Clones over finite sets up to minor-equivalence

Albert Vucaj
joint work with M. Bodirsky and D. Zhuk

TU Wien
PALS, 28 February 2023

Clones

Clones

Definition

A clone \mathcal{C} is a set of operations over a finite set A such that

- \mathcal{C} contains all the projections,
- \mathcal{C} is closed under composition.

Clones

Definition

A clone \mathcal{C} is a set of operations over a finite set A such that

- \mathcal{C} contains all the projections,
- \mathcal{C} is closed under composition.

If F is a set of operations, we denote by $\langle F\rangle$ the clone generated by F, i.e., the smallest clone containing F.

Clones

Definition

A clone \mathcal{C} is a set of operations over a finite set A such that

- \mathcal{C} contains all the projections,
- \mathcal{C} is closed under composition.

If F is a set of operations, we denote by $\langle F\rangle$ the clone generated by F, i.e., the smallest clone containing F.

Example

Consider the universe $\{0,1\}$:

Clones

Definition

A clone \mathcal{C} is a set of operations over a finite set A such that

- \mathcal{C} contains all the projections,
- \mathcal{C} is closed under composition.

If F is a set of operations, we denote by $\langle F\rangle$ the clone generated by F, i.e., the smallest clone containing F.

Example

Consider the universe $\{0,1\}$:

- $\mathcal{P}_{2}:=\langle\emptyset\rangle \quad$ (the clone of all projections on $\{0,1\}$);

Clones

Definition

A clone \mathcal{C} is a set of operations over a finite set A such that

- \mathcal{C} contains all the projections,
- \mathcal{C} is closed under composition.

If F is a set of operations, we denote by $\langle F\rangle$ the clone generated by F, i.e., the smallest clone containing F.

Example

Consider the universe $\{0,1\}$:

- $\mathcal{P}_{2}:=\langle\emptyset\rangle \quad$ (the clone of all projections on $\{0,1\}$);
- $\mathcal{I}_{2}:=\langle\Lambda, m\rangle$ (the clone of all idempotent operations on $\{0,1\}$);

Clones

Definition

A clone \mathcal{C} is a set of operations over a finite set A such that

- \mathcal{C} contains all the projections,
- \mathcal{C} is closed under composition.

If F is a set of operations, we denote by $\langle F\rangle$ the clone generated by F, i.e., the smallest clone containing F.

Example

Consider the universe $\{0,1\}$:

- $\mathcal{P}_{2}:=\langle\emptyset\rangle \quad$ (the clone of all projections on $\{0,1\}$);
- $\mathcal{I}_{2}:=\langle\wedge, m\rangle$ (the clone of all idempotent operations on $\{0,1\}$);
- $\langle 0\rangle$ (the clone generated by the constant operation 0).

A Galois connection for clones

Definition

An operation $f: A^{n} \rightarrow A$ preserves a k-ary relation R on A if

In this case, we also say that R is invariant under f.

A Galois connection for clones

Definition

An operation $f: A^{n} \rightarrow A$ preserves a k-ary relation R on A if

$f\left(a_{1,1}\right.$	$a_{1,2}$		$\left.a_{1, n}\right)$
\vdots	\vdots	\cdots	\vdots
$f\left(a_{k, 1}\right.$	$a_{k, 2}$		$\left.a_{k, n}\right)$
ϵ	\in		ϵ
R	R		R

In this case, we also say that R is invariant under f.

A Galois connection for clones

Definition

An operation $f: A^{n} \rightarrow A$ preserves a k-ary relation R on A if

\[

\]

In this case, we also say that R is invariant under f.

A Galois connection for clones

Definition

An operation $f: A^{n} \rightarrow A$ preserves a k-ary relation R on A if

\[

\]

In this case, we also say that R is invariant under f.

Definition

- f is a polymorphism of $\mathbb{A}=(A ; \Gamma)$ if f preserves R, for every $R \in \Gamma$.

A Galois connection for clones

Definition

An operation $f: A^{n} \rightarrow A$ preserves a k-ary relation R on A if

\[

\]

In this case, we also say that R is invariant under f.

Definition

- f is a polymorphism of $\mathbb{A}=(A ; \Gamma)$ if f preserves R, for every $R \in \Gamma$.
- $\operatorname{Pol}(\mathbb{A})=\{f \mid f$ is a polymorphism of $\mathbb{A}\}$ (the polym. clone of \mathbb{A}).

A Galois connection for clones

Definition

An operation $f: A^{n} \rightarrow A$ preserves a k-ary relation R on A if

\[

\]

In this case, we also say that R is invariant under f.

Definition

- f is a polymorphism of $\mathbb{A}=(A ; \Gamma)$ if f preserves R, for every $R \in \Gamma$.
- $\operatorname{Pol}(\mathbb{A})=\{f \mid f$ is a polymorphism of $\mathbb{A}\}$ (the polym. clone of \mathbb{A}).
- $\operatorname{lnv}(F)=\{R \mid R$ is invariant under every operation in $F\}$.

