Talk #9: Maltsev classification

Talk #9: Maltsev classification







Let’s compare the two 6-element groups Zg and D3 with respect to
localization.

Talk #9: Maltsev classification



Let’s compare the two 6-element groups Zg and D3 with respect to
localization. I will expand by constants in each case.

Talk #9: Maltsev classification



Let’s compare the two 6-element groups Zg and D3 with respect to
localization. I will expand by constants in each case.

126:{0,1,2,3,4,5}:\

Talk #9: Maltsev classification



Let’s compare the two 6-element groups Zg and D3 with respect to
localization. I will expand by constants in each case.

’Z(; =4{0,1,2,3,4,5}: ‘ This group has 12 nhoods.

Talk #9: Maltsev classification



Let’s compare the two 6-element groups Zg and D3 with respect to
localization. I will expand by constants in each case.

’Z(; =4{0,1,2,3,4,5}: ‘ This group has 12 nhoods. It has a cover {U, V'}
where U = {0,3} = e(Zg) fore(z) = 3z and V = {0,2,4} = f(Z¢) for
f(z) = 4z.

Talk #9: Maltsev classification



Let’s compare the two 6-element groups Zg and D3 with respect to
localization. I will expand by constants in each case.

’Z(; =4{0,1,2,3,4,5}: ‘ This group has 12 nhoods. It has a cover {U, V'}
where U = {0,3} = e(Zg) fore(z) = 3z and V = {0,2,4} = f(Z¢) for
f(x) = 4z. A decomposition equation is z = A(ep1(x), fp2(x)) for
Az,y) =z +yand p1(z) = pa(2) = .

Talk #9: Maltsev classification



Let’s compare the two 6-element groups Zg and D3 with respect to
localization. I will expand by constants in each case.

’Z(; =4{0,1,2,3,4,5}: ‘ This group has 12 nhoods. It has a cover {U, V'}
where U = {0,3} = e(Zg) fore(z) = 3z and V = {0,2,4} = f(Z¢) for
f(x) = 4z. A decomposition equation is z = A(ep1(x), fp2(x)) for
Az,y) = x + yand p1(x) = p2(xz) = x. The induced algebras

e(Z¢) = Z¢|y and f(Zg) = Zg|y are polynomially equivalent to the
2-element group and the 3-element group, respectively.

Talk #9: Maltsev classification



Let’s compare the two 6-element groups Zg and D3 with respect to
localization. I will expand by constants in each case.

’Z(; =4{0,1,2,3,4,5}: ‘ This group has 12 nhoods. It has a cover {U, V'}
where U = {0,3} = e(Zg) fore(z) = 3z and V = {0,2,4} = f(Z¢) for
f(x) = 4z. A decomposition equation is z = A(ep1(x), fp2(x)) for
Az,y) = x + yand p1(x) = p2(xz) = x. The induced algebras

e(Z¢) = Z¢|y and f(Zg) = Zg|y are polynomially equivalent to the
2-element group and the 3-element group, respectively.

D3 = {1,7,72, 5, sr,s1%}:

Talk #9: Maltsev classification



Let’s compare the two 6-element groups Zg and D3 with respect to
localization. I will expand by constants in each case.

’Z(; =4{0,1,2,3,4,5}: ‘ This group has 12 nhoods. It has a cover {U, V'}
where U = {0,3} = e(Zg) fore(z) = 3z and V = {0,2,4} = f(Z¢) for
f(x) = 4z. A decomposition equation is z = A(ep1(x), fp2(x)) for
Az,y) = x + yand p1(x) = p2(xz) = x. The induced algebras

e(Z¢) = Z¢|y and f(Zg) = Zg|y are polynomially equivalent to the
2-element group and the 3-element group, respectively.

D3 = {1,7,72, 5, sr,s1%}:

This group has > 24 nhoods.

Talk #9: Maltsev classification



Let’s compare the two 6-element groups Zg and D3 with respect to
localization. I will expand by constants in each case.

