mathbb{Z}_p)_{p-1}(\lambda)) \cong \mathbb{Z}_p$ .

#### Corollary

Given an odd prime p the number of isomorphism classes of magmas of the form  $(\mathbb{Z}_p)_{p-1}(\lambda)$  is

$$\prod_{k=1}^{p-1} k^{\frac{1}{p}\binom{p}{k}-1}.$$

For p = 3 we have 1, for p = 5 we have 6, and for p = 7 we have 2073600.



#### Theorem

Let  $\theta \in \text{Con}(\mathbf{A})$  for a regular RPS(m, n) magma  $\mathbf{A} \coloneqq \mathbf{G}_n(\lambda)$ . Given any  $a \in A$  we have that  $a/\theta = aH$  for some subgroup  $\mathbf{H} \leq \mathbf{G}$ .

One can show by using 2-divisibility that the principal congruence θ := Cg({(e, a)}) has only one nontrivial class, which is e/θ. This class contains Sg<sup>G</sup>({a}).

## Congruences

#### Theorem

Let  $\theta \in \text{Con}(\mathbf{A})$  for a regular RPS(m, n) magma  $\mathbf{A} \coloneqq \mathbf{G}_n(\lambda)$ . Given any  $a \in A$  we have that  $a/\theta = aH$  for some subgroup  $\mathbf{H} \leq \mathbf{G}$ .

- Any congruence  $\theta \in Con(\mathbf{A})$  has for  $e/\theta$  a union of cyclic subgroups of **G**. Suppose that  $a, b \in e/\theta$  and  $ab \notin e/\theta$ .
- Note that  $\theta \geq Cg(\{(e, a), (e, b^{-1})\})$ . Observe that

$$egin{aligned} \mathsf{Cg}(\{(e,a),(e,b^{-1})\}) &= b^{-1}\,\mathsf{Cg}(\{(b,ba),(b,e)\}) \ &\geq b^{-1}\,\mathsf{Cg}(\{(e,ba)\}) \ &\geq b^{-1}\,\mathsf{Cg}(\{(e,baba)\}) \ &\geq \mathsf{Cg}(\{(b^{-1},aba)\}) \end{aligned}$$

so we have that  $e/\theta$  contains *aba*.

## Congruences

#### Theorem

Let  $\theta \in \text{Con}(\mathbf{A})$  for a regular RPS(m, n) magma  $\mathbf{A} \coloneqq \mathbf{G}_n(\lambda)$ . Given any  $a \in A$  we have that  $a/\theta = aH$  for some subgroup  $\mathbf{H} \leq \mathbf{G}$ .

- We have  $\langle a \rangle, \langle b \rangle \subset e/\theta$  and  $ab \notin e/\theta$  yet  $aba \in e/\theta$ .
- Since  $\theta$  is a congruence either *ab* dominates everything in  $e/\theta$  (f(ab, x) = ab for all  $x \in e/\theta$ , which we write as  $ab \to x$ ) or everything in  $e/\theta$  dominates *ab*.
- In the former case, we have  $ab \rightarrow aba$  so  $e \rightarrow a$ .
- We also have  $ab \rightarrow e$  so  $e \rightarrow b^{-1}a^{-1}$ .
- This implies that  $b^{-1} \rightarrow b^{-1}a^{-1}$  and hence  $e \rightarrow a^{-1}$ , which is impossible since  $e \rightarrow a$ .

(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))

- The argument in the latter case is identical.
- **Thus**,  $e/\theta$  is a subgroup of **G**.

#### Definition ( $\lambda$ -convex subgroup)

Given a group **G**, an *n*-sign function  $\lambda \in \text{Sgn}_n(\mathbf{G})$ , and a subgroup  $\mathbf{H} \leq \mathbf{G}$  we say that **H** is  $\lambda$ -convex when there exists some  $a \in G$  such that  $a/\theta = aH$  for some  $\theta \in \text{Con}(\mathbf{G}_n(\lambda))$ .

Let **G** be a finite group of order *m* and let  $n < \varpi(m)$ . Take  $\lambda \in \text{Sgn}_n(\mathbf{G})$  and  $\mathbf{H} \leq \mathbf{G}$ . The following are equivalent:

#### **1** The subgroup **H** is $\lambda$ -convex.

- **2** There exists a congruence  $\psi \in \text{Con}(\mathbf{G}_n(\lambda))$  such that  $e/\psi = H$ .
- **3** Given  $1 \le k \le n-1$  and  $b_1, \ldots, b_k \notin H$  either  $e \to \{b_1h_1, \ldots, b_kh_k\}$  for every choice of  $h_1, \ldots, h_k \in H$  or  $\{b_1h_1, \ldots, b_kh_k\} \to e$  for every choice of  $h_1, \ldots, h_k \in H$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

#### Theorem

# Suppose that $H, K \leq G$ are both $\lambda$ -convex. We have that $H \leq K$ or $K \leq H$ .



Definition ( $\lambda$ -coset poset)

Given  $\lambda \in \text{Sgn}_n(\mathbf{G})$  set

 $P_{\lambda} \coloneqq \{ aH \mid a \in G \text{ and } \mathbf{H} \text{ is } \lambda \text{-convex} \}$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and define the  $\lambda$ -coset poset to be  $\mathbf{P}_{\lambda} \coloneqq (P_{\lambda}, \subset)$ .

- Dilworth showed that the maximal antichains of a finite poset form a distributive lattice.
- Freese (1974) gives a succinct treatment of this.
- Given a finite poset  $\mathbf{P} := (P, \leq)$  let  $\mathbf{L}(\mathbf{P})$  be the lattice whose elements are maximal antichains in  $\mathbf{P}$  where if  $U, V \in L(\mathbf{P})$  then we say that  $U \leq V$  in  $\mathbf{L}(\mathbf{P})$  when for every  $u \in U$  there exists some  $v \in V$  such that  $u \leq v$  in  $\mathbf{P}$ .

#### Theorem

We have that  $\operatorname{Con}(\mathbf{G}_n(\lambda)) \cong \mathbf{L}(\mathbf{P}_{\lambda})$ .

## The search for a basis

- By the year 2000 Ježek, Marković, Maróti, and McKenzie had shown that T<sub>2</sub> was not finitely based.
- To this author's knowledge no equational base for T<sub>2</sub> has ever been described (aside from trivialities like taking Id(Tour<sub>2</sub>)).
- Recall that an identity  $\epsilon$  in m variables holds in  $\mathcal{T}_2$  if and only if it holds in each tournament magma of order m.
- We can use our generation result to see that T<sub>2</sub> ⊨ ε if and only if ε holds in each regular RPS<sub>2</sub> magma of the form (Z<sub>3</sub><sup>m</sup>)<sub>2</sub>(λ).
- These magmas are much larger than tournaments of order *m*, but we may have a better chance of understanding their structure and hence their equational theories.

## Thank you.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?