A Galois Connection for clones

- $\mathbb{A}:$ a τ-structure,
- $\phi\left(x_{1}, \ldots, x_{n}\right)$ be a τ-formula with n free-variables x_{1}, \ldots, x_{n}.

A Galois Connection for clones

- $\mathbb{A}:$ a τ-structure,
- $\phi\left(x_{1}, \ldots, x_{n}\right)$ be a τ-formula with n free-variables x_{1}, \ldots, x_{n}.

Definition

We call $\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \mathbb{A} \models \phi\left(a_{1}, \ldots, a_{n}\right)\right\}$ the relation defined by ϕ.
If ϕ is primitive positive, then this relation is said to be pp-definable in \mathbb{A}.

Theorem (Geiger; Bodnarčuk, Kalužnin, Kotov, Romov)

A relation R is pp-definable in $\mathbb{A} \Longleftrightarrow R$ is in $\operatorname{Inv}(\operatorname{Pol}(\mathbb{A}))$.

A Galois Connection for clones

- $\mathbb{A}:$ a τ-structure,
- $\phi\left(x_{1}, \ldots, x_{n}\right)$ be a τ-formula with n free-variables x_{1}, \ldots, x_{n}.

Definition

We call $\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \mathbb{A} \models \phi\left(a_{1}, \ldots, a_{n}\right)\right\}$ the relation defined by ϕ.
If ϕ is primitive positive, then this relation is said to be pp-definable in \mathbb{A}.
Theorem (Geiger; Bodnarčuk, Kalužnin, Kotov, Romov)
A relation R is pp-definable in $\mathbb{A} \Longleftrightarrow R$ is in $\operatorname{Inv}(\operatorname{Pol}(\mathbb{A}))$.

Theorem (Geiger; Bodnarčuk, Kalužnin, Kotov, Romov)
If F is a set of operations on a finite domain, then $\mathrm{Pol}(\operatorname{lnv}(F))=\langle F\rangle$.

A Galois connection for clones

Corollary
All clones over a finite n-element set form a lattice \mathfrak{L}_{n} under inclusion.

A Galois connection for clones

Corollary
All clones over a finite n-element set form a lattice \mathfrak{L}_{n} under inclusion.

A Galois connection for clones

Corollary

All clones over a finite n-element set form a lattice \mathfrak{L}_{n} under inclusion.

Corollary

- \mathbb{A}, \mathbb{B} : relational structures on the same finite universe A,
- $\mathcal{A}=\operatorname{Pol}(\mathbb{A})$ and $\mathcal{B}=\operatorname{Pol}(\mathbb{B})$.

Then \mathbb{A} pp-defines $\mathbb{B} \Longleftrightarrow \mathcal{A} \subseteq \mathcal{B}$.

Clones over $\{0,1,2\}$

Clones over $\{0,1,2\}$

© There exists a continuum of clones over $\{0,1,2\}$ (Yanov, Muchnik '59).

Clones over $\{0,1,2\}$

Description of all maximal and minimal clones.
(Jablonskij '54; Csákány '83)

Clones over $\{0,1,2\}$

(2) All maximal clones - except the clone of all linear functions - contain a continuum of subclones (Demetrovics, Hannak '83; Marchenkov '83).

Clones over $\{0,1,2\}$

(2) All maximal clones - except the clone of all linear functions - contain a continuum of subclones (Demetrovics, Hannak '83; Marchenkov '83).

Clones over $\{0,1,2\}$

(2) All maximal clones - except the clone of all linear functions - contain a continuum of subclones (Demetrovics, Hannak '83; Marchenkov '83).

Clones over $\{0,1,2\}$

(2) All maximal clones - except the clone of all linear functions - contain a continuum of subclones (Demetrovics, Hannak '83; Marchenkov '83).

Clones over $\{0,1,2\}$

© D. Zhuk: "Continuum is not a problem" (2012).

Clones over $\{0,1,2\}$

© D. Zhuk: "Continuum is not a problem" (2012).

A new order

- What we want: clones that share similar properties to be in the same class.

A new order

- What we want: clones that share similar properties to be in the same class.

Definition

- τ : set of function symbols;

A minor identity (height 1 identity) is an identity of the form

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx g\left(y_{1}, \ldots, y_{m}\right)
$$

where $f, g \in \tau$ and $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ are not necessarily distinct.

- Minor condition: Finite set of minor identities.

A new order

- What we want: clones that satisfy the same minor conditions to be in the same class.

Definition

- τ : set of function symbols;

A minor identity (height 1 identity) is an identity of the form

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx g\left(y_{1}, \ldots, y_{m}\right)
$$

where $f, g \in \tau$ and $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ are not necessarily distinct.

- Minor condition: Finite set of minor identities.

A new order

- What we want: clones that satisfy the same minor conditions to be in the same class.

Definition

- τ : set of function symbols;

A minor identity (height 1 identity) is an identity of the form

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx g\left(y_{1}, \ldots, y_{m}\right)
$$

where $f, g \in \tau$ and $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ are not necessarily distinct.