’Z(; =4{0,1,2,3,4,5}: ‘ This group has 12 nhoods. It has a cover {U, V'}
where U = {0,3} = e(Zg) fore(z) = 3z and V = {0,2,4} = f(Z¢) for
f(x) = 4z. A decomposition equation is z = A(ep1(x), fp2(x)) for
Az,y) = x + yand p1(x) = p2(xz) = x. The induced algebras

e(Z¢) = Z¢|y and f(Zg) = Zg|y are polynomially equivalent to the
2-element group and the 3-element group, respectively.

D3 = {1,7,72,5,sr,sr2}:| This group has > 24 nhoods. It has a cover
{U,V} where U = {1, s} = e(D3) for e(x) = s(sz®)3 and
V ={1,r,r?} = f(D3) for f(x) = z*(s2*).

Talk #9: Maltsev classification



Let’s compare the two 6-element groups Zg and D3 with respect to
localization. I will expand by constants in each case.

’Z(; =4{0,1,2,3,4,5}: ‘ This group has 12 nhoods. It has a cover {U, V'}
where U = {0,3} = e(Zg) fore(z) = 3z and V = {0,2,4} = f(Z¢) for
f(x) = 4z. A decomposition equation is z = A(ep1(x), fp2(x)) for
Az,y) = x + yand p1(x) = p2(xz) = x. The induced algebras

e(Z¢) = Z¢|y and f(Zg) = Zg|y are polynomially equivalent to the
2-element group and the 3-element group, respectively.

D3 = {1,7,72,5,sr,sr2}:| This group has > 24 nhoods. It has a cover
{U,V} where U = {1, s} = e(D3) for e(x) = s(sz®)3 and

V = {1,r,7%} = f(D3) for f(x) = x*(sz*). A decomposition equation is
&= Nep1 (x), fpa(x)) for Az, y) = o -y and p1 () = pa() = .

Talk #9: Maltsev classification



Let’s compare the two 6-element groups Zg and D3 with respect to
localization. I will expand by constants in each case.

’Z(; =4{0,1,2,3,4,5}: ‘ This group has 12 nhoods. It has a cover {U, V'}
where U = {0,3} = e(Zg) fore(z) = 3z and V = {0,2,4} = f(Z¢) for
f(x) = 4z. A decomposition equation is z = A(ep1(x), fp2(x)) for
Az,y) = x + yand p1(x) = p2(xz) = x. The induced algebras

e(Z¢) = Z¢|y and f(Zg) = Zg|y are polynomially equivalent to the
2-element group and the 3-element group, respectively.

D3 = {1,7,72,5,sr,sr2}:| This group has > 24 nhoods. It has a cover
{U,V} where U = {1, s} = e(D3) for e(x) = s(sz®)3 and

V = {1,r,7%} = f(D3) for f(x) = x*(sz*). A decomposition equation is
x = MNepi(z), fp2(x)) for AN(z,y) = = -y and p1(x) = p2(z) = x. The
induced algebras f(D3) = D3|y and f(D3) = D3|y are polynomially
equivalent to the 2-element group and the 3-element group, respectively.

Talk #9: Maltsev classification






@ Locally, Zg and D3 look the same.

Talk #9: Maltsev classification



@ Locally, Zg and D3 look the same.

Talk #9: Maltsev classification



@ Locally, Zg and D3 look the same. Locally, each group is covered by
neighborhoods that are abelian subgroups.

Talk #9: Maltsev classification



@ Locally, Zg and D3 look the same. Locally, each group is covered by
neighborhoods that are abelian subgroups. There is a bijection between
isomorphism types of subgroups in the covers.

Talk #9: Maltsev classification



@ Locally, Zg and D3 look the same. Locally, each group is covered by
neighborhoods that are abelian subgroups. There is a bijection between
isomorphism types of subgroups in the covers.

© Even the decomposition equations look the same.

Talk #9: Maltsev classification



@ Locally, Zg and D3 look the same. Locally, each group is covered by
neighborhoods that are abelian subgroups. There is a bijection between
isomorphism types of subgroups in the covers.

