Talk #8: Labeled congruence lattices

Assume that A is a finite algebra,

Assume that **A** is a finite algebra, $\alpha \prec \beta$ in Con(**A**),

Assume that A is a finite algebra, $\alpha \prec \beta$ in Con(A), $U \in M_A(\alpha, \beta)$,

Assume that **A** is a finite algebra, $\alpha \prec \beta$ in Con(**A**), $U \in M_{\mathbf{A}}(\alpha, \beta)$, e(x) is an idempotent unary polynomial of **A** for which e(A) = U.

Assume that A is a finite algebra, $\alpha \prec \beta$ in Con(A), $U \in M_A(\alpha, \beta)$, e(x) is an idempotent unary polynomial of A for which e(A) = U. We have partially classified the structure

$$\mathbf{A}|_{U} = e(\mathbf{A}) = \langle U; \{e(p(\mathbf{x})) \mid p \in \operatorname{Pol}(\mathbf{A})\} \rangle.$$

Assume that A is a finite algebra, $\alpha \prec \beta$ in Con(A), $U \in M_A(\alpha, \beta)$, e(x) is an idempotent unary polynomial of A for which e(A) = U. We have partially classified the structure

$$\mathbf{A}|_{U} = e(\mathbf{A}) = \langle U; \{e(p(\mathbf{x})) \mid p \in \operatorname{Pol}(\mathbf{A})\} \rangle.$$

Picture:

Assume that **A** is a finite algebra, $\alpha \prec \beta$ in Con(**A**), $U \in M_{\mathbf{A}}(\alpha, \beta)$, e(x) is an idempotent unary polynomial of **A** for which e(A) = U. We have partially classified the structure

$$\mathbf{A}|_{U} = e(\mathbf{A}) = \langle U; \{e(p(\mathbf{x})) \mid p \in \operatorname{Pol}(\mathbf{A})\} \rangle.$$

Picture:

Assume that $U, V \in M_{\mathbf{A}}(\alpha, \beta)$.

Assume that $U, V \in M_{\mathbf{A}}(\alpha, \beta)$. Assume also that V = f(A) for idempotent f.

Assume that $U, V \in M_{\mathbf{A}}(\alpha, \beta)$. Assume also that V = f(A) for idempotent f. Our goal is to prove that $U \simeq V$.

Assume that $U, V \in M_{\mathbf{A}}(\alpha, \beta)$. Assume also that V = f(A) for idempotent f. Our goal is to prove that $U \simeq V$. Choose $(p,q) \in \beta|_U - \alpha$ and $(r,s) \in \beta|_V - \alpha$.

Assume that $U, V \in M_{\mathbf{A}}(\alpha, \beta)$. Assume also that V = f(A) for idempotent f. Our goal is to prove that $U \simeq V$. Choose $(p,q) \in \beta|_U - \alpha$ and $(r,s) \in \beta|_V - \alpha$.

 $(r,s)\in\beta=\mathrm{Cg}(\alpha\cup\{(p,q)\}),$

Assume that $U, V \in M_{\mathbf{A}}(\alpha, \beta)$. Assume also that V = f(A) for idempotent f. Our goal is to prove that $U \simeq V$. Choose $(p,q) \in \beta|_U - \alpha$ and $(r,s) \in \beta|_V - \alpha$.

$$(r,s)\in\beta=\mathrm{Cg}(\alpha\cup\{(p,q)\}),$$

so there is a Maltsev chain

$$r = m_0 - m_1 - \dots - m_k = s$$

Assume that $U, V \in M_{\mathbf{A}}(\alpha, \beta)$. Assume also that V = f(A) for idempotent f. Our goal is to prove that $U \simeq V$. Choose $(p,q) \in \beta|_U - \alpha$ and $(r,s) \in \beta|_V - \alpha$.

$$(r,s)\in\beta=\mathrm{Cg}(\alpha\cup\{(p,q)\}),$$

so there is a Maltsev chain

$$r = m_0 - m_1 - \dots - m_k = s$$

where each link is an α -link or a polynomial image of $\{p, q\}$.