- Minor condition: Finite set of minor identities.
- Some examples:

$$
\begin{align*}
f(x, y) & \approx f(y, x) \\
f(f(x, y), z) & \approx f(x, f(y, z)) \\
m(x, x, y) & \approx m(y, x, x) \approx y \tag{Mal'cev}
\end{align*}
$$

A new order

- What we want: clones that satisfy the same minor conditions to be in the same class.

Definition

- τ : set of function symbols;

A minor identity (height 1 identity) is an identity of the form

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx g\left(y_{1}, \ldots, y_{m}\right)
$$

where $f, g \in \tau$ and $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ are not necessarily distinct.

- Minor condition: Finite set of minor identities.
- Some examples:

$$
\begin{aligned}
f(x, y) & \approx f(y, x) \checkmark \\
f(f(x, y), z) & \approx f(x, f(y, z)) \\
m(x, x, y) & \approx m(y, x, x) \approx m(y, y, y) \checkmark \quad \text { (quasi Mal'cev) }
\end{aligned}
$$

A new order

- What we want: clones that satisfy the same minor conditions to be in the same class.

Definition

- τ : set of function symbols;

A minor identity (height 1 identity) is an identity of the form

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx g\left(y_{1}, \ldots, y_{m}\right)
$$

where $f, g \in \tau$ and $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ are not necessarily distinct.

- Minor condition: Finite set of minor identities.

Definition

We say that F satisfies $\Sigma(F \models \Sigma)$ if there is a map ξ assigning to each function symbol occurring in Σ an operation in F of the same arity, such that if $p \approx q$ is in Σ, then $\xi(p)=\xi(q)$.

Motivation: Universal Algebra

Let f be any n-ary operation and $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, r\}$.

Motivation: Universal Algebra

Let f be any n-ary operation and $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}\left(x_{0}, \ldots, x_{r-1}\right):=f\left(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)}\right)$.

Motivation: Universal Algebra

Let f be any n-ary operation and $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}\left(x_{0}, \ldots, x_{r-1}\right):=f\left(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)}\right)$.

Definition

Any operation of the form f_{σ} is called a minor of f.

Motivation: Universal Algebra

Let f be any n-ary operation and $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}\left(x_{0}, \ldots, x_{r-1}\right):=f\left(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)}\right)$.

Definition

Any operation of the form f_{σ} is called a minor of f.

Definition

A minor-preserving map is a map $\xi: \mathcal{A} \rightarrow \mathcal{B}$ such that

- ξ preserves arities;
- $\xi\left(f_{\sigma}\right)=\xi(f)_{\sigma}$ for any n-ary operation $f \in \mathcal{A}$ and $\sigma: E_{n} \rightarrow E_{r}$.
(It is a weakening of the notion of clone homomorphism.

Motivation: Universal Algebra

Let f be any n-ary operation and $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}\left(x_{0}, \ldots, x_{r-1}\right):=f\left(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)}\right)$.

Definition

Any operation of the form f_{σ} is called a minor of f.

Definition

A minor-preserving map is a map $\xi: \mathcal{A} \rightarrow \mathcal{B}$ such that

- ξ preserves arities;
- $\xi\left(f_{\sigma}\right)=\xi(f)_{\sigma}$ for any n-ary operation $f \in \mathcal{A}$ and $\sigma: E_{n} \rightarrow E_{r}$.
(It is a weakening of the notion of clone homomorphism.

Theorem (Birkhoff, 1935)

Let \mathcal{A}, \mathcal{B} be clones over finite sets. The following are equivalent:
(1) There exists a clone homomorphism from \mathcal{A} to \mathcal{B};
(2) $\mathcal{B} \in E \boldsymbol{H S} \boldsymbol{P}_{\mathrm{fin}}(\mathcal{A})$.

Motivation: Universal Algebra

Let f be any n-ary operation and $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}\left(x_{0}, \ldots, x_{r-1}\right):=f\left(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)}\right)$.

Definition

Any operation of the form f_{σ} is called a minor of f.

Definition

A minor-preserving map is a map $\xi: \mathcal{A} \rightarrow \mathcal{B}$ such that

- ξ preserves arities;
- $\xi\left(f_{\sigma}\right)=\xi(f)_{\sigma}$ for any n-ary operation $f \in \mathcal{A}$ and $\sigma: E_{n} \rightarrow E_{r}$.
(It is a weakening of the notion of clone homomorphism.

Theorem (Barto, Opršal, Pinsker, 2015)

Let \mathcal{A}, \mathcal{B} be clones over finite sets. The following are equivalent:
(1) There exists a minor-preserving map from \mathcal{A} to $\mathcal{B}\left(\mathcal{A} \leq_{\mathrm{m}} \mathcal{B}\right)$;
(2) $\mathcal{B} \in \boldsymbol{E} \boldsymbol{R} \boldsymbol{P}_{\mathrm{fin}}(\mathcal{A})$.

