Clones over finite sets up to minor-equivalence

Albert Vucaj joint work with M. Bodirsky and D. Zhuk

TU Wien

PALS, 28 February 2023

Established by the European Commission

Grant agreement No 681988, CSP-Infinity

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Clones

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A clone ${\mathcal C}$ is a set of operations over a finite set A such that

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

- C contains all the projections,
- C is closed under composition.

A clone ${\mathcal C}$ is a set of operations over a finite set A such that

- C contains all the projections,
- C is closed under composition.

If F is a set of operations, we denote by $\langle F \rangle$ the clone generated by F, *i.e.*, the smallest clone containing F.

- 日本 - 4 日本 - 4 日本 - 日本

A clone ${\mathcal C}$ is a set of operations over a finite set A such that

- C contains all the projections,
- C is closed under composition.

If F is a set of operations, we denote by $\langle F \rangle$ the clone generated by F, *i.e.*, the smallest clone containing F.

Example

Consider the universe $\{0, 1\}$:

A clone C is a set of operations over a finite set A such that

- C contains all the projections,
- C is closed under composition.

If F is a set of operations, we denote by $\langle F \rangle$ the clone generated by F, *i.e.*, the smallest clone containing F.

Example

Consider the universe $\{0, 1\}$:

• $\mathcal{P}_2 \coloneqq \langle \emptyset \rangle$ (the clone of all projections on $\{0, 1\}$);

A clone C is a set of operations over a finite set A such that

- C contains all the projections,
- C is closed under composition.

If F is a set of operations, we denote by $\langle F \rangle$ the clone generated by F, *i.e.*, the smallest clone containing F.

Example

Consider the universe $\{0, 1\}$:

- $\mathcal{P}_2 \coloneqq \langle \emptyset \rangle$ (the clone of all projections on $\{0,1\}$);
- $\mathcal{I}_2 \coloneqq \langle \wedge, m \rangle$ (the clone of all idempotent operations on $\{0, 1\}$);

A clone ${\mathcal C}$ is a set of operations over a finite set A such that

- C contains all the projections,
- C is closed under composition.

If F is a set of operations, we denote by $\langle F \rangle$ the clone generated by F, *i.e.*, the smallest clone containing F.

Example

Consider the universe $\{0,1\}$:

- $\mathcal{P}_2 \coloneqq \langle \emptyset \rangle$ (the clone of all projections on $\{0,1\}$);
- $\mathcal{I}_2 \coloneqq \langle \wedge, m \rangle$ (the clone of all idempotent operations on $\{0, 1\}$);
- $\langle 0 \rangle$ (the clone generated by the constant operation 0).

Definition

An operation $f: A^n \to A$ preserves a k-ary relation R on A if

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

In this case, we also say that R is invariant under f.

Definition

An operation $f: A^n \to A$ preserves a k-ary relation R on A if

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

In this case, we also say that R is invariant under f.

Definition

An operation $f: A^n \rightarrow A$ preserves a k-ary relation R on A if

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

In this case, we also say that R is invariant under f.

Definition

An operation $f: A^n \rightarrow A$ preserves a k-ary relation R on A if

In this case, we also say that R is invariant under f.

Definition

• f is a polymorphism of $\mathbb{A} = (A; \Gamma)$ if f preserves R, for every $R \in \Gamma$.

Definition

An operation $f: A^n \rightarrow A$ preserves a k-ary relation R on A if

In this case, we also say that R is invariant under f.

Definition

- f is a polymorphism of $\mathbb{A} = (A; \Gamma)$ if f preserves R, for every $R \in \Gamma$.
- $Pol(\mathbb{A}) = \{f \mid f \text{ is a polymorphism of } \mathbb{A}\}\$ (the polym. clone of \mathbb{A}).

Definition

An operation $f: A^n \rightarrow A$ preserves a k-ary relation R on A if

In this case, we also say that R is invariant under f.

Definition

- f is a polymorphism of $\mathbb{A} = (A; \Gamma)$ if f preserves R, for every $R \in \Gamma$.
- $Pol(\mathbb{A}) = \{f \mid f \text{ is a polymorphism of } \mathbb{A}\}\$ (the polym. clone of \mathbb{A}).
- $Inv(F) = \{R \mid R \text{ is invariant under every operation in } F\}$.

- A: a τ-structure,
- $\phi(x_1, \ldots, x_n)$ be a τ -formula with *n* free-variables x_1, \ldots, x_n .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへぐ

- A: a τ-structure,
- $\phi(x_1, \ldots, x_n)$ be a τ -formula with *n* free-variables x_1, \ldots, x_n .

