### Talk #9: Maltsev classification



Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization.

Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization. I will expand by constants in each case.

Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization. I will expand by constants in each case.

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$
:

Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization. I will expand by constants in each case.

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$
:

This group has 12 nhoods.

Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization. I will expand by constants in each case.

 $\boxed{ \mathbb{Z}_6 = \{0,1,2,3,4,5\}: }$  This group has 12 nhoods. It has a cover  $\{U,V\}$  where  $U = \{0,3\} = e(\mathbb{Z}_6)$  for e(x) = 3x and  $V = \{0,2,4\} = f(\mathbb{Z}_6)$  for f(x) = 4x.

Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization. I will expand by constants in each case.

 $oxed{\mathbb{Z}_6 = \{0,1,2,3,4,5\}:}$  This group has 12 nhoods. It has a cover  $\{U,V\}$  where  $U = \{0,3\} = e(\mathbb{Z}_6)$  for e(x) = 3x and  $V = \{0,2,4\} = f(\mathbb{Z}_6)$  for f(x) = 4x. A decomposition equation is  $x = \lambda(e\rho_1(x), f\rho_2(x))$  for  $\lambda(x,y) = x + y$  and  $\rho_1(x) = \rho_2(x) = x$ .

Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization. I will expand by constants in each case.

 $oxed{\mathbb{Z}_6 = \{0,1,2,3,4,5\}:}$  This group has 12 nhoods. It has a cover  $\{U,V\}$  where  $U = \{0,3\} = e(\mathbb{Z}_6)$  for e(x) = 3x and  $V = \{0,2,4\} = f(\mathbb{Z}_6)$  for f(x) = 4x. A decomposition equation is  $x = \lambda(e\rho_1(x), f\rho_2(x))$  for  $\lambda(x,y) = x + y$  and  $\rho_1(x) = \rho_2(x) = x$ . The induced algebras  $e(\mathbb{Z}_6) = \mathbb{Z}_6|_U$  and  $f(\mathbb{Z}_6) = \mathbb{Z}_6|_V$  are polynomially equivalent to the 2-element group and the 3-element group, respectively.

Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization. I will expand by constants in each case.

$$D_3 = \{1, r, r^2, s, sr, sr^2\}$$
:

Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization. I will expand by constants in each case.

where  $U = \{0, 1, 2, 3, 4, 5\}$ : This group has 12 nhoods. It has a cover  $\{U, V\}$  where  $U = \{0, 3\} = e(\mathbb{Z}_6)$  for e(x) = 3x and  $V = \{0, 2, 4\} = f(\mathbb{Z}_6)$  for f(x) = 4x. A decomposition equation is  $x = \lambda(e\rho_1(x), f\rho_2(x))$  for  $\lambda(x, y) = x + y$  and  $\rho_1(x) = \rho_2(x) = x$ . The induced algebras  $e(\mathbb{Z}_6) = \mathbb{Z}_6|_U$  and  $f(\mathbb{Z}_6) = \mathbb{Z}_6|_V$  are polynomially equivalent to the 2-element group and the 3-element group, respectively.

 $D_3 = \{1, r, r^2, s, sr, sr^2\}$ : This group has  $\geq 24$  nhoods.

Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization. I will expand by constants in each case.

 $D_3 = \{1, r, r^2, s, sr, sr^2\}$ : This group has  $\geq 24$  nhoods. It has a cover  $\{U, V\}$  where  $U = \{1, s\} = e(D_3)$  for  $e(x) = s(sx^3)^3$  and  $V = \{1, r, r^2\} = f(D_3)$  for  $f(x) = x^4(sx^4)$ .

Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization. I will expand by constants in each case.

 $D_3 = \{1, r, r^2, s, sr, sr^2\}: \quad \text{This group has} \geq 24 \text{ nhoods. It has a cover} \\ \{U, V\} \text{ where } U = \{1, s\} = e(D_3) \text{ for } e(x) = s(sx^3)^3 \text{ and} \\ V = \{1, r, r^2\} = f(D_3) \text{ for } f(x) = x^4(sx^4). \text{ A decomposition equation is} \\ x = \lambda(e\rho_1(x), f\rho_2(x)) \text{ for } \lambda(x, y) = x \cdot y \text{ and } \rho_1(x) = \rho_2(x) = x.$ 

Let's compare the two 6-element groups  $\mathbb{Z}_6$  and  $D_3$  with respect to localization. I will expand by constants in each case.

 $\begin{array}{l} \boxed{D_3=\{1,r,r^2,s,sr,sr^2\}:} \quad \text{This group has} \geq 24 \text{ nhoods. It has a cover} \\ \{U,V\} \text{ where } U=\{1,s\}=e(D_3) \text{ for } e(x)=s(sx^3)^3 \text{ and} \\ V=\{1,r,r^2\}=f(D_3) \text{ for } f(x)=x^4(sx^4). \text{ A decomposition equation is} \\ x=\lambda(e\rho_1(x),f\rho_2(x)) \text{ for } \lambda(x,y)=x\cdot y \text{ and } \rho_1(x)=\rho_2(x)=x. \text{ The} \\ \text{induced algebras } f(D_3)=D_3|_U \text{ and } f(D_3)=D_3|_V \text{ are polynomially} \\ \text{equivalent to the 2-element group and the 3-element group, respectively.} \end{array}$ 

• Locally,  $\mathbb{Z}_6$  and  $D_3$  look the same.

• Locally,  $\mathbb{Z}_6$  and  $D_3$  look the same.

• Locally,  $\mathbb{Z}_6$  and  $D_3$  look the same. Locally, each group is covered by neighborhoods that are abelian subgroups.

• Locally,  $\mathbb{Z}_6$  and  $D_3$  look the same. Locally, each group is covered by neighborhoods that are abelian subgroups. There is a bijection between isomorphism types of subgroups in the covers.

- Locally,  $\mathbb{Z}_6$  and  $D_3$  look the same. Locally, each group is covered by neighborhoods that are abelian subgroups. There is a bijection between isomorphism types of subgroups in the covers.
- 2 Even the decomposition equations look the same.

- Locally,  $\mathbb{Z}_6$  and  $D_3$  look the same. Locally, each group is covered by neighborhoods that are abelian subgroups. There is a bijection between isomorphism types of subgroups in the covers.
- 2 Even the decomposition equations look the same.

- Locally,  $\mathbb{Z}_6$  and  $D_3$  look the same. Locally, each group is covered by neighborhoods that are abelian subgroups. There is a bijection between isomorphism types of subgroups in the covers.
- Even the decomposition equations look the same.
- Why is one of the groups abelian and the other is not?

- Locally,  $\mathbb{Z}_6$  and  $D_3$  look the same. Locally, each group is covered by neighborhoods that are abelian subgroups. There is a bijection between isomorphism types of subgroups in the covers.
- Even the decomposition equations look the same.
- Why is one of the groups abelian and the other is not?

- Locally,  $\mathbb{Z}_6$  and  $D_3$  look the same. Locally, each group is covered by neighborhoods that are abelian subgroups. There is a bijection between isomorphism types of subgroups in the covers.
- Even the decomposition equations look the same.
- Why is one of the groups abelian and the other is not?

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ .

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ .

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $C = \{U_1, \dots, U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^{\perp}|_{U_i}$  of the same relational signature as  $\mathbf{A}^{\perp}$ .

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $C = \{U_1, \dots, U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^{\perp}|_{U_i}$  of the same relational signature as  $\mathbf{A}^{\perp}$ .  $\mathbf{A}^{\perp}$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$ 

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $C = \{U_1, \dots, U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^{\perp}|_{U_i}$  of the same relational signature as  $\mathbf{A}^{\perp}$ .  $\mathbf{A}^{\perp}$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$  in a way that is dictated by the decomposition equation.