Motivation: Universal Algebra

Let f be any n-ary operation and $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, r\}$. We write f_{σ} to denote $f_{\sigma}\left(x_{0}, \ldots, x_{r-1}\right):=f\left(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)}\right)$.

Definition

Any operation of the form f_{σ} is called a minor of f.

Definition

A minor-preserving map is a map $\xi: \mathcal{A} \rightarrow \mathcal{B}$ such that

- ξ preserves arities;
- $\xi\left(f_{\sigma}\right)=\xi(f)_{\sigma}$ for any n-ary operation $f \in \mathcal{A}$ and $\sigma: E_{n} \rightarrow E_{r}$.
- It is a weakening of the notion of clone homomorphism.

Theorem (Barto, Opršal, Pinsker, 2015)

Let \mathcal{A}, \mathcal{B} be clones over finite sets. The following are equivalent:
(1) There exists a minor-preserving map from \mathcal{A} to $\mathcal{B}\left(\mathcal{A} \leq_{\mathrm{m}} \mathcal{B}\right)$;
(2) $\mathcal{B} \in E R \boldsymbol{P}_{\text {fin }}(\mathcal{A})$.

Motivation: CSP

- \mathbb{A}, \mathbb{B} : finite relational structure with finite signature;
- a given primitive positive τ-sentence Φ.

Definition

$\operatorname{CSP}(\mathbb{A})$ is the computational problem of deciding whether Φ is true in \mathbb{A}.

Motivation: CSP

- \mathbb{A}, \mathbb{B} : finite relational structure with finite signature;
- a given primitive positive τ-sentence Φ.

Definition

$\operatorname{CSP}(\mathbb{A})$ is the computational problem of deciding whether Φ is true in \mathbb{A}.

Definition

\mathbb{B} is a pp-power of \mathbb{A} if it is isomorphic to a structure with domain A^{n}, where $n \geq 1$, whose relations are pp-definable from \mathbb{A}.

Motivation: CSP

- \mathbb{A}, \mathbb{B} : finite relational structure with finite signature;
- a given primitive positive τ-sentence Φ.

Definition

$\operatorname{CSP}(\mathbb{A})$ is the computational problem of deciding whether Φ is true in \mathbb{A}.

Definition

\mathbb{B} is a pp-power of \mathbb{A} if it is isomorphic to a structure with domain A^{n}, where $n \geq 1$, whose relations are pp-definable from \mathbb{A}.

Definition

\mathbb{A} pp-constructs \mathbb{B} if \mathbb{B} is homomorphically equivalent to a pp-power of \mathbb{A}.

Motivation: CSP

- \mathbb{A}, \mathbb{B} : finite relational structure with finite signature;
- a given primitive positive τ-sentence Φ.

Definition

$\operatorname{CSP}(\mathbb{A})$ is the computational problem of deciding whether Φ is true in \mathbb{A}.

Definition

\mathbb{B} is a pp-power of \mathbb{A} if it is isomorphic to a structure with domain A^{n}, where $n \geq 1$, whose relations are $p p$-definable from \mathbb{A}.

Definition

\mathbb{A} pp-constructs \mathbb{B} if \mathbb{B} is homomorphically equivalent to a pp-power of \mathbb{A}.

Theorem (Barto, Opršal, Pinsker '15)

If \mathbb{A} pp-constructs \mathbb{B}, then there exist a log-space reduction from $\operatorname{CSP}(\mathbb{B})$ to $\operatorname{CSP}(\mathbb{A})$.

Motivation: CSP

Theorem (Barto, Opršal, Pinsker, 2015)
Let \mathbb{A}, \mathbb{B} be finite relational structures; $\mathcal{A}=\operatorname{Pol}(\mathbb{A}), \mathcal{B}=\operatorname{Pol}(\mathbb{B})$. TFAE:
(1) There exists a minor-preserving map from \mathcal{A} to $\mathcal{B}\left(\mathcal{A} \leq_{\mathrm{m}} \mathcal{B}\right)$;
(2) \mathbb{A} pp-constructs $\mathbb{B}\left(\mathbb{A} \leq_{\text {Con }} \mathbb{B}\right)$;
(3) if \mathcal{A} satisfies a minor condition Σ, then $\mathcal{B} \models \Sigma$.

Motivation: CSP

Theorem (Barto, Opršal, Pinsker, 2015)

Let \mathbb{A}, \mathbb{B} be finite relational structures; $\mathcal{A}=\operatorname{Pol}(\mathbb{A}), \mathcal{B}=\operatorname{Pol}(\mathbb{B})$. TFAE:
(1) There exists a minor-preserving map from \mathcal{A} to $\mathcal{B}\left(\mathcal{A} \leq_{m} \mathcal{B}\right)$;
(2) \mathbb{A} pp-constructs $\mathbb{B}\left(\mathbb{A} \leq_{\text {Con }} \mathbb{B}\right)$;
(3) if \mathcal{A} satisfies a minor condition Σ, then $\mathcal{B} \models \Sigma$.

