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Example

Let’s compare the two 6-element groups Z6 and D3 with respect to
localization. I will expand by constants in each case.

Z6 = {0, 1, 2, 3, 4, 5}: This group has 12 nhoods. It has a cover {U, V }
where U = {0, 3} = e(Z6) for e(x) = 3x and V = {0, 2, 4} = f(Z6) for
f(x) = 4x. A decomposition equation is x = λ(eρ1(x), fρ2(x)) for
λ(x, y) = x + y and ρ1(x) = ρ2(x) = x. The induced algebras
e(Z6) = Z6|U and f(Z6) = Z6|V are polynomially equivalent to the
2-element group and the 3-element group, respectively.

D3 = {1, r, r2, s, sr, sr2}: This group has ≥ 24 nhoods. It has a cover
{U, V } where U = {1, s} = e(D3) for e(x) = s(sx3)3 and
V = {1, r, r2} = f(D3) for f(x) = x4(sx4). A decomposition equation is
x = λ(eρ1(x), fρ2(x)) for λ(x, y) = x · y and ρ1(x) = ρ2(x) = x. The
induced algebras f(D3) = D3|U and f(D3) = D3|V are polynomially
equivalent to the 2-element group and the 3-element group, respectively.
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Question

1 Locally, Z6 and D3 look the same. Locally, each group is covered by
neighborhoods that are abelian subgroups. There is a bijection between
isomorphism types of subgroups in the covers.

2 Even the decomposition equations look the same.
3 Why is one of the groups abelian and the other is not?
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Recall

We are studying A from a relational point of view, A⊥ = ⟨A; Rel(A)⟩. Each
compatible relation of A is taken to be a basic relation of A⊥. This fixes a relational
signature for A⊥.

Starting with a cover C = {U1, . . . , Un} of A, we define relational restrictions A⊥|Ui

of the same relational signature as A⊥. A⊥ is recoverable as a retract of a product of
copies of the structures A|Ui

in a way that is dictated by the decomposition equation.
For the product to make sense, we need the signatures of the factors to be the same so
that we can assign a signature to the product. These signatures are those inherited
from A⊥.

A group G is abelian if and only if the graph the Maltsev operation is a compatible
4-ary relation:

ρG = {(x, y, z, xy−1z) | (x, y, z) ∈ G3} ≤ G4.

Z6 is abelian, so ρZ6 is a basic relation of Z⊥
6 and ρZ6 |U = ρU and ρZ6 |V = ρV . On

the other hand, there is no compatible relation R of D3 such that R|U = ρU and
R|V = ρV . Conclusion: Local abelianness does not imply global abelianness
because of signature differences.
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Linear Maltsev conditions, 1

We will argue that satisfaction of linear Maltsev conditions is both preserved
and reflected by localization to a cover.

Examples.

1 A Maltsev term for a variety V is a term M(x, y, z) such that

V |= M(x, y, y) ≈ x, M(x, x, y) ≈ y.

2 A majority term for a variety V is a term m(x, y, z) such that

V |= m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x.

3 A ‘rare area’ term for a variety V is a term t(w, x, y, z) such that

V |= t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).
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Linear Maltsev conditions, 2

Definitions.
Given an algebraic language L, a height-1 identity is an identity of the form
s(x) ≈ t(x) where s and t are L-operation symbols or variables.
Given a set Σ of height-1 identities in the language L, V satisfies Σ as a Maltsev
condition if V has a term sV for each basic operation symbol s of L and V |= sV ≈ tV

for each identity s ≈ t in Σ. Maltsev conditions of this type are called linear.

Examples.

1 A variety is congruence 3-permutable iff it has terms p(x, y, z) and q(x, y, z)
such that

V |= x ≈ p(x, z, z), p(x, x, z) ≈ q(x, z, z), q(x, x, z) ≈ z.

(Linear.)

2 A variety has an underlying semilattice term iff it has a term x ∧ y such that

V |= x ≈ x ∧ x, x ∧ y ≈ y ∧ x, x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z.

(Not linear.)
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Linear Maltsev conditions, 3

Theorem. The satisfaction of a fixed linear Maltsev condition is both
preserved and reflected by localization to neighborhoods in a cover.

Proof sketch. I will illustrate the idea of the proof with a ‘sufficiently general’
example: p(x, x, z) ≈ q(x, z, z).

Assume that A is covered by C = {Ui}, ei(A) = Ui, and the decomposition
equation is

x = λ(ei1ρi1(x), . . . , eik
ρik

(x)).

Note: I am not replacing A by its polynomial expansion for this result. I am
assuming that λ, ρi, ei are V-terms and V |= ei(ei(x)) ≈ x and
V |= λ(eiρi(x)) ≈ x.
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Linear Maltsev conditions, 4

1 (Localization to ei(A) = Ui)
Replace p(x, y, z) with P (x, y, z) = eip(x, y, z) and q(x, y, z) with
Q(x, y, z) = eiq(x, y, z). The linear identity p(x, x, z) ≈ q(x, z, z) on A
induces P (x, x, z) ≈ Q(x, z, z) on A|Ui .