© Even the decomposition equations look the same.

Talk #9: Maltsev classification



@ Locally, Zg and D3 look the same. Locally, each group is covered by
neighborhoods that are abelian subgroups. There is a bijection between
isomorphism types of subgroups in the covers.

© Even the decomposition equations look the same.

© Why is one of the groups abelian and the other is not?

Talk #9: Maltsev classification



@ Locally, Zg and D3 look the same. Locally, each group is covered by
neighborhoods that are abelian subgroups. There is a bijection between
isomorphism types of subgroups in the covers.

© Even the decomposition equations look the same.

© Why is one of the groups abelian and the other is not?

Talk #9: Maltsev classification



@ Locally, Zg and D3 look the same. Locally, each group is covered by
neighborhoods that are abelian subgroups. There is a bijection between
isomorphism types of subgroups in the covers.

© Even the decomposition equations look the same.

© Why is one of the groups abelian and the other is not?

Talk #9: Maltsev classification






We are studying A from a relational point of view, A+ = (A4;Rel(A)).

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of A~L.

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational

signature for AL,

Talk #9: Maltsev classification




We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A+,

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y,

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,

of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y, in a way that is dictated by the decomposition equation.

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y, in a way that is dictated by the decomposition equation.
For the product to make sense, we need the signatures of the factors to be the same so
that we can assign a signature to the product.

Talk #9: Maltsev



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y, in a way that is dictated by the decomposition equation.
For the product to make sense, we need the signatures of the factors to be the same so
that we can assign a signature to the product. These signatures are those inherited
from A+,

Talk #9: Maltsev



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y, in a way that is dictated by the decomposition equation.
For the product to make sense, we need the signatures of the factors to be the same so
that we can assign a signature to the product. These signatures are those inherited
from A+,

A group G is abelian if and only if the graph the Maltsev operation is a compatible
4-ary relation:

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y, in a way that is dictated by the decomposition equation.
For the product to make sense, we need the signatures of the factors to be the same so
that we can assign a signature to the product. These signatures are those inherited
from A+,

A group G is abelian if and only if the graph the Maltsev operation is a compatible
4-ary relation:

pe = {(z,y,z,2y7"2) | (2,y,2) € G’} < G

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y, in a way that is dictated by the decomposition equation.
For the product to make sense, we need the signatures of the factors to be the same so

that we can assign a signature to the product. These signatures are those inherited
from AL,

A group G is abelian if and only if the graph the Maltsev operation is a compatible
4-ary relation:

pe = {(z,y,z,2y7"2) | (2,y,2) € G’} < G

Zg is abelian,

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y, in a way that is dictated by the decomposition equation.
For the product to make sense, we need the signatures of the factors to be the same so

that we can assign a signature to the product. These signatures are those inherited
from AL,

A group G is abelian if and only if the graph the Maltsev operation is a compatible
4-ary relation:

pe = {(z,y,z,2y7"2) | (2,y,2) € G’} < G

Zg is abelian, so pz, is a basic relation of Zg

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y, in a way that is dictated by the decomposition equation.
For the product to make sense, we need the signatures of the factors to be the same so

that we can assign a signature to the product. These signatures are those inherited
from AL,

A group G is abelian if and only if the graph the Maltsev operation is a compatible
4-ary relation:

pe = {(z,y,z,2y7"2) | (2,y,2) € G’} < G

Zg is abelian, so pz, is a basic relation of Zg and pz, |y = py and pz,|v = pv.