Great achievement: CSP Dichotomy Theorem!

- positive solution to the Feder-Vardi conjecture, open since 1998;
- new algebraic theories for finite algebras (Absorption, Bulatov-edges, strong subalgebras...)

Theorem (Bulatov 2017; Zhuk 2017)

If there is no minor-preserving map from \mathcal{A} to \mathcal{P}_{2}, then $\operatorname{CSP}(\mathbb{A})$ is in P. Otherwise, $\operatorname{CSP}(\mathbb{A})$ is NP-complete

Motivation: CSP

Theorem (Barto, Opršal, Pinsker, 2015)

Let \mathbb{A}, \mathbb{B} be finite relational structures; $\mathcal{A}=\operatorname{Pol}(\mathbb{A}), \mathcal{B}=\operatorname{Pol}(\mathbb{B})$. TFAE:
(1) There exists a minor-preserving map from \mathcal{A} to $\mathcal{B}\left(\mathcal{A} \leq_{m} \mathcal{B}\right)$;
(2) \mathbb{A} pp-constructs $\mathbb{B}\left(\mathbb{A} \leq_{\text {Con }} \mathbb{B}\right)$;
(3) if \mathcal{A} satisfies a minor condition Σ, then $\mathcal{B} \models \Sigma$.

Great achievement: CSP Dichotomy Theorem!

- positive solution to the Feder-Vardi conjecture, open since 1998;
- new algebraic theories for finite algebras (Absorption, Bulatov-edges, strong subalgebras...)

Theorem (Bulatov 2017; Zhuk 2017)

If \mathbb{A} does not pp-construct $\mathbb{K}_{3}=(\{0,1,2\} ; \neq)$, then $\operatorname{CSP}(\mathbb{A})$ is in P. Otherwise, $\operatorname{CSP}(\mathbb{A})$ is NP-complete

Motivation: CSP

Theorem (Barto, Opršal, Pinsker, 2015)

Let \mathbb{A}, \mathbb{B} be finite relational structures; $\mathcal{A}=\operatorname{Pol}(\mathbb{A}), \mathcal{B}=\operatorname{Pol}(\mathbb{B})$. TFAE:
(1) There exists a minor-preserving map from \mathcal{A} to $\mathcal{B}\left(\mathcal{A} \leq_{m} \mathcal{B}\right)$;
(2) \mathbb{A} pp-constructs $\mathbb{B}\left(\mathbb{A} \leq_{\text {Con }} \mathbb{B}\right)$;
(3) if \mathcal{A} satisfies a minor condition Σ, then $\mathcal{B} \models \Sigma$.

Great achievement: CSP Dichotomy Theorem!

- positive solution to the Feder-Vardi conjecture, open since 1998;
- new algebraic theories for finite algebras (Absorption, Bulatov-edges, strong subalgebras,...)

Theorem (Bulatov 2017; Zhuk 2017)

If \mathcal{A} satisfies a non-trivial minor condition, then $\operatorname{CSP}(\mathbb{A})$ is in P. Otherwise, $\operatorname{CSP}(\mathbb{A})$ is NP-complete

The pp-constructability poset

- \leq_{m} is a quasi order.

The pp-constructability poset

- \leq_{m} is a quasi order.
- We write $\mathcal{C} \equiv_{\mathrm{m}} \mathcal{D}$ iff $\mathcal{C} \leq_{\mathrm{m}} \mathcal{D}$ and $\mathcal{D} \leq_{\mathrm{m}} \mathcal{C}$. (minor-equivalent)

The pp-constructability poset

- \leq_{m} is a quasi order.
- We write $\mathcal{C} \equiv_{\mathrm{m}} \mathcal{D}$ iff $\mathcal{C} \leq_{\mathrm{m}} \mathcal{D}$ and $\mathcal{D} \leq_{\mathrm{m}} \mathcal{C}$. (minor-equivalent)
- $\overline{\mathcal{C}}$ is the \equiv_{m}-class of \mathcal{C}.

The pp-constructability poset

- \leq_{m} is a quasi order.
- We write $\mathcal{C} \equiv_{\mathrm{m}} \mathcal{D}$ iff $\mathcal{C} \leq_{\mathrm{m}} \mathcal{D}$ and $\mathcal{D} \leq_{\mathrm{m}} \mathcal{C}$. (minor-equivalent)
- $\overline{\mathcal{C}}$ is the \equiv_{m}-class of \mathcal{C}.

Definition

$$
\begin{aligned}
\mathfrak{P}_{\mathrm{fin}} & :=\left(\overline{\mathcal{C}} \mid \mathcal{C} \text { is a clone over some finite set; } \leq_{\mathrm{m}}\right) \\
\mathfrak{P}_{n} & :=\left(\overline{\mathcal{C}} \mid \mathcal{C} \text { is a clone over }\{0, \ldots, n-1\} ; \leq_{\mathrm{m}}\right)
\end{aligned}
$$

The pp-constructability poset

- \leq_{m} is a quasi order.
- We write $\mathcal{C} \equiv_{\mathrm{m}} \mathcal{D}$ iff $\mathcal{C} \leq_{\mathrm{m}} \mathcal{D}$ and $\mathcal{D} \leq_{\mathrm{m}} \mathcal{C}$. (minor-equivalent)
- $\overline{\mathcal{C}}$ is the \equiv_{m}-class of \mathcal{C}.

