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COMMENTS ON THE TITLE

Dyadic rational numbers : m2−n for m,n ∈ Z.

• The ring D = Z[1/2] of dyadic numbers is

a principal ideal subdomain of the ring R of

real numbers.

• Background:

the theory of idempotent and entropic algebras

- modes, in particular

- affine spaces over a commutative rings, and

- convex sets.
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OUTLINE

• Real affine spaces

• Real convex sets and barycentric algebras

• Dyadic affine spaces and dyadic convex sets

• Dyadic intervals

• Dyadic triangles

• Classification of dyadic triangles

• Characterization of dyadic triangles

• Isomorphisms of dyadic triangles
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AFFINE SUBSPACES and

CONVEX SUBSETS of Rn

R — the field of reals; I◦ :=]0,1[= (0,1) ⊂ R.

The line Lx,y through x, y ∈ Rn:

Lx,y = {xy p = x(1− p) + yp ∈ Rn | p ∈ R}.

A ⊆ Rn is a (non-trivial) affine subspace of

Rn if together with any two different points x

and y it contains the line Lx,y.

The line segment Ix,y joining the points x, y:

Ix,y = {xy p = x(1− p) + yp ∈ Rn | p ∈ I◦}.

C ⊆ Rn is a (non-trivial) convex subset of

Rn if together with any two points x and y it

contains the line segment Ix,y.
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REAL AFFINE SPACES

Given a (unital) subring R of R.

An affine space A over R (or affine R-space)
is the algebra(

A,
n∑

i=1

xiri

∣∣∣∣ n∑
i=1

ri = 1
)
.

If 2 ∈ R is invertible, this algebra is equivalent
to

(A,R),

where

R = {p | p ∈ R}

and

xyp = p(x, y) = x(1− p) + yp.

THEOREM: The class of affine R-spaces is a
variety (equationally defined class of algebras).
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REAL CONVEX SETS and

BARYCENTRIC ALGEBRAS

Let R be a subfield of R and

Io :=]0,1[= (0,1) ⊂ R.

Convex subsets of affine R-spaces (A,R) are

Io-subreducts (A, Io) of (A,R)

Real (convex) polytopes are finitely generated

convex sets; real polygons are finitely gener-

ated convex subsets of R2.

The class C of convex sets generates

the variety BA of barycentric algebras.
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DYADIC CONVEX SETS

Consider the ring

D = Z[1/2] = {m2−n | m,n ∈ Z}

of dyadic rational numbers.

A dyadic convex set is the intersection of a

real convex set in Rk with the space Dk.

A dyadic polytope is the intersection of the

space Dk with a real polytope in Rk

whose vertices lie in Dk.

A dyadic triangle and dyadic polygon are

(respectively) the intersection with D2 of

a triangle or polygon in R2 having vertices in

D2.

Dyadic intervals form the one-dimensional

analogue.
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REAL VERSUS DYADIC

• Real polytopes are barycentric algebras (A, Io).

• Dyadic polytopes are algebras (A,Do
1),

where Do
1 =]0,1[∩D.

Proposition [Ježek, Kepka, 1976]: Each dyadic

polytope (A,Do
1) is equivalent to

(A, ·) = (A, 12(x+ y)).

Note that the operation · is:

idempotent: x · x = x;

commutative: x · y = y · x;
entropic (medial): (x ·y) ·(z · t) = (x ·z) ·(y · t).

Hence: dyadic polytopes are

commutative binary modes (or CB-modes).
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REAL VERSUS DYADIC, cont.

• All real intervals are isomorphic (to the
interval I = S1). Each is generated by its ends.
• All real triangles are isomorphic (to the
simplex S2). Each is generated by its vertices.

NOT TRUE for dyadic intervals and dyadic

triangles.

Example: The dyadic interval [0,3] is
generated by no less than 3 elements. The
minimal set of generators is given e.g. by the
numbers 0,2,3.

• The class of convex subsets of affine R-spaces
is characterized as the subquasivariety
of cancellative barycentric algebras.

NOT TRUE for the class of convex dyadic

subsets of affine D-spaces.
(K. Matczak, R., 2004)
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SOME PROBLEMS

Which characteristic properties of real

polytopes (in particular polygons) carry over

to dyadic polytopes (polygons)?