Definition

We call $\{(a_1, \ldots, a_n) \mid \mathbb{A} \models \phi(a_1, \ldots, a_n)\}$ the relation defined by ϕ .

If ϕ is primitive positive, then this relation is said to be pp-definable in A.

Theorem (Geiger; Bodnarčuk, Kalužnin, Kotov, Romov)

A relation R is pp-definable in $\mathbb{A} \iff R$ is in $Inv(Pol(\mathbb{A}))$.

- A: a τ-structure,
- $\phi(x_1, \ldots, x_n)$ be a τ -formula with *n* free-variables x_1, \ldots, x_n .

Definition

We call $\{(a_1, \ldots, a_n) \mid \mathbb{A} \models \phi(a_1, \ldots, a_n)\}$ the relation defined by ϕ .

If ϕ is primitive positive, then this relation is said to be pp-definable in A.

Theorem (Geiger; Bodnarčuk, Kalužnin, Kotov, Romov)

A relation R is pp-definable in $\mathbb{A} \iff R$ is in $Inv(Pol(\mathbb{A}))$.

Theorem (Geiger; Bodnarčuk, Kalužnin, Kotov, Romov)

If F is a set of operations on a finite domain, then $Pol(Inv(F)) = \langle F \rangle$.

Corollary

All clones over a finite n-element set form a lattice \mathfrak{L}_n under inclusion.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

Corollary

All clones over a finite n-element set form a lattice \mathfrak{L}_n under inclusion.

590

Corollary

All clones over a finite n-element set form a lattice \mathfrak{L}_n under inclusion.

Corollary

- A, B: relational structures on the same finite universe A,
- $\mathcal{A} = \mathsf{Pol}(\mathbb{A})$ and $\mathcal{B} = \mathsf{Pol}(\mathbb{B})$.

Then \mathbb{A} pp-defines $\mathbb{B} \iff \mathcal{A} \subseteq \mathcal{B}$.

Clones over $\{0, 1, 2\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Clones over $\{0,1,2\}$

 \bigcirc There exists a continuum of clones over $\{0, 1, 2\}$ (Yanov, Muchnik '59).

4 日 ト 4 目 ト 4 目 ト 4 目 ト 9 4 (や)

Clones over $\{0,1,2\}$

Description of all maximal and minimal clones. (Jablonskij '54; Csákány '83)

(日)、

590

Clones over $\{0, 1, 2\}$

O All maximal clones – except the clone of all linear functions – contain a continuum of subclones (Demetrovics, Hannak '83; Marchenkov '83).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

Clones over $\{0,1,2\}$

O All maximal clones – except the clone of all linear functions – contain a continuum of subclones (Demetrovics, Hannak '83; Marchenkov '83).

Clones over $\{0,1,2\}$

O All maximal clones – except the clone of all linear functions – contain a continuum of subclones (Demetrovics, Hannak '83; Marchenkov '83).

Clones over $\{0, 1, 2\}$

O All maximal clones – except the clone of all linear functions – contain a continuum of subclones (Demetrovics, Hannak '83; Marchenkov '83).

Clones over $\{0,1,2\}$

D. Zhuk: "Continuum is not a problem" (2012).

Clones over $\{0, 1, 2\}$

© D. Zhuk: "Continuum is not a problem" (2012).

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

• What we want: clones that *share similar properties* to be in the same class.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへぐ

• What we want: clones that *share similar properties* to be in the same class.

Definition

τ: set of function symbols;
A minor identity (height 1 identity) is an identity of the form

 $f(x_1,\ldots,x_n)\approx g(y_1,\ldots,y_m)$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のの⊙

where $f, g \in \tau$ and $x_1, \ldots, x_n, y_1, \ldots, y_m$ are not necessarily distinct.

• Minor condition: Finite set of minor identities.

• What we want: clones that satisfy the same minor conditions to be in the same class.

Definition

τ: set of function symbols;
A minor identity (height 1 identity) is an identity of the form

$$f(x_1,\ldots,x_n)\approx g(y_1,\ldots,y_m)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

where $f, g \in \tau$ and $x_1, \ldots, x_n, y_1, \ldots, y_m$ are not necessarily distinct.

• Minor condition: Finite set of minor identities.

• What we want: clones that satisfy the same minor conditions to be in the same class.