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y, in a way that is dictated by the decomposition equation.
For the product to make sense, we need the signatures of the factors to be the same so

that we can assign a signature to the product. These signatures are those inherited
from AL,

A group G is abelian if and only if the graph the Maltsev operation is a compatible
4-ary relation:

pe = {(z,y,z,2y7"2) | (2,y,2) € G’} < G

Zg is abelian, so pz, is a basic relation of Zg and pz, |y = py and pz, |y = py. On
the other hand, there is no compatible relation R of D3 such that R|y; = py and
R|v = pv-

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y, in a way that is dictated by the decomposition equation.
For the product to make sense, we need the signatures of the factors to be the same so

that we can assign a signature to the product. These signatures are those inherited
from AL,

A group G is abelian if and only if the graph the Maltsev operation is a compatible
4-ary relation:

pe = {(z,y,z,2y7"2) | (2,y,2) € G’} < G

Zg is abelian, so pz, is a basic relation of Zg and pz, |y = py and pz, |y = py. On
the other hand, there is no compatible relation R of D3 such that R|y; = py and
R|y = py. Conclusion:

Talk #9: Maltsev classification



We are studying A from a relational point of view, A+ = (A;Rel(A)). Each
compatible relation of A is taken to be a basic relation of AL. This fixes a relational
signature for AL,

Starting with a cover C = {Uy, ..., U, } of A, we define relational restrictions AL |y,
of the same relational signature as A~. A is recoverable as a retract of a product of
copies of the structures A |y, in a way that is dictated by the decomposition equation.
For the product to make sense, we need the signatures of the factors to be the same so

that we can assign a signature to the product. These signatures are those inherited
from AL,

A group G is abelian if and only if the graph the Maltsev operation is a compatible
4-ary relation:

pe = {(z,y,z,2y7"2) | (2,y,2) € G’} < G

Zg is abelian, so pz, is a basic relation of Zg and pz, |y = py and pz, |y = py. On
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Examples.
© A Maltsev term for a variety V is a term M (x, y, z) such that

ViEMxyy ~z, My ~y.
© A majority term for a variety V is a term m(z, y, z) such that
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Given a set X of height-1 identities in the language £, V satisfies 3 as a Maltsev
condition if V has a term s for each basic operation symbol s of £ and V |= s¥ ~ tV
for each identity s ~ ¢ in . Maltsev conditions of this type are called linear.

Examples.

@ A variety is congruence 3-permutable iff it has terms p(x, y, z) and ¢(x,y, 2)
such that

VExrp(x,zz), plaxz)=qxzz), qzzz)~:z

(Linear.)

© A variety has an underlying semilattice term iff it has a term x A y such that

VEsmazAz, zAy=yAz, xAYAz)=(@Ay)Az
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Definitions.

Given an algebraic language £, a height-1 identity is an identity of the form

s(x) = t(x) where s and t are L-operation symbols or variables.

Given a set X of height-1 identities in the language £, V satisfies 3 as a Maltsev
condition if V has a term s for each basic operation symbol s of £ and V |= s¥ ~ tV
for each identity s ~ ¢ in . Maltsev conditions of this type are called linear.

Examples.

@ A variety is congruence 3-permutable iff it has terms p(x, y, z) and ¢(x,y, 2)
such that

VExrp(x,zz), plaxz)=qxzz), qzzz)~:z

(Linear.)

© A variety has an underlying semilattice term iff it has a term x A y such that
VEsmazAz, zAy=yAz, xAYAz)=(@Ay)Az

(Not linear.)
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Theorem.
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Theorem. The satisfaction of a fixed linear Maltsev condition is both
preserved and reflected by localization to neighborhoods in a cover.
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Theorem. The satisfaction of a fixed linear Maltsev condition is both
preserved and reflected by localization to neighborhoods in a cover.
Proof sketch. 1 will illustrate the idea of the proof with a ‘sufficiently general’
example: p(x, z, 2) ~ q(x, z, 2).
Assume that A is covered by C = {U;}, ¢;(A) = Ui, and the decomposition
equation is

z = Neipi, (2), ..., e, pi, (T)).
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Theorem. The satisfaction of a fixed linear Maltsev condition is both
preserved and reflected by localization to neighborhoods in a cover.

