
Talk #8: Labeled congruence lattices

Talk #8: Labeled congruence lattices 1 / 12



Recall

Assume that A is a finite algebra, α ≺ β in Con(A), U ∈ MA(α, β), e(x) is
an idempotent unary polynomial of A for which e(A) = U . We have partially
classified the structure

A|U = e(A) = ⟨U ; {e(p(x)) | p ∈ Pol(A)}⟩.
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A|U is an invariant of ⟨α, β⟩

Assume that U, V ∈ MA(α, β). Assume also that V = f(A) for idempotent
f . Our goal is to prove that U ≃ V .
Choose (p, q) ∈ β|U − α and (r, s) ∈ β|V − α.

(r, s) ∈ β = Cg(α ∪ {(p, q)}),

so there is a Maltsev chain

r = m0 − m1 − · · · − mk = s

where each link is an α-link or a polynomial image of {p, q}. Use f to push
the chain into V :

r = f(r) = f(m0) − f(m1) − · · · − f(mk) = f(s) = s.

Since (r, s) /∈ α, at least one link is not an α-link and necessarily it is of the
form {g(p), g(q)} for some polynomial g such that g(A) ⊆ f(A) = V .
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A|U is an invariant of ⟨α, β⟩, 2

We have just established that there is a polynomial g such that
g(U) ⊆ g(A) ⊆ V and (g(p), g(q)) ∈ β|V − α. Rename (r, s) so that it
equals (g(p), g(q)). Reverse the argument to get a polynomial h such that
h(V ) ⊆ U and (h(r), h(s)) ∈ β|U − α. The composition satisfies
hg(U) ⊆ U and hg(β|U ) ̸⊆ α. (I.e., hg is not collapsing on U .) By the
⟨α, β⟩-minimality of U , π(x) = hg(x) is a permutation of U . If we replace h
with π−1h, we get that hg(x) = x on U , so the set U is a retract of the finite
set V , so |U | ≤ |V |. Similarly, V must be a retract of the finite set U , so
|U | = |V |. The fact that hg(x) = x on U implies that h and g are inverse
polynomial bijections between U and V , so U ≃ V . 2

Thus, the “type” of ⟨α, β⟩ is well defined, and we write α
i
≺ β for

i ∈ {1, 2, 3, 4, 5} to indicate it.
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h(V ) ⊆ U and (h(r), h(s)) ∈ β|U − α. The composition satisfies
hg(U) ⊆ U and hg(β|U ) ̸⊆ α. (I.e., hg is not collapsing on U .) By the
⟨α, β⟩-minimality of U , π(x) = hg(x) is a permutation of U . If we replace h
with π−1h, we get that hg(x) = x on U , so the set U is a retract of the finite
set V , so |U | ≤ |V |. Similarly, V must be a retract of the finite set U , so
|U | = |V |. The fact that hg(x) = x on U implies that h and g are inverse
polynomial bijections between U and V , so U ≃ V . 2

Thus, the “type” of ⟨α, β⟩ is well defined, and we write α
i
≺ β for

i ∈ {1, 2, 3, 4, 5} to indicate it.
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|U is a lattice homomorphism

Claim. Restriction to U is a surjective, label-preserving lattice
homomorphism.

Notice that Con(A) (its elements and its operations) is a part of the relational
clone of A. (A similar statement is true for Con(A|U ).) The only nonobvious
part of this statement is that the join of congruences is a term operation in the
language of relational clones. Let’s verify that.)

Stage 1. Relational composition of binary relations is a term operation in the
language of relational clones.

σ ◦ τ = proj14((σ × τ) ∩ (A× = ×A))
= proj14({(s1, s2, t1, t2)} ∩ {(x, y, y, z)}).

Stage 2. α ∨ β = α ◦n β = α ◦ β ◦ α ◦ · · · for sufficiently large n.
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|U is surjective and label-preserving

Stage 3. (Surjectivity of |U : Con(A) → Con(A|U ))
Choose σ ∈ Con(A|U ) ⊆ Rel(A|U ). There exists α ∈ Rel(A) such that
α|U = σ. Since A = A|A, α is a reflexive relation. Let β = α ∩ α∪.

β|U = (α ∩ α∪)|U = α|U ∩ α∪|U = σ ∩ σ∪ = σ.

Choose n so that γ = ◦n β be the transitive closure of β.

γ|U = ◦n β|U = ◦n σ = σ.

We have γ ∈ Con(A) and γ|U = σ.

