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The interpretability lattice and Maltsev
conditions



Definition

Let V1 = Mod(X;) and Vo, = Mod(32) be varieties over the signatures 71, T2,
respectively. An interpretation of V1 in Vo is a mapping I : 71 — Terms(72) which
preserves the satisfaction of 31 identities, i.e.

flze,...;zn) mg(xr,...;zn) €51 = Vo E I f)(x1,...,2n) = (Ig)(x1,...,20).

This induces a preorder < on the class of varieties and we write V1 < Vs to indicate that
V1 interprets in Vs. If both V1 < Vs and Vo < V1, we say V7 and V5 are
equi-interpretable.

Example
® The variety of groups interprets in the variety of abelian groups.
® The varieties of Boolean rings and Boolean algebras are equi-interpretable.

® The variety of sets and the variety of semigroups are equi-interpretable.

The variety V in the signature with a single ternary operation m(xyz) axiomatized

by the Maltsev identities m(yxx) ~ m(yxx) ~ y interprets in the variety of groups,

by mapping m(xyz) to the term xy~!z.



Theorem

The class of varieties modulo the equi-interpretability relation forms a bounded lattice.

® Roughly, the interpretability lattice of varieties orders equivalence classes of varieties
by 'strength of identities satisfied".

® Upwards closed subclasses of the interpretability poset are therefore natural objects
to study.

® A class of varieties C is said to be characterized by a strong Maltsev condition if
there exists a finitely presented (finite signature and finitely based) variety V such
that C={W:V < W}

® A class of varieties C is said to be characterized by a Maltsev condition if there exists

a countable sequence of finitely presented varieties V; = Vo = --- = V; = ... such




This class is charac-
terized by the strong
Maltsev condition
given by V (which
is assumed to be
finitely presented).

Interpretability lattice of varieties

TRIVIAL 1-ELEMENT ALGEBRAS

SET

This class is characterized
by a proper Maltsev con-
dition and is the union of
an increasing sequence of
strong Maltsev classes.




Maltsev conditions have been extensively studied and used in Universal algebra. The
following are a few classical examples.

Maltsev showed that a variety has permuting congruences if and only if it has a
Maltsev term (hence the class of permutable varieties is characterized by a strong
Maltsev condition).

Pixley showed that the class of varieties which are congruence distributive and
congruence permutable is a strong Maltsev class (Pixley term).

The class of congruence distributive varieties is definable with a Maltsev condition
(Jonsson).

The class of congruence modular varieties is definable with a Maltsev condition
(Day).

Independently, Fichtner (1972) and Kelly (1973) proved that both congruence
distributivity and congruence modularity are not definable with strong Maltsev
conditions. Each of their arguments relies on some syntactic analysis.



Definition
A variety V of algebras is congruence meet semidistributive if each congruence lattice of
its members satisfies the implication

YAa=yAB = YA (aVP) =7Aa.

e Kearnes and Szendrei, and independently Lipparini showed that the class of
congruence meet semidistributive varieties is characterized by a Maltsev condition.

® Question: Is congruence meet semidistributivity definable with a strong Maltsev
condition?



® The interpretability order can be restricted to the class of locally finite varieties.
Siggers showed in 2015 that the class of locally finite Taylor varieties is characterized
by a strong Maltsev condition. OI$3k later proved that this is actually true for the
class of all Taylor varieties.

TapLE 1. The six conditions

Tvpe Omitting Class | Equivalent Property Strong for 1f. varieties? |Strong in general?
My satisfies a nontrivial idempotent Maltsev condition YES (Siggers) YES (Olsék)
Mg satisfies a nontrivial congruence identity (see [17]) NO (KKVW) NO
Mir.a5) congruence n-permutable, for some n > 1 NO (KKVW) NO
M1y congruence meet semidistributive YES (KKVW) ??
Mii25) congruence join semidistributive (see [17]) NO (KKVW) NO
Mi12.45) congruence ni-permutable for some n and congru-

ence join semidistributive NO (KKVW) NO

Table taken from ‘Characterizations of several Maltsev conditions’ by Kozik, Krokhin,
Valeriote, Willard.




The connection to the commutator and
2-congruences



Definition

Let A be an algebra and let 61, 0> be congruences of A. We define the algebra of
(01, 02)-matrices as follows.

r—1UY y—u
M(01,02) = Sg 422 ‘ ‘ (x,y) € 61 U{ ‘ ‘ (x,y) 602}
b ——

r—UY x

We then say that 0; term condition centralizes 02 if no matrix of M (61,603) has one
column which determines a pair of equal elements, while the opposite column determines
a pair of unequal elements. The term condition commutator is the least congruence §
that one can factor A by so that 01/ centralizes 62/5. We denote this & by [0, 02]1c.
An abelian congruence of A is an « such that [, o] =0



Theorem (Kearnes + Szendrei, and Lipparini)

The following are equivalent for a variety V:
1. V is congruence meet semidistributive.