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $\mathcal{C}=\{U_1,\ldots,U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^\perp|_{U_i}$  of the same relational signature as  $\mathbf{A}^\perp$ .  $\mathbf{A}^\perp$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$  in a way that is dictated by the decomposition equation. For the product to make sense, we need the signatures of the factors to be the same so that we can assign a signature to the product.

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $\mathcal{C}=\{U_1,\ldots,U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^\perp|_{U_i}$  of the same relational signature as  $\mathbf{A}^\perp$ .  $\mathbf{A}^\perp$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$  in a way that is dictated by the decomposition equation. For the product to make sense, we need the signatures of the factors to be the same so that we can assign a signature to the product. These signatures are those inherited from  $\mathbf{A}^\perp$ .

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $\mathcal{C}=\{U_1,\ldots,U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^\perp|_{U_i}$  of the same relational signature as  $\mathbf{A}^\perp$ .  $\mathbf{A}^\perp$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$  in a way that is dictated by the decomposition equation. For the product to make sense, we need the signatures of the factors to be the same so that we can assign a signature to the product. These signatures are those inherited from  $\mathbf{A}^\perp$ .

A group G is abelian if and only if the graph the Maltsev operation is a compatible 4-ary relation:

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $\mathcal{C}=\{U_1,\ldots,U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^\perp|_{U_i}$  of the same relational signature as  $\mathbf{A}^\perp$ .  $\mathbf{A}^\perp$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$  in a way that is dictated by the decomposition equation. For the product to make sense, we need the signatures of the factors to be the same so that we can assign a signature to the product. These signatures are those inherited from  $\mathbf{A}^\perp$ .

A group G is abelian if and only if the graph the Maltsev operation is a compatible 4-ary relation:

$$\rho_G = \{(x, y, z, xy^{-1}z) \mid (x, y, z) \in G^3\} \le G^4.$$

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $\mathcal{C}=\{U_1,\ldots,U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^\perp|_{U_i}$  of the same relational signature as  $\mathbf{A}^\perp$ .  $\mathbf{A}^\perp$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$  in a way that is dictated by the decomposition equation. For the product to make sense, we need the signatures of the factors to be the same so that we can assign a signature to the product. These signatures are those inherited from  $\mathbf{A}^\perp$ .

A group G is abelian if and only if the graph the Maltsev operation is a compatible 4-ary relation:

$$\rho_G = \{(x, y, z, xy^{-1}z) \mid (x, y, z) \in G^3\} \le G^4.$$

 $\mathbb{Z}_6$  is abelian,

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $\mathcal{C}=\{U_1,\ldots,U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^\perp|_{U_i}$  of the same relational signature as  $\mathbf{A}^\perp$ .  $\mathbf{A}^\perp$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$  in a way that is dictated by the decomposition equation. For the product to make sense, we need the signatures of the factors to be the same so that we can assign a signature to the product. These signatures are those inherited from  $\mathbf{A}^\perp$ .

A group G is abelian if and only if the graph the Maltsev operation is a compatible 4-ary relation:

$$\rho_G = \{(x, y, z, xy^{-1}z) \mid (x, y, z) \in G^3\} \le G^4.$$

 $\mathbb{Z}_6$  is abelian, so  $\rho_{\mathbb{Z}_6}$  is a basic relation of  $\mathbb{Z}_6^{\perp}$ 

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $\mathcal{C}=\{U_1,\ldots,U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^\perp|_{U_i}$  of the same relational signature as  $\mathbf{A}^\perp$ .  $\mathbf{A}^\perp$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$  in a way that is dictated by the decomposition equation. For the product to make sense, we need the signatures of the factors to be the same so that we can assign a signature to the product. These signatures are those inherited from  $\mathbf{A}^\perp$ .

A group G is abelian if and only if the graph the Maltsev operation is a compatible 4-ary relation:

$$\rho_G = \{(x, y, z, xy^{-1}z) \mid (x, y, z) \in G^3\} \le G^4.$$

 $\mathbb{Z}_6$  is abelian, so  $\rho_{\mathbb{Z}_6}$  is a basic relation of  $\mathbb{Z}_6^{\perp}$  and  $\rho_{\mathbb{Z}_6}|_U=\rho_U$  and  $\rho_{\mathbb{Z}_6}|_V=\rho_V$ .

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $\mathcal{C}=\{U_1,\ldots,U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^\perp|_{U_i}$  of the same relational signature as  $\mathbf{A}^\perp$ .  $\mathbf{A}^\perp$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$  in a way that is dictated by the decomposition equation. For the product to make sense, we need the signatures of the factors to be the same so that we can assign a signature to the product. These signatures are those inherited from  $\mathbf{A}^\perp$ .

A group G is abelian if and only if the graph the Maltsev operation is a compatible 4-ary relation:

$$\rho_G = \{(x, y, z, xy^{-1}z) \mid (x, y, z) \in G^3\} \le G^4.$$

 $\mathbb{Z}_6$  is abelian, so  $\rho_{\mathbb{Z}_6}$  is a basic relation of  $\mathbb{Z}_6^{\perp}$  and  $\rho_{\mathbb{Z}_6}|_U=\rho_U$  and  $\rho_{\mathbb{Z}_6}|_V=\rho_V$ . On the other hand, there is no compatible relation R of  $D_3$  such that  $R|_U=\rho_U$  and  $R|_V=\rho_V$ .

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $\mathcal{C}=\{U_1,\ldots,U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^\perp|_{U_i}$  of the same relational signature as  $\mathbf{A}^\perp$ .  $\mathbf{A}^\perp$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$  in a way that is dictated by the decomposition equation. For the product to make sense, we need the signatures of the factors to be the same so that we can assign a signature to the product. These signatures are those inherited from  $\mathbf{A}^\perp$ .

A group G is abelian if and only if the graph the Maltsev operation is a compatible 4-ary relation:

$$\rho_G = \{(x, y, z, xy^{-1}z) \mid (x, y, z) \in G^3\} \le G^4.$$

 $\mathbb{Z}_6$  is abelian, so  $\rho_{\mathbb{Z}_6}$  is a basic relation of  $\mathbb{Z}_6^{\perp}$  and  $\rho_{\mathbb{Z}_6}|_U=\rho_U$  and  $\rho_{\mathbb{Z}_6}|_V=\rho_V$ . On the other hand, there is no compatible relation R of  $D_3$  such that  $R|_U=\rho_U$  and  $R|_V=\rho_V$ . Conclusion:

We are studying **A** from a relational point of view,  $\mathbf{A}^{\perp} = \langle A; \operatorname{Rel}(\mathbf{A}) \rangle$ . Each compatible relation of **A** is taken to be a basic relation of  $\mathbf{A}^{\perp}$ . This fixes a relational signature for  $\mathbf{A}^{\perp}$ .

Starting with a cover  $\mathcal{C}=\{U_1,\ldots,U_n\}$  of  $\mathbf{A}$ , we define relational restrictions  $\mathbf{A}^\perp|_{U_i}$  of the same relational signature as  $\mathbf{A}^\perp$ .  $\mathbf{A}^\perp$  is recoverable as a retract of a product of copies of the structures  $\mathbf{A}|_{U_i}$  in a way that is dictated by the decomposition equation. For the product to make sense, we need the signatures of the factors to be the same so that we can assign a signature to the product. These signatures are those inherited from  $\mathbf{A}^\perp$ .