Proof sketch. 1 will illustrate the idea of the proof with a ‘sufficiently general’
example: p(x, z, 2) ~ q(x, z, 2).
Assume that A is covered by C = {U;}, ¢;(A) = Ui, and the decomposition
equation is

z = Neipi, (2), ..., e, pi, (T)).

Note:
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Linear Maltsev conditions, 3

Theorem. The satisfaction of a fixed linear Maltsev condition is both
preserved and reflected by localization to neighborhoods in a cover.

Proof sketch. 1 will illustrate the idea of the proof with a ‘sufficiently general’
example: p(x, z, 2) ~ q(x, z, 2).
Assume that A is covered by C = {U;}, ¢;(A) = Ui, and the decomposition
equation is

z = Neipi, (2), ..., e, pi, (T)).

Note: I am not replacing A by its polynomial expansion for this result. I am
assuming that \, p;, e; are V-terms and V |= ¢;(e;(z)) ~ x and
V= Aeipi(z)) = .
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Linear Maltsev conditions, 4

@ (Localization to e;(A) = U;)
Replace p(z,y, z) with P(x,y, z) = e;p(x,y, z) and g(x, y, z) with
Q(xa Y, Z) = eiq(xv Y, Z)
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Replace p(z,y, z) with P(x,y, z) = e;p(x,y, z) and g(x, y, z) with
Q(z,y,2) = eiq(x,y, z). The linear identity p(z, z, z) =~ q(z, z,2z) on A
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@ (Localization to e;(A) = U;)
Replace p(z,y, z) with P(x,y, z) = e;p(x,y, z) and g(x, y, z) with
Q(z,y,2) = eiq(x,y, z). The linear identity p(z, z, z) =~ q(z, z,2z) on A
induces P(z,z,2) ~ Q(x, z,z) on A|y,.

@ (Globalization)
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@ (Localization to e;(A) = U;)
Replace p(z,y, z) with P(x,y, z) = e;p(x,y, z) and g(x, y, z) with
Q(z,y,2) = eiq(x,y, z). The linear identity p(z, z, z) =~ q(z, z,2z) on A
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@ (Globalization)
Suppose that p;(z, x, 2) ~ ¢;(x, z, z) on A|y,. Replace the family of (p;, ¢;),
defined on U; and satisfying p;(x, z, z) & ¢;(z, z, z) with
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Q(l‘, Y, Z) = )‘(qh (eilpi1 (x)’ €i1 Piy (y)a €i1 Piy (Z))’ - )
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@ (Localization to e;(A) = U;)
Replace p(z,y, z) with P(x,y, z) = e;p(x,y, z) and g(x, y, z) with
Q(z,y,2) = eiq(x,y, z). The linear identity p(z, z, z) =~ q(z, z,2z) on A
induces P(z,z,2) ~ Q(x, z,z) on A|y,.

@ (Globalization)
Suppose that p;(z, x, 2) ~ ¢;(x, z, z) on A|y,. Replace the family of (p;, ¢;),
defined on U; and satisfying p;(x, z, z) & ¢;(z, z, z) with

P(z,y,2) = Mpi, (i, pir (7), €3, piy (Y), €3, piy (2)), )

Q(l’, Y, Z) = )\(qh (eilpi1 (.’L’), €iy Piy (y)7 €1 Piq (Z))’ N )
Claim:
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@ (Localization to e;(A) = U;)
Replace p(z,y, z) with P(x,y, z) = e;p(x,y, z) and g(x, y, z) with
Q(z,y,2) = eiq(x,y, z). The linear identity p(z, z, z) =~ q(z, z,2z) on A
induces P(z,z,2) ~ Q(x, z,z) on A|y,.