2. [v,vlrc =~y for all congruences ~y of algebras in V (such V are often called
congruence neutral varieties).

3. [v,7]rc =y, where «y is the principle congruence of Fy(x,y) generated by (x,y).

Informally, the above theorem is stating that the class of congruence meet
semidistributive varieties is exactly the class of varieties which have no nontrivial abelian
congruences, and the latter condition (2) holds for a variety V if and only if there are no
abelian principle congruences, which is true if and only if the ‘free’ principle congruence
for V is neutral.



Let A be a set and let R C A2°. We say that R is
b—d a—C¢ b—d d—d b—b
1. (2)-reflexive if ‘ ‘ € R implies ‘ ‘, ‘ ‘, ‘ ‘ ‘ ‘ € R,
a——2¢ a c b d ¢ c a——a
b—d a—c¢ b——d
2. (2)-symmetric if ‘ ‘ € R implies ‘ , ‘ € R,
a——2¢ b—d c——a

3. (2)-transitive if
b—d d—f

L ‘ ,‘ ‘ € R implies eER

€ER

bi
a—
f—
€ R implies ‘
@ ——

o—a o——
O—— h O—— %

a—c¢c Cc—
b—d e6—
|l
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Definition

We say that R is a (2)-equivalence relation on A if it is (2)-reflexive, (2)-symmetric, and
(2)-transitive. If A is the universe of an algebra A, we say that R is

1. A (2)-tolerance of A if it is A-invariant, (2)-reflexive, and (2)-symmetric.

2. A (2)-congruence of A if it is A-invariant, (2)-reflexive, (2)-symmetric, and
(2)-transitive.

We refer to the (2)-congruence generated by Cgy(X). We now define the relation

r—1Y y—u
AW6,0)=Cey |1 | | :(zy) b u{ | - xy)EGQ} ,
r—1Y r—2

for congruences 67 and 6> of an algebra A. We say 0, hypercentralizes 0> if no matrix of
A(01,02) has one column which determines a pair of equal elements, while the opposite
column determines a pair of unequal elements. We denote by [61, 03] the corresponding
commutator.



Let S < A2°. We define

b—:d b—f f—d
e H(S):= \ \ : e, f \ , \ €S| 3 and
a——=¢C a——e€ e C
b—:d b—d e—f
V(=9 | | :3ef]|] , | es
a——-c e— f a—c

It is not hard to see that

A(6,0) = U (VoH)"(M(0,0)).

n>0

In particular, M(60,6) C A(6,0), so it follows that [0, O2]rc < [01,02]H.



The following two theorems are important for our characterization of congruence meet
semidistributivity.

Theorem
Let A be an algebra and let 6 be a congruence of A. The following are equivalent.
1. (x,y) €[0,0]n, and
T—1Y
2. \ | €a@,9)

r—2

Theorem (Follows from a result of Kearnes and Szendrei)

Let A be a Taylor algebra and let o be a congruence of A. Then

[, a]re = [a, o .



We define for a variety V and the (x,y)-elementary matrices:

T
Ev(l‘, y) = SgFV(x,y)22 ‘
T

Theorem

Let V be a variety. The following are equivalent.
1. V is congruence meet semidistributive,
r—2x

2. ‘ ‘ € A(y,7), where ~y is the congruence of the two generated free algebra

T Yy
Fy(x,y) in V generated by the pair (z,y), and

| € Caa(By(@,9)) = UnsolV o B)"(Bv(z,1).
—Y
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e We denote by V,, the variety of algebras in the signature {t1,...,%4n} which satisfy
the package of identities X,,.

® To show that there is no strong Maltsev condition that characterizes congruence
meet semidistributivity, it suffices to produce for each n > 0 some congruence meet
semidistributive variety YV that does not interpret V,,.

® We define the following sequence of conditions Ay,...,A;,... and let W, be the
variety of algebras satisfying A;.