A group G is abelian if and only if the graph the Maltsev operation is a compatible 4-ary relation:

$$\rho_G = \{(x, y, z, xy^{-1}z) \mid (x, y, z) \in G^3\} \le G^4.$$

 $\mathbb{Z}_6$  is abelian, so  $\rho_{\mathbb{Z}_6}$  is a basic relation of  $\mathbb{Z}_6^\perp$  and  $\rho_{\mathbb{Z}_6}|_U=\rho_U$  and  $\rho_{\mathbb{Z}_6}|_V=\rho_V$ . On the other hand, there is no compatible relation R of  $D_3$  such that  $R|_U=\rho_U$  and  $R|_V=\rho_V$ . Conclusion: Local abelianness does not imply global abelianness because of signature differences.

We will argue that satisfaction of linear Maltsev conditions is both preserved and reflected by localization to a cover.

We will argue that satisfaction of linear Maltsev conditions is both preserved and reflected by localization to a cover.

Examples.

We will argue that satisfaction of linear Maltsev conditions is both preserved and reflected by localization to a cover.

#### Examples.

**1** A Maltsev term for a variety  $\mathcal{V}$  is a term M(x, y, z) such that

$$\mathcal{V} \models M(x, y, y) \approx x, \quad M(x, x, y) \approx y.$$

We will argue that satisfaction of linear Maltsev conditions is both preserved and reflected by localization to a cover.

#### Examples.

**1** A Maltsev term for a variety  $\mathcal{V}$  is a term M(x, y, z) such that

$$\mathcal{V} \models M(x, y, y) \approx x, \quad M(x, x, y) \approx y.$$

lacktriangle A majority term for a variety  $\mathcal V$  is a term m(x,y,z) such that

$$\mathcal{V} \models m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x.$$

We will argue that satisfaction of linear Maltsev conditions is both preserved and reflected by localization to a cover.

#### Examples.

**1** A Maltsev term for a variety V is a term M(x, y, z) such that

$$\mathcal{V} \models M(x, y, y) \approx x, \quad M(x, x, y) \approx y.$$

lacktriangle A majority term for a variety  $\mathcal V$  is a term m(x,y,z) such that

$$\mathcal{V} \models m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x.$$

**3** A 'rare area' term for a variety  $\mathcal V$  is a term t(w,x,y,z) such that

$$\mathcal{V} \models t(x, x, x, x) \approx x, \quad t(r, a, r, e) \approx t(a, r, e, a).$$

Definitions.

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables.

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ ,

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ ,  $\mathcal{V}$  satisfies  $\Sigma$  as a Maltsev condition if  $\mathcal{V}$  has a term  $s^{\mathcal{V}}$  for each basic operation symbol s of  $\mathcal{L}$  and  $\mathcal{V} \models s^{\mathcal{V}} \approx t^{\mathcal{V}}$  for each identity  $s \approx t$  in  $\Sigma$ .

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ ,  $\mathcal{V}$  satisfies  $\Sigma$  as a Maltsev condition if  $\mathcal{V}$  has a term  $s^{\mathcal{V}}$  for each basic operation symbol s of  $\mathcal{L}$  and  $\mathcal{V} \models s^{\mathcal{V}} \approx t^{\mathcal{V}}$  for each identity  $s \approx t$  in  $\Sigma$ . Maltsev conditions of this type are called **linear**.

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ ,  $\mathcal{V}$  satisfies  $\Sigma$  as a Maltsev condition if  $\mathcal{V}$  has a term  $s^{\mathcal{V}}$  for each basic operation symbol s of  $\mathcal{L}$  and  $\mathcal{V} \models s^{\mathcal{V}} \approx t^{\mathcal{V}}$  for each identity  $s \approx t$  in  $\Sigma$ . Maltsev conditions of this type are called **linear**.

#### Examples.

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ ,  $\mathcal{V}$  satisfies  $\Sigma$  as a Maltsev condition if  $\mathcal{V}$  has a term  $s^{\mathcal{V}}$  for each basic operation symbol s of  $\mathcal{L}$  and  $\mathcal{V} \models s^{\mathcal{V}} \approx t^{\mathcal{V}}$  for each identity  $s \approx t$  in  $\Sigma$ . Maltsev conditions of this type are called **linear**.

#### Examples.

• A variety is congruence 3-permutable iff it has terms p(x,y,z) and q(x,y,z) such that

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ ,  $\mathcal{V}$  satisfies  $\Sigma$  as a Maltsev condition if  $\mathcal{V}$  has a term  $s^{\mathcal{V}}$  for each basic operation symbol s of  $\mathcal{L}$  and  $\mathcal{V} \models s^{\mathcal{V}} \approx t^{\mathcal{V}}$  for each identity  $s \approx t$  in  $\Sigma$ . Maltsev conditions of this type are called **linear**.

#### Examples.

• A variety is congruence 3-permutable iff it has terms p(x,y,z) and q(x,y,z) such that

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ ,  $\mathcal{V}$  satisfies  $\Sigma$  as a Maltsev condition if  $\mathcal{V}$  has a term  $s^{\mathcal{V}}$  for each basic operation symbol s of  $\mathcal{L}$  and  $\mathcal{V} \models s^{\mathcal{V}} \approx t^{\mathcal{V}}$  for each identity  $s \approx t$  in  $\Sigma$ . Maltsev conditions of this type are called **linear**.

#### Examples.

• A variety is congruence 3-permutable iff it has terms p(x,y,z) and q(x,y,z) such that

$$\mathcal{V} \models x \approx p(x, z, z), \quad p(x, x, z) \approx q(x, z, z), \quad q(x, x, z) \approx z.$$

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ ,  $\mathcal{V}$  satisfies  $\Sigma$  as a Maltsev condition if  $\mathcal{V}$  has a term  $s^{\mathcal{V}}$  for each basic operation symbol s of  $\mathcal{L}$  and  $\mathcal{V} \models s^{\mathcal{V}} \approx t^{\mathcal{V}}$  for each identity  $s \approx t$  in  $\Sigma$ . Maltsev conditions of this type are called **linear**.

#### Examples.

lack A variety is congruence 3-permutable iff it has terms p(x,y,z) and q(x,y,z) such that

$$\mathcal{V} \models x \approx p(x, z, z), \quad p(x, x, z) \approx q(x, z, z), \quad q(x, x, z) \approx z.$$

(Linear.)

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ ,  $\mathcal{V}$  satisfies  $\Sigma$  as a Maltsev condition if  $\mathcal{V}$  has a term  $s^{\mathcal{V}}$  for each basic operation symbol s of  $\mathcal{L}$  and  $\mathcal{V} \models s^{\mathcal{V}} \approx t^{\mathcal{V}}$  for each identity  $s \approx t$  in  $\Sigma$ . Maltsev conditions of this type are called **linear**.

#### Examples.

• A variety is congruence 3-permutable iff it has terms p(x,y,z) and q(x,y,z) such that

$$\mathcal{V} \models x \approx p(x, z, z), \quad p(x, x, z) \approx q(x, z, z), \quad q(x, x, z) \approx z.$$

(Linear.)

② A variety has an underlying semilattice term iff it has a term  $x \wedge y$  such that

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ ,  $\mathcal{V}$  satisfies  $\Sigma$  as a Maltsev condition if  $\mathcal{V}$  has a term  $s^{\mathcal{V}}$  for each basic operation symbol s of  $\mathcal{L}$  and  $\mathcal{V} \models s^{\mathcal{V}} \approx t^{\mathcal{V}}$  for each identity  $s \approx t$  in  $\Sigma$ . Maltsev conditions of this type are called **linear**.

#### Examples.

lack A variety is congruence 3-permutable iff it has terms p(x,y,z) and q(x,y,z) such that

$$\mathcal{V} \models x \approx p(x, z, z), \quad p(x, x, z) \approx q(x, z, z), \quad q(x, x, z) \approx z.$$

(Linear.)