@ (Globalization)
Suppose that p;(z, x, 2) ~ ¢;(x, z, z) on A|y,. Replace the family of (p;, ¢;),
defined on U; and satisfying p;(x, z, z) & ¢;(z, z, z) with

P(z,y,2) = Mpi, (i, pir (7), €3, piy (Y), €3, piy (2)), )

Q(l‘, Y, Z) = )‘(qh (eilph (x)’ €i1 Piy (y)a €i1 Piy (Z))’ - )
Claim: P and @ are terms of A satisfying P(z,x, z) ~ Q(x, 2, z) on A.
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@ (Localization to e;(A) = U;)
Replace p(z,y, z) with P(x,y, z) = e;p(x,y, z) and g(x, y, z) with
Q(z,y,2) = eiq(x,y, z). The linear identity p(z, z, z) =~ q(z, z,2z) on A
induces P(z,z,2) ~ Q(x, z,z) on A|y,.

@ (Globalization)
Suppose that p;(z, x, 2) ~ ¢;(x, z, z) on A|y,. Replace the family of (p;, ¢;),
defined on U; and satisfying p;(x, z, z) & ¢;(z, z, z) with

P(z,y,2) = Mpi, (i, pir (7), €3, piy (Y), €3, piy (2)), )

Q(l‘, Y, Z) = )‘(qh (eilpi1 (x)’ €i1 Piy (y)a €i1 Piy (Z))’ - )

Claim: P and @ are terms of A satisfying P(z,z, 2) = Q(z, 2z, z) on A. If,
say, p(x, y, z) is a variable,
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@ (Localization to e;(A) = U;)
Replace p(z,y, z) with P(x,y, z) = e;p(x,y, z) and g(x, y, z) with
Q(z,y,2) = eiq(x,y, z). The linear identity p(z, z, z) =~ q(z, z,2z) on A
induces P(z,x,z) ~ Q(x, z,z) on A|y,.

@ (Globalization)
Suppose that p;(z, x, 2) ~ ¢;(x, z, z) on A|y,. Replace the family of (p;, ¢;),
defined on U; and satisfying p;(x, z, z) & ¢;(z, z, z) with

P(z,y,2) = Mpi, (i, pir (7), €3, piy (Y), €3, piy (2)), )

Q(J}, Y, Z) = )‘(QH (ei1 Piy (x)? €i1 Piy (y)a €i1 Piy (Z))’ B )

Claim: P and @ are terms of A satisfying P(z,z, 2) = Q(z, 2z, z) on A. If,
say, p(x,y, z) is a variable, then P(z,y, z) is the same variable.
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@ (Localization to e;(A) = U;)
Replace p(z,y, z) with P(x,y, z) = e;p(x,y, z) and g(x, y, z) with
Q(z,y,2) = eiq(x,y, z). The linear identity p(z, z, z) =~ q(z, z,2z) on A
induces P(z,x,z) ~ Q(x, z,z) on A|y,.

@ (Globalization)
Suppose that p;(z, x, 2) ~ ¢;(x, z, z) on A|y,. Replace the family of (p;, ¢;),
defined on U; and satisfying p;(x, z, z) & ¢;(z, z, z) with

P(z,y,2) = Mpi, (i, pir (7), €3, piy (Y), €3, piy (2)), )

Q(J}, Y, Z) = )‘(QH (ei1 Piy (x)? €i1 Piy (y)a €i1 Piy (Z))’ B )

Claim: P and @ are terms of A satisfying P(z,z, 2) = Q(z, 2z, z) on A. If,
say, p(x, y, z) is a variable, then P(x,y, z) is the same variable. O
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Chapter 9 proves that the property “) omits an order ideal I of types” may be
characterized by an idempotent linear Maltsev condition.
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There are 6 main theorems of this type in Chapter 9, which characterize when
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@ {1} (Theorem 9.6).
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There are 6 main theorems of this type in Chapter 9, which characterize when
a locally finite variety omits the types in I where [ is one of the 6 ideals

@ {1} (Theorem 9.6).

@ {1,5} (Theorem 9.8).
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@ {1} (Theorem 9.6).

@ {1,5} (Theorem 9.8).

@ {1,2} (Theorem 9.10).
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@ {1} (Theorem 9.6).

@ {1,5} (Theorem 9.8).