Definition

τ: set of function symbols;
A minor identity (height 1 identity) is an identity of the form

$$f(x_1,\ldots,x_n)\approx g(y_1,\ldots,y_m)$$

where $f, g \in \tau$ and $x_1, \ldots, x_n, y_1, \ldots, y_m$ are not necessarily distinct.

• Minor condition: Finite set of minor identities.

$$f(x, y) \approx f(y, x) \checkmark$$
$$f(f(x, y), z) \approx f(x, f(y, z)) \divideontimes$$
$$m(x, x, y) \approx m(y, x, x) \approx y \divideontimes$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

• What we want: clones that satisfy the same minor conditions to be in the same class.

Definition

τ: set of function symbols;
A minor identity (height 1 identity) is an identity of the form

$$f(x_1,\ldots,x_n)\approx g(y_1,\ldots,y_m)$$

where $f, g \in \tau$ and $x_1, \ldots, x_n, y_1, \ldots, y_m$ are not necessarily distinct.

- Minor condition: Finite set of minor identities.
- Some examples:

$$\begin{aligned} f(x,y) &\approx f(y,x) \checkmark \\ f(f(x,y),z) &\approx f(x,f(y,z)) \cr \cr m(x,x,y) &\approx m(y,x,x) &\approx m(y,y,y) \checkmark \end{aligned} \tag{quasi Mal'cev}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

• What we want: clones that satisfy the same minor conditions to be in the same class.

Definition

τ: set of function symbols;

A minor identity (height 1 identity) is an identity of the form

$$f(x_1,\ldots,x_n)\approx g(y_1,\ldots,y_m)$$

where $f, g \in \tau$ and $x_1, \ldots, x_n, y_1, \ldots, y_m$ are not necessarily distinct.

• Minor condition: Finite set of minor identities.

Definition

We say that F satisfies Σ (F $\models \Sigma$) if there is a map ξ assigning to each function symbol occurring in Σ an operation in F of the same arity, such that if $p \approx q$ is in Σ , then $\xi(p) = \xi(q)$.

Motivation: Universal Algebra

Let f be any *n*-ary operation and $\sigma \colon \{1, \ldots, n\} \to \{1, \ldots, r\}$.
Let f be any n-ary operation and $\sigma : \{1, \ldots, n\} \to \{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}(x_0, \ldots, x_{r-1}) := f(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)})$.

Let f be any *n*-ary operation and $\sigma: \{1, \ldots, n\} \rightarrow \{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}(x_0, \ldots, x_{r-1}) := f(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)})$.

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

Definition

Any operation of the form f_{σ} is called a minor of f.

Let f be any n-ary operation and $\sigma : \{1, \ldots, n\} \to \{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}(x_0, \ldots, x_{r-1}) := f(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)})$.

Definition

Any operation of the form f_{σ} is called a minor of f.

Definition

A minor-preserving map is a map $\xi \colon \mathcal{A} \to \mathcal{B}$ such that

- ξ preserves arities;
- $\xi(f_{\sigma}) = \xi(f)_{\sigma}$ for any n-ary operation $f \in \mathcal{A}$ and $\sigma \colon E_n \to E_r$.

It is a weakening of the notion of clone homomorphism.

Let f be any n-ary operation and $\sigma : \{1, \ldots, n\} \to \{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}(x_0, \ldots, x_{r-1}) := f(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)})$.

Definition

Any operation of the form f_{σ} is called a minor of f.

Definition

A minor-preserving map is a map $\xi \colon \mathcal{A} \to \mathcal{B}$ such that

- ξ preserves arities;
- $\xi(f_{\sigma}) = \xi(f)_{\sigma}$ for any n-ary operation $f \in \mathcal{A}$ and $\sigma \colon E_n \to E_r$.

• It is a weakening of the notion of clone homomorphism.

Theorem (Birkhoff, 1935)

Let \mathcal{A} , \mathcal{B} be clones over finite sets. The following are equivalent:

• There exists a clone homomorphism from A to B;

$$\boldsymbol{\mathcal{B}} \in \boldsymbol{\mathsf{EHSP}}_{\mathrm{fin}}(\mathcal{A}).$$

Let f be any n-ary operation and $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}(x_0, \ldots, x_{r-1}) := f(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)})$.

Definition

Any operation of the form f_{σ} is called a minor of f.

Definition

A minor-preserving map is a map $\xi \colon \mathcal{A} \to \mathcal{B}$ such that

- ξ preserves arities;
- $\xi(f_{\sigma}) = \xi(f)_{\sigma}$ for any n-ary operation $f \in \mathcal{A}$ and $\sigma \colon E_n \to E_r$.