② A variety has an underlying semilattice term iff it has a term  $x \wedge y$  such that

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ ,  $\mathcal{V}$  satisfies  $\Sigma$  as a Maltsev condition if  $\mathcal{V}$  has a term  $s^{\mathcal{V}}$  for each basic operation symbol s of  $\mathcal{L}$  and  $\mathcal{V} \models s^{\mathcal{V}} \approx t^{\mathcal{V}}$ 

for each identity  $s \approx t$  in  $\Sigma$ . Maltsev conditions of this type are called **linear**.

#### Examples.

• A variety is congruence 3-permutable iff it has terms p(x,y,z) and q(x,y,z) such that

$$\mathcal{V} \models x \approx p(x, z, z), \quad p(x, x, z) \approx q(x, z, z), \quad q(x, x, z) \approx z.$$

(Linear.)

**②** A variety has an underlying semilattice term iff it has a term  $x \wedge y$  such that

$$\mathcal{V} \models x \approx x \wedge x, \quad x \wedge y \approx y \wedge x, \quad x \wedge (y \wedge z) \approx (x \wedge y) \wedge z.$$

#### Definitions.

Given an algebraic language  $\mathcal{L}$ , a **height-1 identity** is an identity of the form  $s(\mathbf{x}) \approx t(\mathbf{x})$  where s and t are  $\mathcal{L}$ -operation symbols or variables. Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}$ .  $\mathcal{V}$  satisfies  $\Sigma$  as a Maltsev

Given a set  $\Sigma$  of height-1 identities in the language  $\mathcal{L}, \mathcal{V}$  satisfies  $\Sigma$  as a Maltsev condition if  $\mathcal{V}$  has a term  $s^{\mathcal{V}}$  for each basic operation symbol s of  $\mathcal{L}$  and  $\mathcal{V} \models s^{\mathcal{V}} \approx t^{\mathcal{V}}$  for each identity  $s \approx t$  in  $\Sigma$ . Maltsev conditions of this type are called **linear**.

#### Examples.

• A variety is congruence 3-permutable iff it has terms p(x,y,z) and q(x,y,z) such that

$$\mathcal{V} \models x \approx p(x, z, z), \quad p(x, x, z) \approx q(x, z, z), \quad q(x, x, z) \approx z.$$

(Linear.)

**②** A variety has an underlying semilattice term iff it has a term  $x \wedge y$  such that

$$\mathcal{V} \models x \approx x \wedge x, \quad x \wedge y \approx y \wedge x, \quad x \wedge (y \wedge z) \approx (x \wedge y) \wedge z.$$

(Not linear.)

Theorem.

**Theorem.** The satisfaction of a fixed linear Maltsev condition is both preserved and reflected by localization to neighborhoods in a cover.

**Theorem.** The satisfaction of a fixed linear Maltsev condition is both preserved and reflected by localization to neighborhoods in a cover.

Proof sketch.

**Theorem.** The satisfaction of a fixed linear Maltsev condition is both preserved and reflected by localization to neighborhoods in a cover.

*Proof sketch.* I will illustrate the idea of the proof with a 'sufficiently general' example:

**Theorem.** The satisfaction of a fixed linear Maltsev condition is both preserved and reflected by localization to neighborhoods in a cover.

*Proof sketch.* I will illustrate the idea of the proof with a 'sufficiently general' example:  $p(x, x, z) \approx q(x, z, z)$ .

**Theorem.** The satisfaction of a fixed linear Maltsev condition is both preserved and reflected by localization to neighborhoods in a cover.

*Proof sketch.* I will illustrate the idea of the proof with a 'sufficiently general' example:  $p(x, x, z) \approx q(x, z, z)$ .

Assume that **A** is covered by  $C = \{U_i\}$ ,  $e_i(A) = U_i$ , and the decomposition equation is

**Theorem.** The satisfaction of a fixed linear Maltsev condition is both preserved and reflected by localization to neighborhoods in a cover.

*Proof sketch.* I will illustrate the idea of the proof with a 'sufficiently general' example:  $p(x, x, z) \approx q(x, z, z)$ .

Assume that **A** is covered by  $C = \{U_i\}$ ,  $e_i(A) = U_i$ , and the decomposition equation is

$$x = \lambda(e_{i_1}\rho_{i_1}(x), \dots, e_{i_k}\rho_{i_k}(x)).$$

**Theorem.** The satisfaction of a fixed linear Maltsev condition is both preserved and reflected by localization to neighborhoods in a cover.

*Proof sketch.* I will illustrate the idea of the proof with a 'sufficiently general' example:  $p(x,x,z) \approx q(x,z,z)$ .

Assume that **A** is covered by  $C = \{U_i\}$ ,  $e_i(A) = U_i$ , and the decomposition equation is

$$x = \lambda(e_{i_1}\rho_{i_1}(x), \dots, e_{i_k}\rho_{i_k}(x)).$$

Note:

**Theorem.** The satisfaction of a fixed linear Maltsev condition is both preserved and reflected by localization to neighborhoods in a cover.

*Proof sketch.* I will illustrate the idea of the proof with a 'sufficiently general' example:  $p(x,x,z) \approx q(x,z,z)$ .

Assume that **A** is covered by  $C = \{U_i\}$ ,  $e_i(A) = U_i$ , and the decomposition equation is

$$x = \lambda(e_{i_1}\rho_{i_1}(x), \dots, e_{i_k}\rho_{i_k}(x)).$$

**Note:** I am not replacing **A** by its polynomial expansion for this result. I am assuming that  $\lambda, \rho_i, e_i$  are  $\mathcal{V}$ -terms and  $\mathcal{V} \models e_i(e_i(x)) \approx x$  and  $\mathcal{V} \models \lambda(\overline{e_i\rho_i(x)}) \approx x$ .

• (Localization to  $e_i(A) = U_i$ )

• (Localization to  $e_i(A) = U_i$ )

① (Localization to  $e_i(A)=U_i$ ) Replace p(x,y,z) with  $P(x,y,z)=e_ip(x,y,z)$  and q(x,y,z) with  $Q(x,y,z)=e_iq(x,y,z)$ .

① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- (Globalization)

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- (Globalization)

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- ② (Globalization) Suppose that  $p_i(x,x,z) \approx q_i(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- (Globalization) Suppose that  $p_i(x, x, z) \approx q_i(x, z, z)$  on  $\mathbf{A}|_{U_i}$ . Replace the family of  $(p_i, q_i)$ ,

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- ② (Globalization) Suppose that  $p_i(x,x,z) \approx q_i(x,z,z)$  on  $\mathbf{A}|_{U_i}$ . Replace the family of  $(p_i,q_i)$ , defined on  $U_i$  and satisfying  $p_i(x,x,z) \approx q_i(x,z,z)$  with

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- ② (Globalization) Suppose that  $p_i(x,x,z) \approx q_i(x,z,z)$  on  $\mathbf{A}|_{U_i}$ . Replace the family of  $(p_i,q_i)$ , defined on  $U_i$  and satisfying  $p_i(x,x,z) \approx q_i(x,z,z)$  with

$$P(x, y, z) = \lambda(p_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- ② (Globalization) Suppose that  $p_i(x,x,z) \approx q_i(x,z,z)$  on  $\mathbf{A}|_{U_i}$ . Replace the family of  $(p_i,q_i)$ , defined on  $U_i$  and satisfying  $p_i(x,x,z) \approx q_i(x,z,z)$  with

$$P(x, y, z) = \lambda(p_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

$$Q(x,y,z) = \lambda(q_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- ② (Globalization) Suppose that  $p_i(x,x,z) \approx q_i(x,z,z)$  on  $\mathbf{A}|_{U_i}$ . Replace the family of  $(p_i,q_i)$ , defined on  $U_i$  and satisfying  $p_i(x,x,z) \approx q_i(x,z,z)$  with

$$P(x, y, z) = \lambda(p_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

$$Q(x, y, z) = \lambda(q_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

#### Claim:

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- ② (Globalization) Suppose that  $p_i(x, x, z) \approx q_i(x, z, z)$  on  $\mathbf{A}|_{U_i}$ . Replace the family of  $(p_i, q_i)$ , defined on  $U_i$  and satisfying  $p_i(x, x, z) \approx q_i(x, z, z)$  with

$$P(x, y, z) = \lambda(p_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

$$Q(x, y, z) = \lambda(q_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

Claim: P and Q are terms of  ${\bf A}$  satisfying  $P(x,x,z)\approx Q(x,z,z)$  on  ${\bf A}.$ 