Note that dyadic polygons are described using

dyadic intervals and dyadic triangles.

Problem: Classify all dyadic intervals and

all dyadic triangles up to isomorphism.

Isomorphisms of dyadic polytopes are described

as restrictions of automorphisms of the affine

dyadic spaces, members of the affine group

GA(n,D).

Problems:

Are all dyadic intervals finitely generated?

Are all dyadic triangles finitely generated?
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DYADIC INTERVALS

An initial classification of dyadic intervals was

given by K. Matczak, R., J.D.H. Smith in 2011.

THEOREM: Each interval of D is isomorphic

to some interval [0, k] (is of type k), where k

is an odd positive integer. Two such intervals

are isomorphic precisely when their right hand

ends are equal.

The interval [0,1] is generated by its ends.

For each positive integer k, and each integer r,

the intervals [0, k] and [0, k2r] are isomorphic.

THEOREM: Each dyadic interval of type

k > 1 is minimally generated by three elements.
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GENERATION OF DYADIC TRIANGLES

The first classification of dyadic triangles, by

K. Matczak, R., J.D.H. Smith in 2011, implied

the following.

THEOREM: Each dyadic triangle is finitely

generated.

COROLLARY: Each dyadic polygon is finitely

generated.
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GENERATION OF DYADIC POLYTOPES

Later results:

THEOREM [Matczak, Mućka, R., 2023]: Each

dyadic polytope is finitely generated.

THEOREM [Matczak, Mućka, R., 2023]: A

subgroupoid D of (Dn, ◦) is finitely generated

precisely when its dyadic convex hull is

a polytope with the same vertices and the same

interior as D.
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DYADIC TRIANGLES AND

THEIR BOUNDARY TYPES

The types m,n, k of sides of a triangle

determine its boundary type (m,n, k).

Proposition: The triangles of right type

(i.e., with shorter sides parallel to the

coordinate axes) are determined uniquely up to

isomorphism by their boundary type.

The boundary type does not determine

a general dyadic triangle.

Example: There are infinitely many pairwise

non-isomorphic triangles of boundary

type (1,1,1).

There are triangles in D2 not isomorphic to

right triangles.
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TYPES OF DYADIC TRIANGLES

Automorphisms of the dyadic plane D2 are

described as elements of the affine group

GA(2,D). These automorphisms transform a

triangle in the plane D2 onto an isomorphic

triangle.

Lemma: Each dyadic triangle is isomorphic

to a (pointed) triangle ABC contained in the

first quadrant, with one vertex, say A, located

at the origin, and the vertices B and C having

non-negative integer coordinates.
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TYPES OF DYADIC TRIANGLES, cont.

If B = (i, j) and C = (m,n), then i, j,m may

be chosen so that 0 ≤ i < m and 0 ≤ n < j.

Such a triangle is denoted Ti,j,m,n.

A triangle T0,j,m,0 is a right triangle.

A triangle Ti,j,m,0 is a hat triangle.

(One of its sides is parallel to a coordinate

axis).
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OLDER CLASSIFICATION

When a vertex A of a dyadic triangle located at

the origin is chosen, the triangle ABC comes

in one of three types.

THEOREM [Matczak, Mućka, R., Smith, 2011,

2019, 2023]: Each pointed dyadic triangle ABC

comes as a triangle Ti,j,m,n in one of the

following three types:

(a) right triangles T0,j,m,0

(j and m odd and j ≤ m);

(b) hat triangles Ti,j,m,0

(0 < i ≤ m/2, odd j > 1, and gcd{i, j} ̸= j);

(c) other triangles Ti,j,m,n

(neither of i, n is zero, moreover j ≤ m,

gcd{i, j} /∈ {i, j,1} and gcd{m,n} /∈ {m,n,1}).
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FURTHER PROPERTIES

Proposition: Let ι : T1 → T2 be an

isomorphism between dyadic triangles.

For i = 1,2, let Pi be the area of the convex

R-hull of Ti.

Then P1/P2 = 2k for some k ∈ Z.