Assume that $U, V \in M_{\mathbf{A}}(\alpha, \beta)$. Assume also that V = f(A) for idempotent f. Our goal is to prove that $U \simeq V$. Choose $(p,q) \in \beta|_U - \alpha$ and $(r,s) \in \beta|_V - \alpha$.

$$(r,s)\in\beta=\mathrm{Cg}(\alpha\cup\{(p,q)\}),$$

so there is a Maltsev chain

$$r = m_0 - m_1 - \dots - m_k = s$$

where each link is an α -link or a polynomial image of $\{p, q\}$. Use f to push the chain into V:

Assume that $U, V \in M_{\mathbf{A}}(\alpha, \beta)$. Assume also that V = f(A) for idempotent f. Our goal is to prove that $U \simeq V$. Choose $(p,q) \in \beta|_U - \alpha$ and $(r,s) \in \beta|_V - \alpha$.

$$(r,s)\in\beta=\mathrm{Cg}(\alpha\cup\{(p,q)\}),$$

so there is a Maltsev chain

$$r = m_0 - m_1 - \dots - m_k = s$$

where each link is an α -link or a polynomial image of $\{p, q\}$. Use f to push the chain into V:

$$r = f(r) = f(m_0) - f(m_1) - \dots - f(m_k) = f(s) = s.$$

Since $(r, s) \notin \alpha$, at least one link is not an α -link

Assume that $U, V \in M_{\mathbf{A}}(\alpha, \beta)$. Assume also that V = f(A) for idempotent f. Our goal is to prove that $U \simeq V$. Choose $(p,q) \in \beta|_U - \alpha$ and $(r,s) \in \beta|_V - \alpha$.

$$(r,s)\in\beta=\mathrm{Cg}(\alpha\cup\{(p,q)\}),$$

so there is a Maltsev chain

$$r = m_0 - m_1 - \dots - m_k = s$$

where each link is an α -link or a polynomial image of $\{p, q\}$. Use f to push the chain into V:

$$r = f(r) = f(m_0) - f(m_1) - \dots - f(m_k) = f(s) = s.$$

Since $(r, s) \notin \alpha$, at least one link is not an α -link and necessarily it is of the form $\{g(p), g(q)\}$ for some polynomial g such that $g(A) \subseteq f(A) = V$.

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$.

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$. Rename (r, s) so that it equals (g(p), g(q)).

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$. Rename (r, s) so that it equals (g(p), g(q)). Reverse the argument to get a polynomial h such that $h(V) \subseteq U$ and $(h(r), h(s)) \in \beta|_U - \alpha$.

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$. Rename (r, s) so that it equals (g(p), g(q)). Reverse the argument to get a polynomial h such that $h(V) \subseteq U$ and $(h(r), h(s)) \in \beta|_U - \alpha$. The composition satisfies $hg(U) \subseteq U$ and $hg(\beta|_U) \not\subseteq \alpha$.

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$. Rename (r, s) so that it equals (g(p), g(q)). Reverse the argument to get a polynomial h such that $h(V) \subseteq U$ and $(h(r), h(s)) \in \beta|_U - \alpha$. The composition satisfies $hg(U) \subseteq U$ and $hg(\beta|_U) \not\subseteq \alpha$. (I.e., hg is not collapsing on U.)

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$. Rename (r, s) so that it equals (g(p), g(q)). Reverse the argument to get a polynomial h such that $h(V) \subseteq U$ and $(h(r), h(s)) \in \beta|_U - \alpha$. The composition satisfies $hg(U) \subseteq U$ and $hg(\beta|_U) \not\subseteq \alpha$. (I.e., hg is not collapsing on U.) By the $\langle \alpha, \beta \rangle$ -minimality of $U, \pi(x) = hg(x)$ is a permutation of U. If we replace h with $\pi^{-1}h$, we get that hg(x) = x on U,

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$. Rename (r, s) so that it equals (g(p), g(q)). Reverse the argument to get a polynomial h such that $h(V) \subseteq U$ and $(h(r), h(s)) \in \beta|_U - \alpha$. The composition satisfies $hg(U) \subseteq U$ and $hg(\beta|_U) \not\subseteq \alpha$. (I.e., hg is not collapsing on U.) By the $\langle \alpha, \beta \rangle$ -minimality of $U, \pi(x) = hg(x)$ is a permutation of U. If we replace h with $\pi^{-1}h$, we get that hg(x) = x on U, so the set U is a retract of the finite set V, so $|U| \leq |V|$.