@ {1,2} (Theorem 9.10).
Q {1,2,5} (Theorem 9.11).
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There are 6 main theorems of this type in Chapter 9, which characterize when
a locally finite variety omits the types in I where [ is one of the 6 ideals

@ {1} (Theorem 9.6).

@ {1,5} (Theorem 9.8).

@ {1,2} (Theorem 9.10).

Q {1,2,5} (Theorem 9.11).
@ {1,4,5} (Theorem 9.14).
O {1,2,4,5} (Theorem 9.15).
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3
/4
2
AN

5

e

1

There are 6 main theorems of this type in Chapter 9, which characterize when
a locally finite variety omits the types in I where [ is one of the 6 ideals

@ {1} (Theorem 9.6).

@ {1,5} (Theorem 9.8).

@ {1,2} (Theorem 9.10).

Q {1,2,5} (Theorem 9.11).
@ {1,4,5} (Theorem 9.14).
O {1,2,4,5} (Theorem 9.15).
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(Each O represents some - any - variable.)

Taylor’s motivation: In 1924, Schreier proved that the homotopy group of any
topological group is abelian. Taylor proved that the class of varieties
satisfying the property “Every arc component of every topological algebra in
V has abelian homotopy group” is definable by an idempotent linear Maltsev
condition.
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Definition. A Taylor term for V is a V-term T'(x1, xo, . . ., ) such that
QVET(x,...,¢2)~uz,
@ V satisfies a system of identities of the form

T(z,0,...,0) =~T(y,0,...,0)
TO,z,...,0) =T7(0,y,...,0)

7(Oo,0,...,2) ~T7(0,0...,9)
(Each O represents some - any - variable.)

Taylor’s motivation: In 1924, Schreier proved that the homotopy group of any
topological group is abelian. Taylor proved that the class of varieties
satisfying the property “Every arc component of every topological algebra in
V has abelian homotopy group” is definable by an idempotent linear Maltsev
condition. It turns out that his 1977 Maltsev condition, that V' has a Taylor
term, is the weakest nontrivial idempotent linear Maltsev condition.
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Theorem. The following are equivalent for a locally finite variety V.
© V omits type 1.
© V satisfies some nontrivial idempotent Maltsev condition.
© V has an n-ary Taylor term for some 7.
© (Siggers, 2010) V has a 6-ary Siggers term. V satisfies
S(z,z,z,z,x,2) =z, Sz,z,9,y,2,2) =S,z z,2,2,9).
© (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies
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© V satisfies some nontrivial idempotent Maltsev condition.
© V has an n-ary Taylor term for some 7.

© (Siggers, 2010) V has a 6-ary Siggers term. V satisfies
S(z,z,z,z,x,2) =z, Sz,z,9,y,2,2) =S,z z,2,2,9).
© (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies
t(x,x,x,x) = x, t(ra,re)=ta,re a).
@ (OI84k, 2017) V has a 6-ary Ol$dk term. V satisfies
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A characterization theorem

Theorem. The following are equivalent for a locally finite variety V.
© V omits type 1.
© V satisfies some nontrivial idempotent Maltsev condition.
© V has an n-ary Taylor term for some 7.

© (Siggers, 2010) V has a 6-ary Siggers term. V satisfies
S(z,z,z,z,x,2) =z, Sz,z,9,y,2,2) =S,z z,2,2,9).
© (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies
t(x,x,x,x) = x, t(ra,re)=ta,re a).
@ (OI84k, 2017) V has a 6-ary Ol$dk term. V satisfies
Oz, z,z,x,x,z) = x,0(x,y,y,y,x,2) = Oy, z,y,x,y) =~ Oy, y,x,x, z,y).

@ YV has a weak difference term. (This is a term w(z, y, z) that is a Maltsev
operation on the block of any abelian congruence.)
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A characterization theorem

Theorem. The following are equivalent for a locally finite variety V.
© V omits type 1.
© V satisfies some nontrivial idempotent Maltsev condition.
© V has an n-ary Taylor term for some 7.