Lemma: Let P ∈ D2 with integral coordinates

and not on any axes. There is a D-module

automorphism taking P onto a point of one of

the axes, again with integral coordinates.
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NEW CLASSIFICATION

The following results were obtained recently by

A. Mućka and R.

Proposition: Let T be a dyadic triangle in the

dyadic plane D2. Then T is isomorphic to each

of the following triangles with vertices having

integral coordinates:

(a) A triangle ABC contained in the upper half-

plane of D2 with one vertex, say A, located at

the origin, and another vertex, say C = (m,0),

on the positive part of the x-axis;

(b) A triangle ABC contained in the first quad-

rant of D2 with A and C defined as above, and

the third vertex B = (i, j) such that 0 ≤ i ≤ m.

From now on, Ti,j,m,0 denotes a triangle with

positive integers j and m, and any integer i.

20



21



REPRESENTATIVE HATS

Proposition: Each triangle Ti,j,m,0 is

isomorphic to a triangle Ti′,j′,m′,0, where all

i′, j′,m′ are odd.

A triangle Ti,j,m,0, with all i, j,m odd, is

denoted by Ti,j,m and called a representative

hat.

THEOREM: Each dyadic triangle in the dyadic

space D2 is isomorphic to a representative hat.

Note: Each dyadic triangle is isomorphic to

three representative hats with the same vertex

ordering, and three isomorphic hats with the

reverse ordering. They correspond to the six

permutations of the vertices.
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POINTED ISOMORPHISMS

OF REPRESENTATIVE HATS

Isomorphism of representative hats is

considered as a pointed oriented isomorphism,

i.e. an isomorphism preserving

the pointed vertex and the vertex orientation.

Proposition: Consider two representative hats

T = ABC and T ′ = A′B′C′ with vertices A =

A′ = (0,0), B = (i, j), C = (m,0) and B′ =

(i′, j′), C′ = (m′,0). Let ι : T → T ′ be a

mapping taking B to B′ and C to C′.

Then ι : T → T ′ is a pointed oriented

isomorphism precisely when j′ = j, m′ = m and

i′ = i+ jk for some integer k.
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CHARACTERIZATION OF

POINTED DYADIC TRIANGLES

Corollary: For any positive odd integers j and
m, there are j (pointed) isomorphism classes
of representative hats Ti,j,m. Each class
is represented by a unique Ti,j,m, where
i ∈ {1,3, . . . ,2j − 1}.

Corollary: Each pointed dyadic triangle is
(pointed oriented) isomorphic to a unique
Ti,j,m, where j and m are positive odd integers
and i ∈ {1,3, . . . ,2j − 1}.

A triple (i, j,m) of integers, where j and m are
positive and odd and i ∈ {1,3, . . . ,2j − 1}, is
called an encoding triple.

THEOREM: Two pointed dyadic triangles
with the same orientation of vertices are
isomorphic if and only if they have the same
encoding triples.
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ISOMORPHISMS OF REPRESENTATIVE

HATS

Necessary conditions

Proposition: If two representative hats T =

Ti,j,m and T ′ = Ti′,j′,m′ are isomorphic, then

the following two conditions hold

(a) The hats T and T ′ have equal or oppositely

oriented boundary types.

(b) The areas of the convex R-hulls convR(T )

of T and convR(T
′) of T ′ are equal.

Moreover, if a mapping ι : T → T ′ is an

isomorphism, then it maps the vertex set V (T )

of T onto the vertex set V (T ′) of T ′.

None of the necessary conditions

of this Proposition is sufficient.
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Sufficient conditions

Each representative hat is isomorphic to an
almost representative hat Ti,j,m, i.e. with an
arbitrary integer i, and both j and m positive
and odd integers.

THEOREM Let T and T ′ be two almost
representative hats, the first one a hat Ti,j,m
with vertices A,B,C, and the second a hat
Tk,l,n with vertices A′, B′, C′.
Let ι : T → T ′ be a mapping taking the triple
(A,B,C) to the triple (X,Y, Z), where (X,Y, Z)
is a permutation of (A′, B′, C′) .

Assume that both hats have equal or
oppositely oriented boundary types, and equal
areas of their convex R-hulls.

Then ι is an isomorphism precisely when one of
six elementary number-theoretical conditions
on i, j,m, k, l, n holds, corresponding to the six
permutations (X,Y, Z) of A′, B′, C′.
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THANK YOU !
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