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- ② (Globalization) Suppose that  $p_i(x,x,z) \approx q_i(x,z,z)$  on  $\mathbf{A}|_{U_i}$ . Replace the family of  $(p_i,q_i)$ , defined on  $U_i$  and satisfying  $p_i(x,x,z) \approx q_i(x,z,z)$  with

$$P(x, y, z) = \lambda(p_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

$$Q(x, y, z) = \lambda(q_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

**Claim:** P and Q are terms of  $\mathbf A$  satisfying  $P(x,x,z)\approx Q(x,z,z)$  on  $\mathbf A$ . If, say, p(x,y,z) is a variable,

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- ② (Globalization) Suppose that  $p_i(x,x,z) \approx q_i(x,z,z)$  on  $\mathbf{A}|_{U_i}$ . Replace the family of  $(p_i,q_i)$ , defined on  $U_i$  and satisfying  $p_i(x,x,z) \approx q_i(x,z,z)$  with

$$P(x, y, z) = \lambda(p_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

$$Q(x, y, z) = \lambda(q_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

**Claim:** P and Q are terms of A satisfying  $P(x,x,z) \approx Q(x,z,z)$  on A. If, say, p(x,y,z) is a variable, then P(x,y,z) is the same variable.

- ① (Localization to  $e_i(A) = U_i$ ) Replace p(x,y,z) with  $P(x,y,z) = e_i p(x,y,z)$  and q(x,y,z) with  $Q(x,y,z) = e_i q(x,y,z)$ . The linear identity  $p(x,x,z) \approx q(x,z,z)$  on  $\mathbf{A}$  induces  $P(x,x,z) \approx Q(x,z,z)$  on  $\mathbf{A}|_{U_i}$ .
- ② (Globalization) Suppose that  $p_i(x,x,z) \approx q_i(x,z,z)$  on  $\mathbf{A}|_{U_i}$ . Replace the family of  $(p_i,q_i)$ , defined on  $U_i$  and satisfying  $p_i(x,x,z) \approx q_i(x,z,z)$  with

$$P(x, y, z) = \lambda(p_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

$$Q(x, y, z) = \lambda(q_{i_1}(e_{i_1}\rho_{i_1}(x), e_{i_1}\rho_{i_1}(y), e_{i_1}\rho_{i_1}(z)), \ldots)$$

**Claim:** P and Q are terms of A satisfying  $P(x,x,z) \approx Q(x,z,z)$  on A. If, say, p(x,y,z) is a variable, then P(x,y,z) is the same variable.  $\Box$ 

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



There are 6 main theorems of this type in Chapter 9,

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



There are 6 main theorems of this type in Chapter 9, which characterize when a locally finite variety omits the types in I where I is one of the 6 ideals



**1** 

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



There are 6 main theorems of this type in Chapter 9, which characterize when a locally finite variety omits the types in I where I is one of the 6 ideals



**1** 

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



There are 6 main theorems of this type in Chapter 9, which characterize when a locally finite variety omits the types in I where I is one of the 6 ideals

**1** {1} (Theorem 9.6).

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1,2\}$

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1,2\}$

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1, 2\}$  (Theorem 9.10).

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1, 2\}$  (Theorem 9.10).
- $\{1, 2, 5\}$

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1, 2\}$  (Theorem 9.10).
- $\{1, 2, 5\}$

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1, 2\}$  (Theorem 9.10).
- $\{1, 2, 5\}$  (Theorem 9.11).

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1, 2\}$  (Theorem 9.10).
- $\{1, 2, 5\}$  (Theorem 9.11).
- $\{1,4,5\}$

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1, 2\}$  (Theorem 9.10).
- $\{1, 2, 5\}$  (Theorem 9.11).
- $\{1,4,5\}$

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1, 2\}$  (Theorem 9.10).
- $\{1, 2, 5\}$  (Theorem 9.11).
- $\{1, 4, 5\}$  (Theorem 9.14).

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1, 2\}$  (Theorem 9.10).
- $\{1, 2, 5\}$  (Theorem 9.11).
- $\{1, 4, 5\}$  (Theorem 9.14).
- $\{1, 2, 4, 5\}$

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1, 2\}$  (Theorem 9.10).
- $\{1, 2, 5\}$  (Theorem 9.11).
- $\{1, 4, 5\}$  (Theorem 9.14).
- $\{1, 2, 4, 5\}$

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1, 2\}$  (Theorem 9.10).
- $\{1, 2, 5\}$  (Theorem 9.11).
- $\{1, 4, 5\}$  (Theorem 9.14).
- $\{1, 2, 4, 5\}$  (Theorem 9.15).

Chapter 9 proves that the property " $\mathcal{V}$  omits an order ideal I of types" may be characterized by an idempotent linear Maltsev condition.



- **1** {**1**} (Theorem 9.6).
- $\{1,5\}$  (Theorem 9.8).
- $\{1, 2\}$  (Theorem 9.10).
- $\{1, 2, 5\}$  (Theorem 9.11).
- $\{1, 4, 5\}$  (Theorem 9.14).
- $\{1, 2, 4, 5\}$  (Theorem 9.15).

**Definition.** A Taylor term for  $\mathcal{V}$  is a  $\mathcal{V}$ -term  $T(x_1, x_2, \dots, x_n)$  such that

**Definition.** A Taylor term for  $\mathcal{V}$  is a  $\mathcal{V}$ -term  $T(x_1, x_2, \dots, x_n)$  such that

- $\circ$   $\mathcal{V}$  satisfies a system of identities of the form

- $\circ$   $\mathcal{V}$  satisfies a system of identities of the form

- $\bigcirc$   $\mathcal{V}$  satisfies a system of identities of the form

$$\begin{array}{ll} T(x,\square,\ldots,\square) & \approx T(y,\square,\ldots,\square) \\ T(\square,x,\ldots,\square) & \approx T(\square,y,\ldots,\square) \\ & \vdots \\ T(\square,\square,\ldots,x) & \approx T(\square,\square,\ldots,y) \end{array}$$

**Definition.** A **Taylor term** for V is a V-term  $T(x_1, x_2, \ldots, x_n)$  such that

- $\circ$   $\mathcal{V}$  satisfies a system of identities of the form

$$\begin{array}{ll} T(x,\square,\ldots,\square) & \approx T(y,\square,\ldots,\square) \\ T(\square,x,\ldots,\square) & \approx T(\square,y,\ldots,\square) \\ & \vdots \\ T(\square,\square,\ldots,x) & \approx T(\square,\square,\ldots,y) \end{array}$$

(Each □ represents some - any - variable.)

**Definition.** A **Taylor term** for V is a V-term  $T(x_1, x_2, \ldots, x_n)$  such that

- $\bigcirc$   $\mathcal{V}$  satisfies a system of identities of the form

$$T(x, \square, \dots, \square) \approx T(y, \square, \dots, \square)$$

$$T(\square, x, \dots, \square) \approx T(\square, y, \dots, \square)$$

$$\vdots$$

$$T(\square, \square, \dots, x) \approx T(\square, \square, \dots, y)$$

(Each  $\square$  represents some - any - variable.)