© (Siggers, 2010) V has a 6-ary Siggers term. V satisfies
S(z,z,z,z,x,2) =z, Sz,z,9,y,2,2) =S,z z,2,2,9).
© (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies
t(x,x,x,x) = x, t(ra,re)=ta,re a).
@ (OI84k, 2017) V has a 6-ary Ol$dk term. V satisfies
Oz, z,z,x,x,z) = x,0(x,y,y,y,x,2) = Oy, z,y,x,y) =~ Oy, y,x,x, z,y).

@ YV has a weak difference term. (This is a term w(z, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

@ Congruence lattices of algebras in V lie in SD , /Modular.

Talk #9: Maltsev classification



Some examples

Talk #9: Maltsev classification



Some examples

@ If V has an underlying semilattice term x A y, then
t(w,x,y,z) = w Az is a Rare Area term for ).
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t(w,x,y,z) = w Az is a Rare Area term for ).
(Need to check idempotence x A ¢ ~ x and
t(r,a,r,e) = t(a,r e a):
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t(w,x,y,z) = w Az is a Rare Area term for ).
(Need to check idempotence x A ¢ ~ x and
t(r,a,re) = tla,re,a): wAxr~xAw.)

(In fact, this construction shows that any locally finite variety that has an
idempotent, commutative, binary term operation must omit type 1.)
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Some examples

@ If V has an underlying semilattice term = A y, then
t(w,x,y,z) = w Az is a Rare Area term for ).
(Need to check idempotence x A ¢ ~ x and
t(r,a,re) = tla,re,a): wAxr~xAw.)

(In fact, this construction shows that any locally finite variety that has an
idempotent, commutative, binary term operation must omit type 1.)

@ If V has a Maltsev term M (z, y, z), then
t(w,x,y,z) = M(y,w, z) is a Rare Area term for V.
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t(w,x,y,z) = w Az is a Rare Area term for ).
(Need to check idempotence x A ¢ ~ x and
t(r,a,re) = tla,re,a): wAxr~xAw.)
(In fact, this construction shows that any locally finite variety that has an

idempotent, commutative, binary term operation must omit type 1.)
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Some examples

@ If V has an underlying semilattice term = A y, then
t(w,x,y,z) = w Az is a Rare Area term for ).
(Need to check idempotence x A ¢ ~ x and
t(r,a,re) = tla,re,a): wAxr~xAw.)

(In fact, this construction shows that any locally finite variety that has an
idempotent, commutative, binary term operation must omit type 1.)

@ If V has a Maltsev term M (z, y, z), then
t(w,x,y,z) = M(y,w, z) is a Rare Area term for V.
(Need to check idempotence M (z, z, x) ~ x and
t(r,a,r,e) = t(a,r e a):
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Some examples

@ If V has an underlying semilattice term = A y, then
t(w,x,y,z) = w Az is a Rare Area term for ).
(Need to check idempotence x A ¢ ~ x and
t(r,a,re) = tla,re,a): wAxr~xAw.)

(In fact, this construction shows that any locally finite variety that has an
idempotent, commutative, binary term operation must omit type 1.)

@ If V has a Maltsev term M (z, y, z), then
t(w,x,y,z) = M(y,w, z) is a Rare Area term for V.
(Need to check idempotence M (z, z, x) ~ x and
t(rya,r.e) =~ t(a,re,a): M(r,re) =~ M(e,a,a).)
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ONE), we know the idempotent Maltsev condition which characterizes the

following property:

Locally finite V omits minimal sets for the types in I and omits the tails for
minimal sets for the types in J.
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Completing a theme

For each principal pair of order ideals I C J in the poset of types (EXCEPT
ONE), we know the idempotent Maltsev condition which characterizes the
following property:

Locally finite V omits minimal sets for the types in I and omits the tails for
minimal sets for the types in J.

The missing case is [ = {1,5} and J = {1,4,5}.
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Completing a theme

For each principal pair of order ideals I C J in the poset of types (EXCEPT
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