• It is a weakening of the notion of clone homomorphism.

Theorem (Barto, Opršal, Pinsker, 2015)

Let \mathcal{A} , \mathcal{B} be clones over finite sets. The following are equivalent:

There exists a minor-preserving map from A to B (A ≤_m B);
B ∈ ERP_{fin}(A).

Let f be any n-ary operation and $\sigma : \{1, \ldots, n\} \to \{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}(x_0, \ldots, x_{r-1}) := f(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)})$.

Definition

Any operation of the form f_{σ} is called a minor of f.

Definition

A minor-preserving map is a map $\xi \colon \mathcal{A} \to \mathcal{B}$ such that

- ξ preserves arities;
- $\xi(f_{\sigma}) = \xi(f)_{\sigma}$ for any n-ary operation $f \in \mathcal{A}$ and $\sigma \colon E_n \to E_r$.

• It is a weakening of the notion of clone homomorphism.

Theorem (Barto, Opršal, Pinsker, 2015)

Let \mathcal{A} , \mathcal{B} be clones over finite sets. The following are equivalent:

There exists a minor-preserving map from A to B (A ≤_m B);
 B ∈ ERP_{fin}(A). NO GALOIS CONNECTION

- \mathbb{A} , \mathbb{B} : finite relational structure with finite signature;
- a given primitive positive τ -sentence Φ .

Definition

 $\mathsf{CSP}(\mathbb{A})$ is the computational problem of deciding whether Φ is true in \mathbb{A} .

- \mathbb{A} , \mathbb{B} : finite relational structure with finite signature;
- a given primitive positive τ -sentence Φ .

Definition

 $\mathsf{CSP}(\mathbb{A})$ is the computational problem of deciding whether Φ is true in \mathbb{A} .

Definition

 \mathbb{B} is a *pp-power* of \mathbb{A} if it is isomorphic to a structure with domain A^n , where $n \ge 1$, whose relations are *pp*-definable from \mathbb{A} .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- \mathbb{A} , \mathbb{B} : finite relational structure with finite signature;
- a given primitive positive τ -sentence Φ .

Definition

 $\mathsf{CSP}(\mathbb{A})$ is the computational problem of deciding whether Φ is true in \mathbb{A} .

Definition

 \mathbb{B} is a *pp-power* of \mathbb{A} if it is isomorphic to a structure with domain A^n , where $n \ge 1$, whose relations are *pp*-definable from \mathbb{A} .

Definition

A *pp-constructs* \mathbb{B} if \mathbb{B} is homomorphically equivalent to a *pp-power* of \mathbb{A} .

- \mathbb{A} , \mathbb{B} : finite relational structure with finite signature;
- a given primitive positive τ -sentence Φ .

Definition

 $\mathsf{CSP}(\mathbb{A})$ is the computational problem of deciding whether Φ is true in \mathbb{A} .

Definition

 \mathbb{B} is a *pp-power* of \mathbb{A} if it is isomorphic to a structure with domain A^n , where $n \ge 1$, whose relations are *pp*-definable from \mathbb{A} .

Definition

A *pp-constructs* \mathbb{B} if \mathbb{B} is homomorphically equivalent to a *pp-power* of \mathbb{A} .

Theorem (Barto, Opršal, Pinsker 15)

If \mathbb{A} pp-constructs \mathbb{B} , then there exist a log-space reduction from $CSP(\mathbb{B})$ to $CSP(\mathbb{A})$.

Let \mathbb{A} , \mathbb{B} be finite relational structures; $\mathcal{A} = \mathsf{Pol}(\mathbb{A})$, $\mathcal{B} = \mathsf{Pol}(\mathbb{B})$. TFAE:

- There exists a minor-preserving map from \mathcal{A} to \mathcal{B} ($\mathcal{A} \leq_{m} \mathcal{B}$);
- **②** A *pp-constructs* \mathbb{B} (A ≤_{Con} \mathbb{B});
- if \mathcal{A} satisfies a minor condition Σ , then $\mathcal{B} \models \Sigma$.

Let \mathbb{A} , \mathbb{B} be finite relational structures; $\mathcal{A} = \mathsf{Pol}(\mathbb{A})$, $\mathcal{B} = \mathsf{Pol}(\mathbb{B})$. TFAE:

- There exists a minor-preserving map from \mathcal{A} to \mathcal{B} ($\mathcal{A} \leq_{m} \mathcal{B}$);
- **②** A *pp-constructs* \mathbb{B} (A ≤_{Con} \mathbb{B});
- if A satisfies a minor condition Σ , then $\mathcal{B} \models \Sigma$.