Taylor's motivation:

**Definition.** A Taylor term for V is a V-term  $T(x_1, x_2, \dots, x_n)$  such that

- $\bigcirc$   $\mathcal{V}$  satisfies a system of identities of the form

$$T(x, \square, \dots, \square) \approx T(y, \square, \dots, \square)$$

$$T(\square, x, \dots, \square) \approx T(\square, y, \dots, \square)$$

$$\vdots$$

$$T(\square, \square, \dots, x) \approx T(\square, \square, \dots, y)$$

(Each □ represents some - any - variable.)

Taylor's motivation: In 1924, Schreier proved that the homotopy group of any topological group is abelian.

**Definition.** A **Taylor term** for V is a V-term  $T(x_1, x_2, \ldots, x_n)$  such that

- $\bigcirc$   $\mathcal{V}$  satisfies a system of identities of the form

$$\begin{array}{ll} T(x,\square,\ldots,\square) & \approx T(y,\square,\ldots,\square) \\ T(\square,x,\ldots,\square) & \approx T(\square,y,\ldots,\square) \\ & \vdots \\ T(\square,\square,\ldots,x) & \approx T(\square,\square,\ldots,y) \end{array}$$

(Each □ represents some - any - variable.)

Taylor's motivation: In 1924, Schreier proved that the homotopy group of any topological group is abelian. Taylor proved that the class of varieties satisfying the property "Every arc component of every topological algebra in  $\mathcal V$  has abelian homotopy group" is definable by an idempotent linear Maltsev condition.

**Definition.** A **Taylor term** for V is a V-term  $T(x_1, x_2, \ldots, x_n)$  such that

- $\bigcirc$   $\mathcal{V}$  satisfies a system of identities of the form

$$\begin{array}{ll} T(x,\square,\ldots,\square) & \approx T(y,\square,\ldots,\square) \\ T(\square,x,\ldots,\square) & \approx T(\square,y,\ldots,\square) \\ & \vdots \\ T(\square,\square,\ldots,x) & \approx T(\square,\square,\ldots,y) \end{array}$$

(Each □ represents some - any - variable.)

Taylor's motivation: In 1924, Schreier proved that the homotopy group of any topological group is abelian. Taylor proved that the class of varieties satisfying the property "Every arc component of every topological algebra in  $\mathcal V$  has abelian homotopy group" is definable by an idempotent linear Maltsev condition. It turns out that his 1977 Maltsev condition,

**Definition.** A **Taylor term** for V is a V-term  $T(x_1, x_2, \ldots, x_n)$  such that

- $\bigcirc$   $\mathcal{V}$  satisfies a system of identities of the form

$$\begin{array}{ll} T(x,\square,\ldots,\square) & \approx T(y,\square,\ldots,\square) \\ T(\square,x,\ldots,\square) & \approx T(\square,y,\ldots,\square) \\ & \vdots \\ T(\square,\square,\ldots,x) & \approx T(\square,\square,\ldots,y) \end{array}$$

(Each □ represents some - any - variable.)

Taylor's motivation: In 1924, Schreier proved that the homotopy group of any topological group is abelian. Taylor proved that the class of varieties satisfying the property "Every arc component of every topological algebra in  $\mathcal V$  has abelian homotopy group" is definable by an idempotent linear Maltsev condition. It turns out that his 1977 Maltsev condition, that  $\mathcal V$  has a Taylor term, is the weakest nontrivial idempotent linear Maltsev condition.

Theorem.

**Theorem.** The following are equivalent for a locally finite variety  $\mathcal{V}$ .

lacksquare  $\mathcal V$  omits type lacksquare.

**Theorem.** The following are equivalent for a locally finite variety  $\mathcal{V}$ .

lacksquare  $\mathcal V$  omits type lacksquare.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- **1**  $\mathcal{V}$  has an n-ary Taylor term for some n.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- **1**  $\mathcal{V}$  has an n-ary Taylor term for some n.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$  V has an n-ary Taylor term for some n.
- **(Siggers, 2010)**

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$  V has an n-ary Taylor term for some n.
- **(Siggers, 2010)**

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$   $\mathcal{V}$  has an n-ary Taylor term for some n.
- lacktriangledown (Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$  V has an n-ary Taylor term for some n.
- lacktriangle (Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\bullet$  V has an n-ary Taylor term for some n.
- lacktriangledown (Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

$$S(x, x, x, x, x, x) \approx x,$$

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\bullet$  V has an n-ary Taylor term for some n.
- (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

$$S(x, x, x, x, x, x) \approx x$$
,  $S(x, x, y, y, z, z) \approx S(y, z, x, z, x, y)$ .

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circled{\hspace{-0.1cm}\circled{\hspace{-0.1cm}}} \mathcal{V}$  has an n-ary Taylor term for some n.
- (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

$$S(x, x, x, x, x, x) \approx x$$
,  $S(x, x, y, y, z, z) \approx S(y, z, x, z, x, y)$ .

(Kearnes-Markovic-McKenzie, 2014)

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circled{\hspace{-0.1cm}\circled{\hspace{-0.1cm}}} \mathcal{V}$  has an n-ary Taylor term for some n.
- (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

$$S(x, x, x, x, x, x) \approx x$$
,  $S(x, x, y, y, z, z) \approx S(y, z, x, z, x, y)$ .

(Kearnes-Markovic-McKenzie, 2014)

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\bullet$  V has an n-ary Taylor term for some n.
- (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

$$S(x, x, x, x, x, x) \approx x$$
,  $S(x, x, y, y, z, z) \approx S(y, z, x, z, x, y)$ .

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$  V has an n-ary Taylor term for some n.
- lacktriangledown (Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

$$S(x, x, x, x, x, x) \approx x$$
,  $S(x, x, y, y, z, z) \approx S(y, z, x, z, x, y)$ .

lacktriangle (Kearnes-Markovic-McKenzie, 2014)  ${\cal V}$  has a 4-ary Rare Area term.  ${\cal V}$  satisfies

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$  V has an n-ary Taylor term for some n.
- (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

$$S(x, x, x, x, x, x) \approx x$$
,  $S(x, x, y, y, z, z) \approx S(y, z, x, z, x, y)$ .

lacktriangle (Kearnes-Markovic-McKenzie, 2014)  ${\cal V}$  has a 4-ary Rare Area term.  ${\cal V}$  satisfies

$$t(x, x, x, x) \approx x$$

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$  V has an n-ary Taylor term for some n.
- lacktriangledown (Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

$$S(x, x, x, x, x, x) \approx x$$
,  $S(x, x, y, y, z, z) \approx S(y, z, x, z, x, y)$ .

**(**Kearnes-Markovic-McKenzie, 2014)  $\mathcal{V}$  has a 4-ary Rare Area term.  $\mathcal{V}$  satisfies

$$t(x,x,x,x)\approx x,\quad t(r,a,r,e)\approx t(a,r,e,a).$$

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$  V has an n-ary Taylor term for some n.
- lacktriangle (Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

$$S(x,x,x,x,x,x) \approx x, \quad S(x,x,y,y,z,z) \approx S(y,z,x,z,x,y).$$

lacktriangle (Kearnes-Markovic-McKenzie, 2014)  ${\cal V}$  has a 4-ary Rare Area term.  ${\cal V}$  satisfies

$$t(x, x, x, x) \approx x$$
,  $t(r, a, r, e) \approx t(a, r, e, a)$ .