Stage 4. (|U is label-preserving)

Assume that α
i
≺ β in Con(A) and α|U ̸= β|U . Then α|U ≺ β|U and any

V ∈ MA|U (α|U , β|U ) belongs to MA(α, β) and the trace algebras are the
same since α|V = (α|U )|V and β|V = (β|U )|V .
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Multiminimal algebras

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both MA(α, β) and
MA(γ, δ).

1 If α
i
≺ β and γ

j
≺ δ, then i = j.

2 If i=2, 3, or 4, then the ⟨α, β⟩-body of U equals the ⟨γ, δ⟩-body of U .
3 If i=5, then the bodies might be different but there is a largest body and

the ⟨α, β⟩-unit element of U equals the ⟨γ, δ⟩-unit element of U .

Nothing nontrivial can be said about type-1 bodies. For example, an
unstructured set is a minimal set in many ways, and any nontrivial subset can
be a body.

Corollary. If α
i
≺ β, γ

j
≺ δ, and Cg(α, β) = Cg(γ, δ) in Con(Con(A)), then

i = j. In particular, perspective coverings have the same label.
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Ordering types by strength

The polynomial clones on {0, 1}, ordered by inclusion/strength/richness, are:

∧, ∨, ¬

+

¬

0, 1

∧ ∨

∧, ∨

3

2

1

1

5 5

4
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Complicated shapes are incompatible with strong types

1 If Con(A) is simple and nonmodular, then all type labels must be 1.
(E.g., a partition lattice on a set of size ≥ 4.)

2 If Con(A) is simple and nondistributive, then all type labels must be 1
or all type labels must be 2. (E.g., a subspace lattice in dimension ≥ 2.)

3 If β ∈ Con(A) is a join of meet-semidistributivity failures, then all type
labels in [0, β] must be 1 or 2.

4 If α ≺ β in Con(A) is a join-semidistributivity failure, then α
1
≺ β,

α
2
≺ β, or α

5
≺ β.

5 If typ[σ, α] ⊆ {1, 2}, then typ[β, γ] ⊆ {1} in

σ

α
β

γ

τ
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Strong types are incompatible with complicated shape

If all types in Con(A) are strong types, then the shape of Con(A) cannot be
too complicated.

1 If V is a locally finite variety that omits types 1 and 5, then there is a
nontrivial lattice identity that holds in Con(A) for every A ∈ V . (The
identity can be taken to be a generalized modular law.)

2 The members of a locally finite variety V have modular congruence
lattices if and only if V omits types 1 and 5 and all minimal sets have
empty tails.

3 If V is a locally finite variety that omits types 1, 2 and 5, then there is a
lattice identity that holds in Con(A) for every A ∈ V that is strong
enough to imply that all algebras have join-semidistributive congruences
lattices.

4 The members of a locally finite variety V have distributive congruence
lattices if and only if V omits types 1, 2 and 5 and all minimal sets have
empty tails.
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Why?

Part of the explanation for this is that we have a subdirect representation

Con(A) →
∏

U∈MA(α,β)
Con(A|U ).

This is enough to show that the lattice Con(A) generates the same variety of
lattices as the set {Con(A|U ) | U ∈ MA(α, β)}.

The other part of the explanation is that the satisfaction of congruence
identities can be characterized by idempotent linear Maltsev conditions, and
these restrict well to minimal sets.
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The congruence distributive case

Recall that a variety is CD iff it has (Jónsson) terms di(x, y, z) such that V
satisfies (0) d0(x, y, z) = x, dn(x, y, z) = z, (i) di(x, y, x) = x,
(ii) di(x, y, y) = di+1(x, y, y) i even, (iii) di(x, x, y) = di+1(x, x, y) i odd.
An ⟨α, β⟩-minimal algebra A|U will have polynomials edi(x, y, z) satisfying
the same equalities. Choose a, b in a trace N , (a, b) /∈ α, and choose t ∈ U to
be a tail element, if possible. edi(a, t, b) ≡β edi(a, t, a) = a ∈ N , so
edi(a, x, b) is collapsing. Now

a = ed0(a, b, b) = ed1(a, b, b) ≡α ed1(a, a, b) = ed2(a, a, b) ≡α · · · ≡α b,

contradicting (a, b) /∈ α. This shows that U has empty tail and A|U has
Jónsson polynomials. Necessarily A|N /α has Jónsson polynomials. G-sets,

semilattices, and vector spaces do not have J’onsson polynomials, so α
3
≺ β

or α
4
≺ β. 2
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