Great achievement: CSP Dichotomy Theorem!

- positive solution to the Feder-Vardi conjecture, open since 1998;
- new algebraic theories for finite algebras (Absorption, Bulatov-edges, strong subalgebras...)

Theorem (Bulatov 2017; Zhuk 2017)

If there is no minor-preserving map from \mathcal{A} to \mathcal{P}_2 , then $CSP(\mathbb{A})$ is in P. Otherwise, $CSP(\mathbb{A})$ is NP-complete

Let \mathbb{A} , \mathbb{B} be finite relational structures; $\mathcal{A} = \mathsf{Pol}(\mathbb{A})$, $\mathcal{B} = \mathsf{Pol}(\mathbb{B})$. TFAE:

- There exists a minor-preserving map from \mathcal{A} to \mathcal{B} ($\mathcal{A} \leq_{m} \mathcal{B}$);
- **②** A *pp-constructs* \mathbb{B} (A ≤_{Con} \mathbb{B});
- if A satisfies a minor condition Σ , then $\mathcal{B} \models \Sigma$.

Great achievement: CSP Dichotomy Theorem!

- positive solution to the Feder-Vardi conjecture, open since 1998;
- new algebraic theories for finite algebras (Absorption, Bulatov-edges, strong subalgebras...)

Theorem (Bulatov 2017; Zhuk 2017)

If \mathbb{A} does not pp-construct $\mathbb{K}_3 = (\{0, 1, 2\}; \neq)$, then $\mathsf{CSP}(\mathbb{A})$ is in P. Otherwise, $\mathsf{CSP}(\mathbb{A})$ is NP-complete

Let \mathbb{A} , \mathbb{B} be finite relational structures; $\mathcal{A} = \mathsf{Pol}(\mathbb{A})$, $\mathcal{B} = \mathsf{Pol}(\mathbb{B})$. TFAE:

- There exists a minor-preserving map from \mathcal{A} to \mathcal{B} ($\mathcal{A} \leq_{m} \mathcal{B}$);
- **②** A *pp-constructs* \mathbb{B} (A ≤_{Con} \mathbb{B});
- if A satisfies a minor condition Σ , then $\mathcal{B} \models \Sigma$.

Great achievement: CSP Dichotomy Theorem!

- positive solution to the Feder-Vardi conjecture, open since 1998;
- new algebraic theories for finite algebras (Absorption, Bulatov-edges, strong subalgebras,...)

Theorem (Bulatov 2017; Zhuk 2017)

If A satisfies a non-trivial minor condition, then CSP(A) is in P. Otherwise, CSP(A) is NP-complete

 $\bullet \ \leq_m$ is a quasi order.

- $\bullet \ \leq_m$ is a quasi order.
- We write $\mathcal{C} \equiv_{\mathrm{m}} \mathcal{D}$ iff $\mathcal{C} \leq_{\mathrm{m}} \mathcal{D}$ and $\mathcal{D} \leq_{\mathrm{m}} \mathcal{C}$. (minor-equivalent)

- $\bullet \ \leq_m$ is a quasi order.
- We write $\mathcal{C} \equiv_{\mathrm{m}} \mathcal{D}$ iff $\mathcal{C} \leq_{\mathrm{m}} \mathcal{D}$ and $\mathcal{D} \leq_{\mathrm{m}} \mathcal{C}$. (minor-equivalent)

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへ⊙

• $\overline{\mathcal{C}}$ is the \equiv_m -class of \mathcal{C} .

- $\bullet \leq_m$ is a quasi order.
- We write $\mathcal{C} \equiv_{\mathrm{m}} \mathcal{D}$ iff $\mathcal{C} \leq_{\mathrm{m}} \mathcal{D}$ and $\mathcal{D} \leq_{\mathrm{m}} \mathcal{C}$. (minor-equivalent)
- $\overline{\mathcal{C}}$ is the \equiv_m -class of \mathcal{C} .

Definition

$$\begin{split} \mathfrak{P}_{\mathrm{fin}} &\coloneqq \left(\overline{\mathcal{C}} \mid \mathcal{C} \text{ is a clone over some finite set; } \leq_{\mathrm{m}} \right) \\ \mathfrak{P}_n &\coloneqq \left(\overline{\mathcal{C}} \mid \mathcal{C} \text{ is a clone over } \{0, \dots, n-1\}; \leq_{\mathrm{m}} \right) \end{split}$$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

- $\bullet \leq_m$ is a quasi order.
- We write $\mathcal{C} \equiv_{\mathrm{m}} \mathcal{D}$ iff $\mathcal{C} \leq_{\mathrm{m}} \mathcal{D}$ and $\mathcal{D} \leq_{\mathrm{m}} \mathcal{C}$. (minor-equivalent)
- $\overline{\mathcal{C}}$ is the \equiv_m -class of \mathcal{C} .