(Olšák, 2017)

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$  V has an n-ary Taylor term for some n.
- lacktriangle (Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

$$S(x,x,x,x,x,x) \approx x, \quad S(x,x,y,y,z,z) \approx S(y,z,x,z,x,y).$$

lacktriangle (Kearnes-Markovic-McKenzie, 2014)  ${\cal V}$  has a 4-ary Rare Area term.  ${\cal V}$  satisfies

$$t(x, x, x, x) \approx x$$
,  $t(r, a, r, e) \approx t(a, r, e, a)$ .

(Olšák, 2017)

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$  V has an n-ary Taylor term for some n.
- **(**Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

$$S(x,x,x,x,x,x) \approx x, \quad S(x,x,y,y,z,z) \approx S(y,z,x,z,x,y).$$

lacktriangle (Kearnes-Markovic-McKenzie, 2014)  ${\cal V}$  has a 4-ary Rare Area term.  ${\cal V}$  satisfies

$$t(x, x, x, x) \approx x$$
,  $t(r, a, r, e) \approx t(a, r, e, a)$ .

Olšák, 2017) V has a 6-ary Olšák term.

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$  V has an n-ary Taylor term for some n.
- lacktriangle (Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

$$S(x,x,x,x,x,x)\approx x,\quad S(x,x,y,y,z,z)\approx S(y,z,x,z,x,y).$$

lacktriangle (Kearnes-Markovic-McKenzie, 2014)  ${\cal V}$  has a 4-ary Rare Area term.  ${\cal V}$  satisfies

$$t(x, x, x, x) \approx x$$
,  $t(r, a, r, e) \approx t(a, r, e, a)$ .

 $\bullet$  (Olšák, 2017)  $\mathcal V$  has a 6-ary Olšák term.  $\mathcal V$  satisfies

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal V$  satisfies some nontrivial idempotent Maltsev condition.
- **3**  $\mathcal{V}$  has an n-ary Taylor term for some n.
- lacktriangle (Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

$$S(x, x, x, x, x, x) \approx x$$
,  $S(x, x, y, y, z, z) \approx S(y, z, x, z, x, y)$ .

lacktriangle (Kearnes-Markovic-McKenzie, 2014)  ${\cal V}$  has a 4-ary Rare Area term.  ${\cal V}$  satisfies

$$t(x, x, x, x) \approx x$$
,  $t(r, a, r, e) \approx t(a, r, e, a)$ .

 $\bullet$  (Olšák, 2017)  $\mathcal V$  has a 6-ary Olšák term.  $\mathcal V$  satisfies

$$O(x, x, x, x, x, x) \approx x,$$

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$   $\mathcal{V}$  has an n-ary Taylor term for some n.
- lacktriangle (Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

$$S(x,x,x,x,x,x)\approx x,\quad S(x,x,y,y,z,z)\approx S(y,z,x,z,x,y).$$

lacktriangle (Kearnes-Markovic-McKenzie, 2014)  ${\cal V}$  has a 4-ary Rare Area term.  ${\cal V}$  satisfies

$$t(x, x, x, x) \approx x$$
,  $t(r, a, r, e) \approx t(a, r, e, a)$ .

 $\bullet$  (Olšák, 2017)  $\mathcal V$  has a 6-ary Olšák term.  $\mathcal V$  satisfies

$$O(x, x, x, x, x, x) \approx x, O(x, y, y, y, x, x) \approx O(y, x, y, x, y) \approx O(y, y, x, x, x, y).$$

**Theorem.** The following are equivalent for a locally finite variety  $\mathcal{V}$ .

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$   $\mathcal{V}$  has an n-ary Taylor term for some n.
- (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

$$S(x,x,x,x,x,x)\approx x,\quad S(x,x,y,y,z,z)\approx S(y,z,x,z,x,y).$$

lacktriangle (Kearnes-Markovic-McKenzie, 2014)  ${\cal V}$  has a 4-ary Rare Area term.  ${\cal V}$  satisfies

$$t(x,x,x,x) \approx x, \quad t(r,a,r,e) \approx t(a,r,e,a).$$

**(Olšák, 2017)**  $\mathcal{V}$  has a 6-ary Olšák term.  $\mathcal{V}$  satisfies

$$O(x,x,x,x,x,x) \approx x, O(x,y,y,y,x,x) \approx O(y,x,y,x,y) \approx O(y,y,x,x,x,y).$$

 $\bigcirc$   $\mathcal{V}$  has a weak difference term.

**Theorem.** The following are equivalent for a locally finite variety  $\mathcal{V}$ .

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$   $\mathcal{V}$  has an n-ary Taylor term for some n.
- (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

$$S(x,x,x,x,x,x)\approx x,\quad S(x,x,y,y,z,z)\approx S(y,z,x,z,x,y).$$

lacktriangle (Kearnes-Markovic-McKenzie, 2014)  ${\cal V}$  has a 4-ary Rare Area term.  ${\cal V}$  satisfies

$$t(x,x,x,x) \approx x, \quad t(r,a,r,e) \approx t(a,r,e,a).$$

**(Olšák, 2017)**  $\mathcal{V}$  has a 6-ary Olšák term.  $\mathcal{V}$  satisfies

$$O(x,x,x,x,x,x) \approx x, O(x,y,y,y,x,x) \approx O(y,x,y,x,y) \approx O(y,y,x,x,x,y).$$

 $\bigcirc$   $\mathcal{V}$  has a weak difference term.

**Theorem.** The following are equivalent for a locally finite variety V.

- $\mathbf{0}$   $\mathcal{V}$  omits type  $\mathbf{1}$ .
- $\bigcirc$   $\mathcal{V}$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$  V has an n-ary Taylor term for some n.
- lacktriangle (Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

$$S(x,x,x,x,x,x) \approx x, \quad S(x,x,y,y,z,z) \approx S(y,z,x,z,x,y).$$

 $\odot$  (Kearnes-Markovic-McKenzie, 2014)  $\mathcal V$  has a 4-ary Rare Area term.  $\mathcal V$  satisfies

$$t(x, x, x, x) \approx x$$
,  $t(r, a, r, e) \approx t(a, r, e, a)$ .

**6** (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

$$O(x,x,x,x,x,x) \approx x, O(x,y,y,y,x,x) \approx O(y,x,y,x,y) \approx O(y,y,x,x,x,y).$$

 $m{\mathcal{V}}$  has a weak difference term. (This is a term w(x,y,z) that is a Maltsev operation on the block of any abelian congruence.)

**Theorem.** The following are equivalent for a locally finite variety  $\mathcal{V}$ .

- $\bigcirc$   $\mathcal{V}$  omits type **1**.
- $\bigcirc$   $\mathcal V$  satisfies some nontrivial idempotent Maltsev condition.
- $\circ$   $\mathcal{V}$  has an n-ary Taylor term for some n.
- **(**Siggers, 2010)  $\mathcal V$  has a 6-ary Siggers term.  $\mathcal V$  satisfies

$$S(x,x,x,x,x,x) \approx x$$
,  $S(x,x,y,y,z,z) \approx S(y,z,x,z,x,y)$ .

lacktriangle (Kearnes-Markovic-McKenzie, 2014)  ${\cal V}$  has a 4-ary Rare Area term.  ${\cal V}$  satisfies

$$t(x, x, x, x) \approx x$$
,  $t(r, a, r, e) \approx t(a, r, e, a)$ .

 $\odot$  (Olšák, 2017)  $\mathcal V$  has a 6-ary Olšák term.  $\mathcal V$  satisfies

$$O(x,x,x,x,x,x) \approx x, O(x,y,y,y,x,x) \approx O(y,x,y,x,y) \approx O(y,y,x,x,x,y).$$

- $\checkmark$  V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev operation on the block of any abelian congruence.)
- **8** Congruence lattices of algebras in V lie in  $SD_{\wedge}/Modular$ .