Definition

$$
\begin{aligned}
\mathfrak{P}_{\mathrm{fin}} & :=\left(\overline{\mathcal{C}} \mid \mathcal{C} \text { is a clone over some finite set; } \leq_{\mathrm{m}}\right) \\
\mathfrak{P}_{n} & :=\left(\overline{\mathcal{C}} \mid \mathcal{C} \text { is a clone over }\{0, \ldots, n-1\} ; \leq_{\mathrm{m}}\right)
\end{aligned}
$$

The pp-constructability poset

- \leq_{m} is a quasi order. ($\leq_{\text {Con }}$ is a quasi order)
- We write $\mathbb{C} \equiv_{\mathrm{m}} \mathbb{D}$ iff $\mathbb{C} \leq_{\text {Con }} \mathbb{D}$ and $\mathbb{D} \leq_{\text {Con }} \mathbb{C}$. (pp-equivalent)
- $\overline{\mathcal{C}}$ is the \equiv_{m}-class of $\mathcal{C}\left(\overline{\mathbb{C}}\right.$ is the $\left.\equiv_{\text {Con-class of }} \mathbb{C}\right)$.

Definition

$$
\begin{aligned}
\mathfrak{P}_{\text {fin }} & :=\left(\overline{\mathcal{C}} \mid \mathcal{C} \text { is a clone over some finite set } ; \leq_{\mathrm{m}}\right) \\
\mathfrak{P}_{n} & :=\left(\overline{\mathcal{C}} \mid \mathcal{C} \text { is a clone over }\{0, \ldots, n-1\} ; \leq_{\mathrm{m}}\right)
\end{aligned}
$$

The pp-constructability poset

- \leq_{m} is a quasi order. ($\leq_{\text {Con }}$ is a quasi order)
- We write $\mathbb{C} \equiv_{\mathrm{m}} \mathbb{D}$ iff $\mathbb{C} \leq_{\text {Con }} \mathbb{D}$ and $\mathbb{D} \leq_{\text {Con }} \mathbb{C}$. (pp-equivalent)
- $\overline{\mathcal{C}}$ is the \equiv_{m}-class of $\mathcal{C}\left(\overline{\mathbb{C}}\right.$ is the $\left.\equiv_{\text {Con-class of }} \mathbb{C}\right)$.

Definition

$$
\begin{aligned}
\mathfrak{P}_{\text {fin }} & :=\left(\overline{\mathcal{C}} \mid \mathcal{C} \text { is a clone over some finite set } ; \leq_{\mathrm{m}}\right) \\
\mathfrak{P}_{n} & :=\left(\overline{\mathcal{C}} \mid \mathcal{C} \text { is a clone over }\{0, \ldots, n-1\} ; \leq_{\mathrm{m}}\right)
\end{aligned}
$$

How powerful are minor-preserving maps?

Post's lattice (Post)

How powerful are minor-preserving maps?

Post's lattice (Post)

\mathcal{P}_{2}
(Bodirsky, V.)

How powerful are minor-preserving maps?

Clones of self-dual operations (Zhuk)

How powerful are minor-preserving maps?

Clones of self-dual operations (Zhuk)

Clones of self-dual operations modulo minor-equivalence (Bodirsky, V., Zhuk)

$\mathfrak{P}_{\text {fin }}$ is a semilattice

- \mathbb{A} and \mathbb{B} be finite relational structures;

$\mathfrak{P}_{\text {fin }}$ is a semilattice

- \mathbb{A} and \mathbb{B} be finite relational structures;
- for every $f \in \operatorname{Pol}(\mathbb{A}), g \in \operatorname{Pol}(\mathbb{B})$; define an operation h on $A \times B$ $h:=(f, g) \in \operatorname{Pol}(\mathbb{A}) \times \operatorname{Pol}(\mathbb{B})$ as follows

$$
h\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right):=\left(f\left(a_{1}, \ldots, a_{n}\right), g\left(b_{1}, \ldots, b_{n}\right)\right)
$$

where $a_{i} \in A$ and $b_{i} \in B$ for every $i \in\{1, \ldots, n\}$.

$\mathfrak{P}_{\text {fin }}$ is a semilattice

- \mathbb{A} and \mathbb{B} be finite relational structures;
- for every $f \in \operatorname{Pol}(\mathbb{A}), g \in \operatorname{Pol}(\mathbb{B})$; define an operation h on $A \times B$ $h:=(f, g) \in \operatorname{Pol}(\mathbb{A}) \times \operatorname{Pol}(\mathbb{B})$ as follows

$$
h\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right):=\left(f\left(a_{1}, \ldots, a_{n}\right), g\left(b_{1}, \ldots, b_{n}\right)\right)
$$

where $a_{i} \in A$ and $b_{i} \in B$ for every $i \in\{1, \ldots, n\}$.