Definition

 $\mathfrak{P}_{\mathrm{fin}} \coloneqq \left(\overline{\mathcal{C}} \mid \mathcal{C} \text{ is a clone over some finite set;} \leq_{\mathrm{m}} \right)$ $\mathfrak{P}_{n} \coloneqq \left(\overline{\mathcal{C}} \mid \mathcal{C} \text{ is a clone over } \{0, \dots, n-1\}; \leq_{\mathrm{m}} \right)$

- \leq_{m} is a quasi order. (\leq_{Con} is a quasi order)
- We write $\mathbb{C} \equiv_{\mathrm{m}} \mathbb{D}$ iff $\mathbb{C} \leq_{\mathrm{Con}} \mathbb{D}$ and $\mathbb{D} \leq_{\mathrm{Con}} \mathbb{C}$. (pp-equivalent)
- $\overline{\mathcal{C}}$ is the \equiv_{m} -class of \mathcal{C} ($\overline{\mathbb{C}}$ is the \equiv_{Con} -class of \mathbb{C}).

Definition

$$\mathfrak{P}_{\mathrm{fin}} \coloneqq \left(\overline{\mathcal{C}} \mid \mathcal{C} \text{ is a clone over some finite set; } \leq_{\mathrm{m}} \right)$$

 $\mathfrak{P}_n \coloneqq \left(\overline{\mathcal{C}} \mid \mathcal{C} \text{ is a clone over } \{0, \dots, n-1\}; \leq_{\mathrm{m}} \right)$

- $\bullet \ \leq_{\rm m}$ is a quasi order. ($\leq_{\rm Con}$ is a quasi order)
- We write $\mathbb{C} \equiv_{\mathrm{m}} \mathbb{D}$ iff $\mathbb{C} \leq_{\mathrm{Con}} \mathbb{D}$ and $\mathbb{D} \leq_{\mathrm{Con}} \mathbb{C}$. (pp-equivalent)
- $\overline{\mathcal{C}}$ is the \equiv_{m} -class of \mathcal{C} ($\overline{\mathbb{C}}$ is the \equiv_{Con} -class of \mathbb{C}).

Definition

$$\mathfrak{P}_{\mathrm{fin}} \coloneqq \left(\overline{\mathcal{C}} \mid \mathcal{C} \text{ is a clone over some finite set;} \leq_{\mathrm{m}} \right)$$

 $\mathfrak{P}_n \coloneqq \left(\overline{\mathcal{C}} \mid \mathcal{C} \text{ is a clone over } \{0, \dots, n-1\}; \leq_{\mathrm{m}} \right)$

Post's lattice (Post)

Post's lattice (Post)

(Bodirsky, V.)

▲ロト ▲園ト ▲ヨト ▲ヨト 三目 - のへ⊙

< 4 P

Clones of self-dual operations (Zhuk)

Clones of self-dual operations (Zhuk)

Clones of self-dual operations modulo minor-equivalence (Bodirsky, V., Zhuk)

$\mathfrak{P}_{\mathrm{fin}}$ is a semilattice

 $\bullet~\mathbb{A}$ and \mathbb{B} be finite relational structures;

$\mathfrak{P}_{\mathrm{fin}}$ is a semilattice

- \mathbb{A} and \mathbb{B} be finite relational structures;
- for every f ∈ Pol(A), g ∈ Pol(B); define an operation h on A × B
 h := (f, g) ∈ Pol(A) × Pol(B) as follows

 $h((a_1, b_1), \ldots, (a_n, b_n)) \coloneqq (f(a_1, \ldots, a_n), g(b_1, \ldots, b_n))$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

where $a_i \in A$ and $b_i \in B$ for every $i \in \{1, \ldots, n\}$.

$\mathfrak{P}_{\mathrm{fin}}$ is a semilattice

- \mathbb{A} and \mathbb{B} be finite relational structures;
- for every f ∈ Pol(A), g ∈ Pol(B); define an operation h on A × B
 h := (f, g) ∈ Pol(A) × Pol(B) as follows

 $h((a_1, b_1), \ldots, (a_n, b_n)) \coloneqq (f(a_1, \ldots, a_n), g(b_1, \ldots, b_n))$

where $a_i \in A$ and $b_i \in B$ for every $i \in \{1, \ldots, n\}$.