TYTT — TTYT s(zyzz) — s(xzyx)
s [ stands for [ [
YyrT — yryr s(yyrz) — s(ywyx)
TTTT — TYTT = TYLL — TTYL = TTYL — TYLT = = TTYT — TYTT = TYTL — TYYY
I So | | S1 | | S2 | e o o I Sogp | I S2141 |
 YTTT—YYIT = Yyrs —yIys = yrys —yyre = = YTYT — YyrT = yyre —yyyy
R4 \¥

The condition A;



Term analysis



Recall that
r—x Yy—Yy y—Yy rz—zr rv—Y Yy——w

EWz (l’,y) = Sg(FZ)QQ ‘
r—z Yy—Yy z—zx Yy—Y rz—Y Yy—x

i

We want to show that for any n, there exists [ so that it is impossible to glue together
such squares to obtain a diagram witnessing the condition %,,. Let 77 = {so, ..., S214+1}
be the signature corresponding to A;. Consider the sets Fg C E1 C--- C Ep C ...
whose union is Eyy, (x,y) defined by

r—x Yy—4y y—y r—zx =z—Y Y—
E(): ‘ )
r—z Yy—4Yy r—xr Yy—y rz—4Y Yy—

and

) Y ) )

8——8

2
Ejr = {r®)” (a,8,7,6) : 7 € 7 and a, 3,8, € B} for k > 0.

Our goal is to show that, for large enough I, there is no k& where
r—2

€ (Vo H)"(Ey).

r—Y



® An idea: What if we could treat subterms like free generators?

® If we define A;; to be the condition produced by deleting the operation s; from the
signature 7; and all identities mentioning it from Aj, then the corresponding variety
W\ is equi-interpretable with SET.

® Then it would be possible to reduce the complexity of terms of any diagram
witnessing ¥, by interpreting 7;; operation symbols as projections, which would lead
to a contradiction, since squares belonging Ey cannot be arranged to witness ¥,,.



T

N

TTTT — TYTX = TYTL — TTYL = TTYL — TYTX

I So [ [

YTTT — YYrr = Yyrr — yryr = yryr — yyrx
7

The condition A;

S1 | | S2 | o o o

The condition A;; is modeled by projections.
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To prove that the strategy actually works, we prefer to construct the free algebra
recursively so that its underlying set is a collection of minimal term complexity
normal forms. We do this to avoid worrying that we overlooked any equalities
between terms which follow from equational logic.

We define a sequence of sets {z,y} = F CF} C--- C Fl"f_1 C FF..., where each
FF is the domain of a partial 7;-algebra F¥ with all 7; operations defined on
(FF~1)4, for every k > 1.

Given the partial 75-algebra Ff the partial 7;-algebra Ff“ is defined by extending
the operation i to (Flk)l either by applying A;-identities or choosing a new term
and adding it to Ff“.

Then define I} = U<, EF and interpret the operations in the obvious way.



1
SE
1

1
SE
2

SFll
2041

TTXL
TTIY
TTYL
TTYY
TYTL
TYry
TYYx
TYyy
YTTT
yxrry
yxryx
yryy
Yyyrx
yyxy
yyyx
yyyy

x
s1(zxxy)
s1(xxyx)

< so(xxyy)

+— so(xyxx)
s1(ryry)
s1(zyyz)
s1(zyyy)
s1(yrzx)
s1(yzzy)
s1(yryz)
< so(yxyy)
< so(yyxx)
s1(yyzy)
s1(yyyx)
Yy

x
so(xxXy)
+ s1(xxyx)
s2(zTyY)
so(TyzT)
< s1(xyxy)
s2(zyyz)
s2(zyyy)
so(yxzx)
s2(yzzy)
+— s1(yxyx)
s2(yryy)
s2(yyz)
« s1(yyxy)
s2(yyyx)
Yy

x
sar+1(zzTy)
sar+1(zTyT)

 s21(xxyYy)

+ So91(XyxXx)
sar1(zyry)

)



Input tuples (a,b,c,d) € F} satisfy {a,b,c,d} N (FF\ FF~1) # 0

]Fk+1 ]F;C+1 IFécJﬁl IF;C+1 F;wrl

5o 51 ) e 5ol S2l+1
pppP p P . p p
pppq | so(pppq)  s1(pppq) s2(pppq) so(pppq)  sa+1(pppq)
ppap | so(ppgp)  si(ppgp) < si(pPap) soi(ppap)  sai+1(ppap)
ppqq | so(ppqq) < so(ppaa)  sa2(ppqq) ... sa(ppqq) < sa(ppaq)
papp | so(pgpp) < so(papp)  s2(pgpp) ... su(pgpp) < s21(pPaApPp)
papq | so(papq)  si(pgpq) < si(papq) sa(papq)  sa+1(papq)
pqqp | so(pqap)  s1(pqqp) sa(paqp) ... su(pagp)  s2y1(pagp)
Pq9qq 51(pqqq) s52(pqqq) s21(Pqqq) p