2 (Globalization)
Suppose that pi(x, x, z) ≈ qi(x, z, z) on A|Ui . Replace the family of (pi, qi),
defined on Ui and satisfying pi(x, x, z) ≈ qi(x, z, z) with

P (x, y, z) = λ(pi1(ei1ρi1(x), ei1ρi1(y), ei1ρi1(z)), . . .)

Q(x, y, z) = λ(qi1(ei1ρi1(x), ei1ρi1(y), ei1ρi1(z)), . . .)

Claim: P and Q are terms of A satisfying P (x, x, z) ≈ Q(x, z, z) on A. If,
say, p(x, y, z) is a variable, then P (x, y, z) is the same variable. 2
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A summary of Chapter 9 results

Chapter 9 proves that the property “V omits an order ideal I of types” may be
characterized by an idempotent linear Maltsev condition.

3

2

1
5
4

There are 6 main theorems of this type in Chapter 9, which characterize when
a locally finite variety omits the types in I where I is one of the 6 ideals

1 {1} (Theorem 9.6).
2 {1, 5} (Theorem 9.8).
3 {1, 2} (Theorem 9.10).
4 {1, 2, 5} (Theorem 9.11).
5 {1, 4, 5} (Theorem 9.14).
6 {1, 2, 4, 5} (Theorem 9.15).
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Varieties that omit type 1

Definition. A Taylor term for V is a V-term T (x1, x2, . . . , xn) such that

1 V |= T (x, x, . . . , x) ≈ x,
2 V satisfies a system of identities of the form

T (x,2, . . . ,2) ≈ T (y,2, . . . ,2)
T (2, x, . . . ,2) ≈ T (2, y, . . . ,2)

...
T (2,2, . . . , x) ≈ T (2,2, . . . , y)

(Each 2 represents some - any - variable.)

Taylor’s motivation: In 1924, Schreier proved that the homotopy group of any
topological group is abelian. Taylor proved that the class of varieties
satisfying the property “Every arc component of every topological algebra in
V has abelian homotopy group” is definable by an idempotent linear Maltsev
condition. It turns out that his 1977 Maltsev condition, that V has a Taylor
term, is the weakest nontrivial idempotent linear Maltsev condition.
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A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem.

The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010)

V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010)

V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term.

V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x,

S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014)

V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014)

V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term.

V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x,

t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017)

V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017)

V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term.

V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x,

O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term.

(This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term.

(This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



A characterization theorem

Theorem. The following are equivalent for a locally finite variety V .

1 V omits type 1.

2 V satisfies some nontrivial idempotent Maltsev condition.

3 V has an n-ary Taylor term for some n.

4 (Siggers, 2010) V has a 6-ary Siggers term. V satisfies

S(x, x, x, x, x, x) ≈ x, S(x, x, y, y, z, z) ≈ S(y, z, x, z, x, y).

5 (Kearnes-Markovic-McKenzie, 2014) V has a 4-ary Rare Area term. V satisfies

t(x, x, x, x) ≈ x, t(r, a, r, e) ≈ t(a, r, e, a).

6 (Olšák, 2017) V has a 6-ary Olšák term. V satisfies

O(x, x, x, x, x, x) ≈ x, O(x, y, y, y, x, x) ≈ O(y, x, y, x, y) ≈ O(y, y, x, x, x, y).

7 V has a weak difference term. (This is a term w(x, y, z) that is a Maltsev
operation on the block of any abelian congruence.)

8 Congruence lattices of algebras in V lie in SD∧/Modular.

Talk #9: Maltsev classification 11 / 13



Some examples

1 If V has an underlying semilattice term x ∧ y, then
t(w, x, y, z) = w ∧ x is a Rare Area term for V .
(Need to check idempotence x ∧ x ≈ x and
t(r, a, r, e) ≈ t(a, r, e, a): w ∧ x ≈ x ∧ w.)

(In fact, this construction shows that any locally finite variety that has an
idempotent, commutative, binary term operation must omit type 1.)

2 If V has a Maltsev term M(x, y, z), then
t(w, x, y, z) = M(y, w, z) is a Rare Area term for V .
(Need to check idempotence M(x, x, x) ≈ x and
t(r, a, r, e) ≈ t(a, r, e, a): M(r, r, e) ≈ M(e, a, a).)
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Completing a theme

For each principal pair of order ideals I ⊆ J in the poset of types (EXCEPT
ONE), we know the idempotent Maltsev condition which characterizes the
following property:

Locally finite V omits minimal sets for the types in I and omits the tails for
minimal sets for the types in J .

The missing case is I = {1, 5} and J = {1, 4, 5}.

Question. What is the associated Maltsev condition? Does the class of
varieties that satisfy it have interesting properties?
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