- $\Gamma^{\mathbb{A} \otimes \mathbb{R}}:=\operatorname{lnv}(\{(f, g) \mid f \in \operatorname{Pol}(\mathbb{A}), g \in \operatorname{Pol}(\mathbb{B})\})$; we define

$$
\mathbb{A} \otimes \mathbb{B}:=\left(A \times B ; \Gamma^{\mathbb{A} \otimes \mathbb{B}}\right) .
$$

Proposition

$\overline{\mathbb{A} \otimes \mathbb{B}}$ is the greatest lower bound of $\overline{\mathbb{A}}$ and $\overline{\mathbb{B}}$.

Are there atoms in $\mathfrak{X}_{\text {fin }}$?

Are there atoms in $\mathfrak{P}_{\text {fin }}$?

Theorem

$\mathfrak{P}_{\mathrm{fin}}$ has no atoms.

Are there atoms in $\mathfrak{X}_{\text {fin }}$?

Theorem

$\mathfrak{P}_{\text {fin }}$ has no atoms.
Sketch of the proof:

- given a finite structure \mathbb{A} such that $\overline{\mathbb{A}} \neq \overline{\mathbb{K}_{3}},(\star)$;
- show: $\exists \mathbb{B}$ finite structure such that $\overline{\mathbb{B}}<{ }_{\text {Con }} \overline{\mathbb{A}}$ and $\overline{\mathbb{B}} \neq \overline{\mathbb{K}_{3}}$;

Are there atoms in $\mathfrak{P}_{\text {fin }}$?

Theorem

$\mathfrak{P}_{\text {fin }}$ has no atoms.
Sketch of the proof:

- given a finite structure \mathbb{A} such that $\overline{\mathbb{A}} \neq \overline{\mathbb{K}_{3}},(\star)$;
- show: $\exists \mathbb{B}$ finite structure such that $\overline{\mathbb{B}} \ll_{\text {Con }} \overline{\mathbb{A}}$ and $\overline{\mathbb{B}} \neq \overline{\mathbb{K}_{3}}$;
- from (\star) it follows that $\mathbb{A} \models c\left(x_{1}, \ldots, x_{p}\right) \approx c\left(x_{2}, \ldots, x_{p}, x_{1}\right)$, for some prime $p>|A|\left(\mathbb{A} \models \Sigma_{p}\right)$;

Are there atoms in $\mathfrak{P}_{\text {fin }}$?

Theorem

$\mathfrak{P}_{\text {fin }}$ has no atoms.
Sketch of the proof:

- given a finite structure \mathbb{A} such that $\overline{\mathbb{A}} \neq \overline{\mathbb{K}_{3}},(\star)$;
- show: $\exists \mathbb{B}$ finite structure such that $\overline{\mathbb{B}} \ll_{\text {Con }} \overline{\mathbb{A}}$ and $\overline{\mathbb{B}} \neq \overline{\mathbb{K}_{3}}$;
- from (\star) it follows that $\mathbb{A} \models c\left(x_{1}, \ldots, x_{p}\right) \approx c\left(x_{2}, \ldots, x_{p}, x_{1}\right)$, for some prime $p>|A|\left(\mathbb{A} \models \Sigma_{p}\right)$;
- take $\mathbb{B}=\mathbb{A} \otimes \mathbb{C}_{p}$
(1) $\mathbb{B} \notin \Sigma_{p} \Longrightarrow \overline{\mathbb{B}}<_{\text {Con }} \overline{\mathbb{A}}$
(2) $\mathbb{B} \vDash \Sigma_{q}$, for some $q>p \cdot|A| \Longrightarrow \overline{\mathbb{B}} \neq \overline{\mathbb{K}_{3}}$.

Are there atoms in \mathfrak{P}_{n} ?

Where to look

- Minimal Taylor Clones

Barto, Brady, Bulatov, Kozik, and Zhuk (2021)

Are there atoms in \mathfrak{P}_{n} ?

Where to look:

- Minimal Taylor Clones

Barto, Brady, Bulatov, Kozik, and Zhuk (2021)

- $\overline{\mathcal{C}}$ atom in $\mathfrak{P}_{n} \Longrightarrow \mathcal{C}$ is a minimal Taylor clone over $\{0, \ldots, n-1\}$;

Are there atoms in \mathfrak{P}_{n} ?

Where to look:

- Minimal Taylor Clones

Barto, Brady, Bulatov, Kozik, and Zhuk (2021)

- $\overline{\mathcal{C}}$ atom in $\mathfrak{P}_{n} \Longrightarrow \mathcal{C}$ is a minimal Taylor clone over $\{0, \ldots, n-1\}$;
- What about the other direction (\Longleftarrow) ?