Input tuples (a,b,c,d) € FfF satisfy {a,b,c,d} N (FF\ FF™') # 0 and |{a,b,c,d}| >3

]F;C+1 F;C+1 ]F;V‘l’l F;C+1 ]Ff+1
5o 51 ) - 521 52141
abed | so(abed)  si(abed)  so(abed) soi(abed)  sg141(abed)



Lemma
Letl > 1, and m > 1. Consider a set of 1;-terms of the form
T = {r;j(a;,bj,c;j,d;j) : vj € 7 and aj,b;,cj,d; € F}, for 1 < j <m}
and let
Z = {z : there exists rj(a;,bj,c;,d;) € T withr; =s,}

be the set of indices of basic Tj-operation symbols which appear as the outer symbol for a
term in T'. If there exists 0 < i < 2] + 1 such that |z —i| > 2 for all z € Z, then

Iy _
T‘jl (CLJ'I s bj1 » Ci1s dj1) = Tj2

G _ .G . . ) .
T (ajl 3 D0 G5 dj1) =Tj, (a]w bizs Cjas d]2)7

(ana bjza Cias dj2) —

where G = Fyy, ,(U1<j<mias, bj, cj,d;}) is the algebra for W ; freely generated by

U {aj.b5.¢,d;}

1<j<m



s s s s

pPPP p P P P P

pppq | polpppg) s1(pppq) s2(pppq) sa(pppq)  saie1(ppPpg)
prap | so(ppgp) s1(ppgp) + s1(ppPgp) su(ppgp)  su+1(ppgp)
prqq | solppgg) + solPPaq) s2(ppaq) sat(ppgq) + s21(ppaq)
papp | polpgprp)  + solpapp) s2(pgpp) sar(pgpp)  + sa1(papp)
papq | so(papq) s1(pgpq) + s1(papq) sa(papq)  s2a+1(pgpq)
paqp | so(pggp) s1(pgqp) sa2(paqp) sul(pggp)  su+1(pggp)
Paqq q s1(pggqq) s2(pqqq) s21(pgqq) P

Intution: if i € Z, where Z is the set of indices of basic 7;-operation symbols being used,
then we at most need to use identities involving s;_1, s;, and s;1+1 to find the normal form
for some s;(a,b,c,d).

Hence, for fixed n, there is obviously [ large enough so that the lemma applies when |Z| = 4™.



Summarizing:
e Fix n > 0 and choose [ so that the lemma applies ( [ > 2 - 4" for example).
® \We want to show that W; has no ¥,,-terms. Assume to the contrary, then

r—2x
| e UV o) (By(a,y).
r—0 n>0
T T Yy—y Yy—y v—z =—Y Y—0u
We defined Ey = ‘ , , , , , ‘ and
r—z Yy—Yy z—zx Yy—Y rz—Y Y——u
Brpr = {r®7 (0, 8,7,0) : v € 7 and , B,0, € By} for k > 0.
T—u
® Choose k minimal so that ‘ ‘ € Up>o(V o H)"(Ex(x,y)). Obviously, k # 0.
r—Y

We apply the lemma and find that £ — 1 works also, contradiction.



i (zzae) re(zzae)

N\ — — — 4
‘ ri(a1, B1,71,01) ‘;‘ r2(@2, B2; 12, 02) ‘_‘ 75(a, 85,75 05) ‘;‘ 76 (a6, Bs: 76, 06) ‘
I B Tl B I
‘ r3(as: B3, 73:03) ‘;‘ a4, Bas vas 04) ‘:‘ rr(az, Br; 7, 07) ‘;‘ rs(as, Bs, Vs, Is) ‘
I B _ B I
‘ 7“9(049759779-,59) ‘;‘ T10(0107/3107’Y107510) ‘_‘ 7"13(06137513,7137513) ‘;‘ r14(a14,614,’yl4,514)‘
I B Il B I
‘ r11(aa1, Bi1, V11, 011) ‘;‘ r12(0a2, fi2, V12, 012) ‘:‘ r15(aus, Bis, V15, 015) ‘;‘ r16(a16, Bi6; V16, 016)
% N\
r(zzre) ris(yyyy)

r(a, 8,7,90) stands for 7~ng< @ @>



Remarks

® Working on a more direct argument to prove the equivalence of congruence meet
semidistributivity, the neutrality of the hypercommutator, and the condition
involving Ey(z,vy).

® | believe that a similar style of argument shows that the class of varieties having a
weak difference term is also not definable with a strong Maltsev condition.



Thank you for your attention!
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