• $\Gamma^{\mathbb{A}\otimes\mathbb{B}} := \operatorname{Inv}(\{(f,g) \mid f \in \operatorname{Pol}(\mathbb{A}), g \in \operatorname{Pol}(\mathbb{B})\});$ we define

 $\mathbb{A} \otimes \mathbb{B} \coloneqq (A \times B; \Gamma^{\mathbb{A} \otimes \mathbb{B}}).$

Proposition

 $\overline{\mathbb{A} \otimes \mathbb{B}}$ is the greatest lower bound of $\overline{\mathbb{A}}$ and $\overline{\mathbb{B}}$.

Are there atoms in $\mathfrak{P}_{\mathrm{fin}}?$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Are there atoms in $\mathfrak{P}_{\mathrm{fin}}$?

Theorem

 $\mathfrak{P}_{\mathrm{fin}}$ has no atoms.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへぐ

Theorem

 $\mathfrak{P}_{\mathrm{fin}}$ has no atoms.

Sketch of the proof:

- given a finite structure A such that $\overline{\mathbb{A}} \neq \overline{\mathbb{K}_3}$, (*);
- show: $\exists \mathbb{B}$ finite structure such that $\overline{\mathbb{B}} <_{\operatorname{Con}} \overline{\mathbb{A}}$ and $\overline{\mathbb{B}} \neq \overline{\mathbb{K}_3}$;

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへ⊙

Theorem

 $\mathfrak{P}_{\mathrm{fin}}$ has no atoms.

Sketch of the proof:

- given a finite structure A such that $\overline{A} \neq \overline{\mathbb{K}_3}$, (*);
- show: $\exists \mathbb{B}$ finite structure such that $\overline{\mathbb{B}} <_{\operatorname{Con}} \overline{\mathbb{A}}$ and $\overline{\mathbb{B}} \neq \overline{\mathbb{K}_3}$;
- from (*) it follows that A ⊨ c(x₁,...,x_p) ≈ c(x₂,...,x_p,x₁), for some prime p > |A| (A ⊨ Σ_p);

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem

 $\mathfrak{P}_{\mathrm{fin}}$ has no atoms.

Sketch of the proof:

- given a finite structure A such that $\overline{A} \neq \overline{\mathbb{K}_3}$, (*);
- show: $\exists \mathbb{B}$ finite structure such that $\overline{\mathbb{B}} <_{\operatorname{Con}} \overline{\mathbb{A}}$ and $\overline{\mathbb{B}} \neq \overline{\mathbb{K}_3}$;
- from (*) it follows that A ⊨ c(x₁,..., x_p) ≈ c(x₂,..., x_p, x₁), for some prime p > |A| (A ⊨ Σ_p);

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• take
$$\mathbb{B} = \mathbb{A} \otimes \mathbb{C}_{p}$$

• $\mathbb{B} \not\models \Sigma_{p} \Longrightarrow \overline{\mathbb{B}} <_{\operatorname{Con}} \overline{\mathbb{A}}$
• $\mathbb{B} \not\models \Sigma_{q}$, for some $q > p \cdot |A| \Longrightarrow \overline{\mathbb{B}} \neq \overline{\mathbb{K}_{3}}$

Are there atoms in \mathfrak{P}_n ?

Where to look :

• Minimal Taylor Clones

Barto, Brady, Bulatov, Kozik, and Zhuk (2021)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Are there atoms in \mathfrak{P}_n ?

Where to look :

- Minimal Taylor Clones Barto, Brady, Bulatov, Kozik, and Zhuk (2021)
- $\overline{\mathcal{C}}$ atom in $\mathfrak{P}_n \Longrightarrow \mathcal{C}$ is a minimal Taylor clone over $\{0, \ldots, n-1\}$;

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

Are there atoms in \mathfrak{P}_n ?

Where to look :

- Minimal Taylor Clones Barto, Brady, Bulatov, Kozik, and Zhuk (2021)
- $\overline{\mathcal{C}}$ atom in $\mathfrak{P}_n \Longrightarrow \mathcal{C}$ is a minimal Taylor clone over $\{0, \ldots, n-1\}$;

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

• What about the other direction (<---)?
Are there atoms in \mathfrak{P}_n ?