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$. Rename (r, s) so that it equals (g(p), g(q)). Reverse the argument to get a polynomial h such that $h(V) \subseteq U$ and $(h(r), h(s)) \in \beta|_U - \alpha$. The composition satisfies $hg(U) \subseteq U$ and $hg(\beta|_U) \not\subseteq \alpha$. (I.e., hg is not collapsing on U.) By the $\langle \alpha, \beta \rangle$ -minimality of $U, \pi(x) = hg(x)$ is a permutation of U. If we replace h with $\pi^{-1}h$, we get that hg(x) = x on U, so the set U is a retract of the finite set V, so $|U| \leq |V|$. Similarly, V must be a retract of the finite set U, so |U| = |V|. The fact that hg(x) = x on U implies that h and g are inverse polynomial bijections between U and V,

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$. Rename (r, s) so that it equals (g(p), g(q)). Reverse the argument to get a polynomial h such that $h(V) \subseteq U$ and $(h(r), h(s)) \in \beta|_U - \alpha$. The composition satisfies $hg(U) \subseteq U$ and $hg(\beta|_U) \not\subseteq \alpha$. (I.e., hg is not collapsing on U.) By the $\langle \alpha, \beta \rangle$ -minimality of $U, \pi(x) = hg(x)$ is a permutation of U. If we replace h with $\pi^{-1}h$, we get that hg(x) = x on U, so the set U is a retract of the finite set V, so $|U| \leq |V|$. Similarly, V must be a retract of the finite set U, so |U| = |V|. The fact that hg(x) = x on U implies that h and g are inverse polynomial bijections between U and V, so $U \simeq V$.

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$. Rename (r, s) so that it equals (g(p), g(q)). Reverse the argument to get a polynomial h such that $h(V) \subseteq U$ and $(h(r), h(s)) \in \beta|_U - \alpha$. The composition satisfies $hg(U) \subseteq U$ and $hg(\beta|_U) \not\subseteq \alpha$. (I.e., hg is not collapsing on U.) By the $\langle \alpha, \beta \rangle$ -minimality of $U, \pi(x) = hg(x)$ is a permutation of U. If we replace h with $\pi^{-1}h$, we get that hg(x) = x on U, so the set U is a retract of the finite set V, so $|U| \leq |V|$. Similarly, V must be a retract of the finite set U, so |U| = |V|. The fact that hg(x) = x on U implies that h and g are inverse polynomial bijections between U and V, so $U \simeq V$. \Box

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$. Rename (r, s) so that it equals (g(p), g(q)). Reverse the argument to get a polynomial h such that $h(V) \subseteq U$ and $(h(r), h(s)) \in \beta|_U - \alpha$. The composition satisfies $hg(U) \subseteq U$ and $hg(\beta|_U) \not\subseteq \alpha$. (I.e., hg is not collapsing on U.) By the $\langle \alpha, \beta \rangle$ -minimality of $U, \pi(x) = hg(x)$ is a permutation of U. If we replace h with $\pi^{-1}h$, we get that hg(x) = x on U, so the set U is a retract of the finite set V, so $|U| \leq |V|$. Similarly, V must be a retract of the finite set U, so |U| = |V|. The fact that hg(x) = x on U implies that h and g are inverse polynomial bijections between U and V, so $U \simeq V$. \Box

Thus, the "type" of $\langle \alpha, \beta \rangle$ is well defined,

We have just established that there is a polynomial g such that $g(U) \subseteq g(A) \subseteq V$ and $(g(p), g(q)) \in \beta|_V - \alpha$. Rename (r, s) so that it equals (g(p), g(q)). Reverse the argument to get a polynomial h such that $h(V) \subseteq U$ and $(h(r), h(s)) \in \beta|_U - \alpha$. The composition satisfies $hg(U) \subseteq U$ and $hg(\beta|_U) \not\subseteq \alpha$. (I.e., hg is not collapsing on U.) By the $\langle \alpha, \beta \rangle$ -minimality of $U, \pi(x) = hg(x)$ is a permutation of U. If we replace h with $\pi^{-1}h$, we get that hg(x) = x on U, so the set U is a retract of the finite set V, so $|U| \leq |V|$. Similarly, V must be a retract of the finite set U, so |U| = |V|. The fact that hg(x) = x on U implies that h and g are inverse polynomial bijections between U and V, so $U \simeq V$. \Box

Thus, the "type" of $\langle \alpha, \beta \rangle$ is well defined, and we write $\alpha \stackrel{\mathbf{i}}{\prec} \beta$ for $\mathbf{i} \in \{1, 2, 3, 4, 5\}$ to indicate it.

