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Clones

Definition

A clone C is a set of operations over a finite set A such that
@ C contains all the projections,
@ C is closed under composition.

If F is a set of operations, we denote by (F) the clone generated by F,
i.e., the smallest clone containing F.

A\

Consider the universe {0,1}:
o Py = (D) (the clone of all projections on {0,1});
e 7, .= (A,m) (the clone of all idempotent operations on {0,1});
e (0) (the clone generated by the constant operation 0).
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A Galois connection for clones

An operation f: A" — A preserves a k-ary relation R on A if

flain aip ain)

f(aku,l a2 ak.n)

€
R

In this case, we also say that R is invariant under f.

\

Definition

e f is a polymorphism of A = (A;T) if f preserves R, for every R € T.
@ Pol(A) = {f | f is a polymorphism of A} (the polym. clone of A).
e Inv(F)= {R | R is invariant under every operation in F}.

\
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A Galois Connection for clones

@ A: a T-structure,

@ ¢(x1,...,x,) be a 7-formula with n free-variables x1, ..., x,.

Definition
We call {(a1,...,an) | A |E é(a1,...,an)} the relation defined by ¢.

If ¢ is primitive positive, then this relation is said to be pp-definable in A.

Theorem (Geiger; Bodnaréuk, Kaluznin, Kotov, Romov)

A relation R is pp-definable in A <= R is in Inv(Pol(A)).

Theorem (Geiger; Bodnaréuk, Kaluznin, Kotov, Romov)

If F is a set of operations on a finite domain, then Pol(Inv(F)) = (F).
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A Galois connection for clones
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o A, B: relational structures on the same finite universe A,
e A = Pol(A) and 5 = Pol(B).
Then A pp-defines B «<— A C B.
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A new order

@ What we want: clones that satisfy the same minor conditions to be
in the same class.

e 7: set of function symbols;

A minor identity (height 1 identity) is an identity of the form

flas o xa) =gy, ym)

where f, g € T and x1,...,Xn, Y1, --.,Ym are not necessarily distinct.

o Minor condition: Finite set of minor identities.

@ Some examples:
flx,y) = fly,x) v
F(f(x,y),2) = f(x, f(y, 2)) %
m(x,x,y) =~ m(y,x,x) = m(y,y,y) v (quasi Mal'cev)



A new order

@ What we want: clones that satisfy the same minor conditions to be
in the same class.

Definition

e 7: set of function symbols;
A minor identity (height 1 identity) is an identity of the form

X1y Xn) = g(V1y- oy Ym)

where f, g € T and x1,...,Xn, Y1,-- ., Ym are not necessarily distinct.

e Minor condition: Finite set of minor identities.

Definition

We say that F satisfies X (F |= X) if there is a map £ assigning to each
function symbol occurring in X an operation in F of the same arity, such
that if p ~ q is in X, then £(p) = £(q).

| \
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e ¢(f,) = &(f), for any n-ary operation f € A and o: E, — E,.
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Theorem (Birkhoff, 1935)

Let A, B be clones over finite sets. The following are equivalent:

© There exists a clone homomorphism from A to B;
@ B EHSPg,(A).
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Motivation: Universal Algebra

Let 7 be any n-ary operation and o: {1,...,n} — {1,...,r}.

We write f, to denote f,(xo, .. ., Xr—1) = F(Xp(0)s -+ - Xo(n—1))-
Any operation of the form f, is called a minor of f. )
Definition

A minor-preserving map is a map &: A — B such that

@ & preserves arities;

e ¢(f,) = &(f), for any n-ary operation f € A and o: E, — E,.
@ It is a weakening of the notion of clone homomorphism.

Theorem (Barto, Opr3al, Pinsker, 2015)

Let A, B be clones over finite sets. The following are equivalent:
@ There exists a minor-preserving map from A to B (A <., B);
© B ERPg,(A). NO GALOIS CONNECTION

=, —

A



Motivation: CSP

e A, B: finite relational structure with finite signature;
@ a given primitive positive T-sentence .

Definition

CSP(A) is the computational problem of deciding whether ® is true in A.




Motivation: CSP

e A, B: finite relational structure with finite signature;
@ a given primitive positive T-sentence .

Definition

CSP(A) is the computational problem of deciding whether ® is true in A.

Definition

B is a pp-power of A if it is isomorphic to a structure with domain A",
where n > 1, whose relations are pp-definable from A.




Motivation: CSP

e A, B: finite relational structure with finite signature;
@ a given primitive positive T-sentence .

Definition

CSP(A) is the computational problem of deciding whether ® is true in A.

Definition

B is a pp-power of A if it is isomorphic to a structure with domain A",
where n > 1, whose relations are pp-definable from A.

Definition

A pp-constructs B if B is homomorphically equivalent to a pp-power of A.