Where to look :

- Minimal Taylor Clones Barto, Brady, Bulatov, Kozik, and Zhuk (2021)
- $\overline{\mathcal{C}}$ atom in $\mathfrak{P}_n \Longrightarrow \mathcal{C}$ is a minimal Taylor clone over $\{0, \ldots, n-1\}$;
- What about the other direction (<---)?

• n=2 Minimal Taylor clones: $\langle \vee \rangle$, $\langle \wedge \rangle$, $\langle d_3 \rangle$, $\langle m \rangle$

Atoms in \mathfrak{P}_2 : $\overline{\langle \vee \rangle} = \overline{\langle \wedge \rangle}$, $\overline{\langle m \rangle}$, $\overline{\langle d_3 \rangle}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Are there atoms in \mathfrak{P}_n ?

Where to look :

- Minimal Taylor Clones Barto, Brady, Bulatov, Kozik, and Zhuk (2021)
- $\overline{\mathcal{C}}$ atom in $\mathfrak{P}_n \Longrightarrow \mathcal{C}$ is a minimal Taylor clone over $\{0, \ldots, n-1\}$;
- What about the other direction (<---)?

• n=2 Minimal Taylor clones: $\langle \vee \rangle$, $\langle \wedge \rangle$, $\langle d_3 \rangle$, $\langle m \rangle$

Atoms in \mathfrak{P}_2 : $\overline{\langle \vee \rangle} = \overline{\langle \wedge \rangle}$, $\overline{\langle m \rangle}$, $\overline{\langle d_3 \rangle}$.

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

In=3 False! ⇒ "Atoms are better than Minimal Taylor" (Barto, Brady, V., Zhuk)

Are there atoms in \mathfrak{P}_n ?

900

Submaximal elements in \mathfrak{P}_3

 $\mathbb{C}_{p}: \text{ directed cycle of length } p; \\ \mathbb{B}_{2} = (\{0,1\}; \{(0,1), (1,0), (1,1)\}).$

Submaximal elements in \mathfrak{P}_3

 $\mathbb{C}_{p}: \text{ directed cycle of length } p; \\ \mathbb{B}_{2} = (\{0,1\}; \{(0,1), (1,0), (1,1)\}).$

Theorem (V., Zhuk)

 \mathfrak{P}_3 has exactly three submaximal elements: $\overline{\mathcal{C}_2}$, $\overline{\mathcal{C}_3}$, and $\overline{\mathcal{B}_2}$

Submaximal elements in \mathfrak{P}_3

Cardinality of \mathfrak{P}_3

• Below $\overline{C_3}$: Fully described. (Bodirsky, V., Zhuk)

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の � @

Cardinality of \mathfrak{P}_3

• Below $\overline{C_3}$: Fully described. (Bodirsky, V., Zhuk)

Theorem (Bulatov 2001)

There are only finitely many clones on $\{0,1,2\}$ with a Mal'cev operation.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のの⊙

Cardinality of \mathfrak{P}_3

• Below $\overline{C_3}$: Fully described. (Bodirsky, V., Zhuk)

Theorem (Bulatov 2001)

There are only finitely many clones on $\{0,1,2\}$ with a Mal'cev operation.

• Below $\overline{\mathcal{C}_2}$: Mild! \bigcirc

• Below $\overline{\mathcal{B}_2}$: Wild! (potentially 2^{ω} elements) \bigcirc

• Cardinality of \mathfrak{P}_{fin} : We know where to look (again below $\overline{\mathbb{B}_2}$).

Theorem (Aichinger, Mayr, McKenzie 2014)

There are only countably many clones over $\{0, \ldots, n-1\}$ containing a Mal'cev operation.

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

• Cardinality of \mathfrak{P}_{fin} : We know where to look (again below $\overline{\mathbb{B}_2}$).

Theorem (Aichinger, Mayr, McKenzie 2014)

There are only countably many clones over $\{0, \ldots, n-1\}$ containing a Mal'cev operation.

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

 Clones "defined by binary relations" Talk by D. Zhuk PALS – 14 March 2023 (a.k.a. π-day) • Cardinality of \mathfrak{P}_{fin} : We know where to look (again below $\overline{\mathbb{B}_2}$).

Theorem (Aichinger, Mayr, McKenzie 2014)

There are only countably many clones over $\{0, ..., n-1\}$ containing a Mal'cev operation.

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

- Clones "defined by binary relations" Talk by D. Zhuk PALS – 14 March 2023 (a.k.a. π-day)
- Mal'cev clones over {0,1,2} up to minor-equivalence (Fioravanti, Rossi, V.).