• If  $\mathcal V$  has an underlying semilattice term  $x \wedge y$ , then  $t(w,x,y,z) = w \wedge x$  is a Rare Area term for  $\mathcal V$ .

• If  $\mathcal V$  has an underlying semilattice term  $x \wedge y$ , then  $t(w,x,y,z) = w \wedge x$  is a Rare Area term for  $\mathcal V$ .

• If  $\mathcal V$  has an underlying semilattice term  $x \wedge y$ , then  $t(w,x,y,z) = w \wedge x$  is a Rare Area term for  $\mathcal V$ . (Need to check idempotence  $x \wedge x \approx x$ 

• If  $\mathcal V$  has an underlying semilattice term  $x \wedge y$ , then  $t(w,x,y,z) = w \wedge x$  is a Rare Area term for  $\mathcal V$ . (Need to check idempotence  $x \wedge x \approx x$  and  $t(r,a,r,e) \approx t(a,r,e,a)$ :

• If  $\mathcal V$  has an underlying semilattice term  $x \wedge y$ , then  $t(w,x,y,z) = w \wedge x$  is a Rare Area term for  $\mathcal V$ . (Need to check idempotence  $x \wedge x \approx x$  and  $t(r,a,r,e) \approx t(a,r,e,a)$ :  $w \wedge x \approx x \wedge w$ .)

• If  $\mathcal V$  has an underlying semilattice term  $x \wedge y$ , then  $t(w,x,y,z) = w \wedge x$  is a Rare Area term for  $\mathcal V$ . (Need to check idempotence  $x \wedge x \approx x$  and  $t(r,a,r,e) \approx t(a,r,e,a)$ :  $w \wedge x \approx x \wedge w$ .)

(In fact, this construction shows that any locally finite variety that has an idempotent, commutative, binary term operation must omit type 1.)

- If  $\mathcal V$  has an underlying semilattice term  $x\wedge y$ , then  $t(w,x,y,z)=w\wedge x$  is a Rare Area term for  $\mathcal V$ . (Need to check idempotence  $x\wedge x\approx x$  and  $t(r,a,r,e)\approx t(a,r,e,a)\colon w\wedge x\approx x\wedge w$ .)
  - (In fact, this construction shows that any locally finite variety that has an idempotent, commutative, binary term operation must omit type 1.)
- ② If  $\mathcal V$  has a Maltsev term M(x,y,z), then t(w,x,y,z)=M(y,w,z) is a Rare Area term for  $\mathcal V$ .

- If  $\mathcal V$  has an underlying semilattice term  $x\wedge y$ , then  $t(w,x,y,z)=w\wedge x$  is a Rare Area term for  $\mathcal V$ . (Need to check idempotence  $x\wedge x\approx x$  and  $t(r,a,r,e)\approx t(a,r,e,a)\colon w\wedge x\approx x\wedge w$ .)
  - (In fact, this construction shows that any locally finite variety that has an idempotent, commutative, binary term operation must omit type 1.)
- ② If  $\mathcal V$  has a Maltsev term M(x,y,z), then t(w,x,y,z)=M(y,w,z) is a Rare Area term for  $\mathcal V$ .

- If  $\mathcal V$  has an underlying semilattice term  $x\wedge y$ , then  $t(w,x,y,z)=w\wedge x$  is a Rare Area term for  $\mathcal V$ . (Need to check idempotence  $x\wedge x\approx x$  and  $t(r,a,r,e)\approx t(a,r,e,a)\colon w\wedge x\approx x\wedge w$ .)
  - (In fact, this construction shows that any locally finite variety that has an idempotent, commutative, binary term operation must omit type 1.)
- $\textbf{ 1f } \mathcal{V} \text{ has a Maltsev term } M(x,y,z), \text{ then } \\ t(w,x,y,z) = M(y,w,z) \text{ is a Rare Area term for } \mathcal{V}. \\ \text{ (Need to check idempotence } M(x,x,x) \approx x$

- If  $\mathcal V$  has an underlying semilattice term  $x \wedge y$ , then  $t(w,x,y,z) = w \wedge x$  is a Rare Area term for  $\mathcal V$ . (Need to check idempotence  $x \wedge x \approx x$  and  $t(r,a,r,e) \approx t(a,r,e,a)$ :  $w \wedge x \approx x \wedge w$ .)
  - (In fact, this construction shows that any locally finite variety that has an idempotent, commutative, binary term operation must omit type 1.)
- ② If  $\mathcal V$  has a Maltsev term M(x,y,z), then t(w,x,y,z)=M(y,w,z) is a Rare Area term for  $\mathcal V$ . (Need to check idempotence  $M(x,x,x)\approx x$  and  $t(r,a,r,e)\approx t(a,r,e,a)$ :

- If  $\mathcal V$  has an underlying semilattice term  $x\wedge y$ , then  $t(w,x,y,z)=w\wedge x$  is a Rare Area term for  $\mathcal V$ . (Need to check idempotence  $x\wedge x\approx x$  and  $t(r,a,r,e)\approx t(a,r,e,a)\colon w\wedge x\approx x\wedge w$ .)
  - (In fact, this construction shows that any locally finite variety that has an idempotent, commutative, binary term operation must omit type 1.)
- ② If  $\mathcal V$  has a Maltsev term M(x,y,z), then t(w,x,y,z)=M(y,w,z) is a Rare Area term for  $\mathcal V$ . (Need to check idempotence  $M(x,x,x)\approx x$  and  $t(r,a,r,e)\approx t(a,r,e,a)$ :  $M(r,r,e)\approx M(e,a,a)$ .)

For each principal pair of order ideals  $I\subseteq J$  in the poset of types (EXCEPT ONE),

For each principal pair of order ideals  $I \subseteq J$  in the poset of types (EXCEPT ONE), we know the idempotent Maltsev condition which characterizes the following property:

For each principal pair of order ideals  $I\subseteq J$  in the poset of types (EXCEPT ONE), we know the idempotent Maltsev condition which characterizes the following property:

Locally finite V omits minimal sets for the types in I and omits the tails for minimal sets for the types in J.

For each principal pair of order ideals  $I\subseteq J$  in the poset of types (EXCEPT ONE), we know the idempotent Maltsev condition which characterizes the following property:

Locally finite V omits minimal sets for the types in I and omits the tails for minimal sets for the types in J.

The missing case is  $I = \{1, 5\}$  and  $J = \{1, 4, 5\}$ .

For each principal pair of order ideals  $I\subseteq J$  in the poset of types (EXCEPT ONE), we know the idempotent Maltsev condition which characterizes the following property:

Locally finite V omits minimal sets for the types in I and omits the tails for minimal sets for the types in J.

The missing case is  $I = \{1, 5\}$  and  $J = \{1, 4, 5\}$ .

Question.

For each principal pair of order ideals  $I\subseteq J$  in the poset of types (EXCEPT ONE), we know the idempotent Maltsev condition which characterizes the following property:

Locally finite V omits minimal sets for the types in I and omits the tails for minimal sets for the types in J.

The missing case is  $I = \{1, 5\}$  and  $J = \{1, 4, 5\}$ .

**Question.** What is the associated Maltsev condition? Does the class of varieties that satisfy it have interesting properties?

For each principal pair of order ideals  $I\subseteq J$  in the poset of types (EXCEPT ONE), we know the idempotent Maltsev condition which characterizes the following property:

Locally finite V omits minimal sets for the types in I and omits the tails for minimal sets for the types in J.

The missing case is  $I = \{1, 5\}$  and  $J = \{1, 4, 5\}$ .

**Question.** What is the associated Maltsev condition? Does the class of varieties that satisfy it have interesting properties?