Motivation: CSP

e A, B: finite relational structure with finite signature;
@ a given primitive positive T-sentence .

Definition

CSP(A) is the computational problem of deciding whether ® is true in A. |

Definition
B is a pp-power of A if it is isomorphic to a structure with domain A",
where n > 1, whose relations are pp-definable from A.

Definition

A pp-constructs B if B is homomorphically equivalent to a pp-power of A.
.

Theorem (Barto, Opr3al, Pinsker “15)

If A pp-constructs B, then there exist a log-space reduction from

CSP(B) to CSP(A).
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Theorem (Barto, Opr3al, Pinsker, 2015)

Let A, B be finite relational structures; A = Pol(A), B = Pol(B). TFAE:
@ There exists a minor-preserving map from A to B (A <., B);
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Great achievement: CSP Dichotomy Theorem!
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(Absorption, Bulatov-edges, strong subalgebras...)

Theorem (Bulatov 2017; Zhuk 2017)
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Otherwise, CSP(A) is NP-complete




Motivation: CSP

Theorem (Barto, Opr3al, Pinsker, 2015)

Let A, B be finite relational structures; A = Pol(A), B = Pol(B). TFAE:
@ There exists a minor-preserving map from A to B (A <., B);
@ A pp-constructs B (A <con, B);
© if A satisfies a minor condition ¥, then B = X.

Great achievement: CSP Dichotomy Theorem!
@ positive solution to the Feder-Vardi conjecture, open since 1998;

@ new algebraic theories for finite algebras
(Absorption, Bulatov-edges, strong subalgebras,...)

Theorem (Bulatov 2017; Zhuk 2017)

If A satisfies a non-trivial minor condition, then CSP(A) is in P.
Otherwise, CSP(A) is NP-complete
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e C is the =p,~class of C (C is the =c,,,~class of C).

Definition
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Clones of self-dual operations
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How powerful are minor-preserving maps?

Clones of self-dual operations Clones of self-dual operations
(Zhuk) modulo minor-equivalence
(Bodirsky, V., Zhuk)
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P is a semilattice

@ A and B be finite relational structures;

e for every f € Pol(A), g € Pol(B); define an operation hon A x B
h:=(f,g) € Pol(A) x Pol(B) as follows

where a; € A and b; € B for every i € {1,...,n}.
o M =Inv({(f,g) | f € Pol(A), g € Pol(B)}); we define

A®B = (Ax B;TA®B),

Proposition
A ® B is the greatest lower bound of A and B.
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Are there atoms in P, 7

PBn has no atoms.

Sketch of the proof:
e given a finite structure A such that A # Kjs, (%);
@ show: JB finite structure such that B <con A and B # Kj;
e from (%) it follows that A = c(x1,...,x,) = c(x2, ..., Xy, x1), for
some prime p > |A| (A = X,);
o take B=A®C,
OBFEY, =B <comA
©Q BE X, forsome g>p-|A = B #Ks.
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e C atom in B, = C is a minimal Taylor clone over {0,...,n—1};
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© n=2 Minimal Taylor clones: (V), (A), (d3), (m)

Atoms in Pa: (V) = (A), (m), (ds).



Are there atoms in B,7

‘Where to look -
@ Minimal Taylor Clones
Barto, Brady, Bulatov, Kozik, and Zhuk (2021)
e C atom in B, = C is a minimal Taylor clone over {0,...,n—1};
e What about the other direction («<=)7
© n=2 Minimal Taylor clones: (V), (A), (d3), (m)

Atoms in Pa: (V) = (A), (m), (ds).

© n=3 Falsel = "Atoms are better than Minimal Taylor"
(Barto, Brady, V., Zhuk)



Are there atoms in B,7




Submaximal elements in 33

Cp: directed cycle of length p;

By = ({Oa 1}; {(Ov 1)7 (l’ 0)5 (17 1)})



Submaximal elements in 33

Cp: directed cycle of length p;
B2 = ({0,1};{(0,1),(1,0), (1,1)}).
Theorem (V., Zhuk)

B3 has exactly three submaximal elements: Co, Cs, and By
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Cardinality of B3

° - Fully described. (Bodirsky, V., Zhuk)

Theorem (Bulatov 2001)

There are only finitely many clones on {0,1,2} with a
Mal’cev operation.

e Below C>: Mild! .

e Below By: Wild! (potentially 2 elements) ©
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Ongoing

@ Cardinality of Pr,: We know where to look (again below B,).

Theorem (Aichinger, Mayr, McKenzie 2014)

There are only countably many clones over {0,...,n— 1} containing a
Mal’cev operation.

© Clones "defined by binary relations" Talk by D. Zhuk
PALS — 14 March 2023 (a.k.a. 7-day)

© Mal'cev clones over {0, 1,2} up to minor-equivalence
(Fioravanti, Rossi, V.).