Are there atoms in \mathfrak{P}_{n} ?

Where to look

- Minimal Taylor Clones

Barto, Brady, Bulatov, Kozik, and Zhuk (2021)

- $\overline{\mathcal{C}}$ atom in $\mathfrak{P}_{n} \Longrightarrow \mathcal{C}$ is a minimal Taylor clone over $\{0, \ldots, n-1\}$;
- What about the other direction (\Longleftarrow) ?
(1) $\mathrm{n}=2$ Minimal Taylor clones: $\langle V\rangle,\langle\wedge\rangle,\left\langle d_{3}\right\rangle,\langle m\rangle$

Atoms in $\mathfrak{P}_{2}: \overline{\langle\vee\rangle}=\overline{\langle\Lambda\rangle}, \overline{\langle m\rangle}, \overline{\left\langle d_{3}\right\rangle}$.

Are there atoms in \mathfrak{P}_{n} ?

Where to look

- Minimal Taylor Clones

Barto, Brady, Bulatov, Kozik, and Zhuk (2021)

- $\overline{\mathcal{C}}$ atom in $\mathfrak{P}_{n} \Longrightarrow \mathcal{C}$ is a minimal Taylor clone over $\{0, \ldots, n-1\}$;
- What about the other direction (\Longleftarrow) ?
(1) $\mathrm{n}=2$ Minimal Taylor clones: $\langle\vee\rangle,\langle\wedge\rangle,\left\langle d_{3}\right\rangle,\langle m\rangle$

Atoms in $\mathfrak{P}_{2}: \overline{\langle\vee\rangle}=\overline{\langle\Lambda\rangle}, \overline{\langle m\rangle}, \overline{\left\langle d_{3}\right\rangle}$.

(2) $\mathrm{n}=3$ False! \Longrightarrow "Atoms are better than Minimal Taylor" (Barto, Brady, V., Zhuk)

Are there atoms in \mathfrak{P}_{n} ?

Submaximal elements in \mathfrak{P}_{3}

\mathbb{C}_{p} : directed cycle of length p; $\mathbb{B}_{2}=(\{0,1\} ;\{(0,1),(1,0),(1,1)\})$.

Submaximal elements in \mathfrak{P}_{3}

\mathbb{C}_{p} : directed cycle of length p; $\mathbb{B}_{2}=(\{0,1\} ;\{(0,1),(1,0),(1,1)\})$.

Theorem (V., Zhuk)

\mathfrak{P}_{3} has exactly three submaximal elements: $\overline{\mathcal{C}_{2}}, \overline{\mathcal{C}_{3}}$, and $\overline{\mathcal{B}_{2}}$

Submaximal elements in \mathfrak{P}_{3}

Cardinality of \mathfrak{P}_{3}

- Below $\overline{\mathcal{C}_{3}}$: Fully described. (Bodirsky, V., Zhuk)

Cardinality of \mathfrak{P}_{3}

- Below $\overline{\mathcal{C}_{3}}$: Fully described. (Bodirsky, V., Zhuk)

Theorem (Bulatov 2001)

There are only finitely many clones on $\{0,1,2\}$ with a Mal'cev operation.

Cardinality of \mathfrak{P}_{3}

- Below $\overline{\mathcal{C}_{3}}$: Fully described. (Bodirsky, V., Zhuk)

Theorem (Bulatov 2001)

There are only finitely many clones on $\{0,1,2\}$ with a Mal'cev operation.

- Below $\overline{\mathcal{C}_{2}}$: Mild! ©
- Below $\overline{\mathcal{B}_{2}}$: Wild! (potentially 2^{ω} elements) ©

Ongoing

(1) Cardinality of $\mathfrak{P}_{\text {fin }}$: We know where to look (again below $\overline{\mathbb{B}_{2}}$).

Theorem (Aichinger, Mayr, McKenzie 2014)
There are only countably many clones over $\{0, \ldots, n-1\}$ containing a Mal'cev operation.

Ongoing

(1) Cardinality of $\mathfrak{P}_{\text {fin }}$: We know where to look (again below $\overline{\mathbb{B}_{2}}$).

Theorem (Aichinger, Mayr, McKenzie 2014)
There are only countably many clones over $\{0, \ldots, n-1\}$ containing a Mal'cev operation.
(2) Clones "defined by binary relations" Talk by D. Zhuk PALS - 14 March 2023 (a.k.a. π-day)

Ongoing

(1) Cardinality of $\mathfrak{P}_{\text {fin }}$: We know where to look (again below $\overline{\mathbb{B}_{2}}$).

Theorem (Aichinger, Mayr, McKenzie 2014)
There are only countably many clones over $\{0, \ldots, n-1\}$ containing a Mal'cev operation.
(2) Clones "defined by binary relations" Talk by D. Zhuk PALS - 14 March 2023 (a.k.a. π-day)
(3) Mal'cev clones over $\{0,1,2\}$ up to minor-equivalence (Fioravanti, Rossi, V.).