$|_{U}$ is a lattice homomorphism

$|_{U}$ is a lattice homomorphism

Claim.

$|_U$ is a lattice homomorphism

Claim. Restriction to U is a surjective, label-preserving lattice homomorphism.
Claim. Restriction to U is a surjective, label-preserving lattice homomorphism.

Notice that $\operatorname{Con}(\mathbf{A})$

Claim. Restriction to U is a surjective, label-preserving lattice homomorphism.

Notice that Con(A) (its elements and its operations)

Claim. Restriction to U is a surjective, label-preserving lattice homomorphism.

Notice that Con(A) (its elements and its operations) is a part of the relational clone of A.

Claim. Restriction to U is a surjective, label-preserving lattice homomorphism.

Notice that $Con(\mathbf{A})$ (its elements and its operations) is a part of the relational clone of \mathbf{A} . (A similar statement is true for $Con(\mathbf{A}|_U)$.)

Claim. Restriction to U is a surjective, label-preserving lattice homomorphism.

Notice that $\operatorname{Con}(\mathbf{A})$ (its elements and its operations) is a part of the relational clone of \mathbf{A} . (A similar statement is true for $\operatorname{Con}(\mathbf{A}|_U)$.) The only nonobvious part of this statement is that the join of congruences is a term operation in the language of relational clones.

Claim. Restriction to U is a surjective, label-preserving lattice homomorphism.

Notice that $Con(\mathbf{A})$ (its elements and its operations) is a part of the relational clone of \mathbf{A} . (A similar statement is true for $Con(\mathbf{A}|_U)$.) The only nonobvious part of this statement is that the join of congruences is a term operation in the language of relational clones. Let's verify that.)

Claim. Restriction to U is a surjective, label-preserving lattice homomorphism.

Notice that $Con(\mathbf{A})$ (its elements and its operations) is a part of the relational clone of \mathbf{A} . (A similar statement is true for $Con(\mathbf{A}|_U)$.) The only nonobvious part of this statement is that the join of congruences is a term operation in the language of relational clones. Let's verify that.)

Stage 1. Relational composition of binary relations is a term operation in the language of relational clones.

Claim. Restriction to U is a surjective, label-preserving lattice homomorphism.

Notice that $Con(\mathbf{A})$ (its elements and its operations) is a part of the relational clone of \mathbf{A} . (A similar statement is true for $Con(\mathbf{A}|_U)$.) The only nonobvious part of this statement is that the join of congruences is a term operation in the language of relational clones. Let's verify that.)

Stage 1. Relational composition of binary relations is a term operation in the language of relational clones.

$$\begin{aligned} \sigma \circ \tau &= \operatorname{proj}_{14}((\sigma \times \tau) \cap (A \times = \times A)) \\ &= \operatorname{proj}_{14}(\{(s_1, s_2, t_1, t_2)\} \cap \{(x, y, y, z)\}). \end{aligned}$$

Claim. Restriction to U is a surjective, label-preserving lattice homomorphism.

Notice that $Con(\mathbf{A})$ (its elements and its operations) is a part of the relational clone of \mathbf{A} . (A similar statement is true for $Con(\mathbf{A}|_U)$.) The only nonobvious part of this statement is that the join of congruences is a term operation in the language of relational clones. Let's verify that.)

Stage 1. Relational composition of binary relations is a term operation in the language of relational clones.

$$\begin{aligned} \sigma \circ \tau &= \operatorname{proj}_{14}((\sigma \times \tau) \cap (A \times = \times A)) \\ &= \operatorname{proj}_{14}(\{(s_1, s_2, t_1, t_2)\} \cap \{(x, y, y, z)\}). \end{aligned}$$

Stage 2. $\alpha \lor \beta = \alpha \circ_n \beta = \alpha \circ \beta \circ \alpha \circ \cdots$ for sufficiently large *n*.

Stage 3.

Stage 3. (Surjectivity of $|_U : \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$)

Stage 3. (Surjectivity of $|_U : \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U)$

Stage 3. (Surjectivity of $|_U : \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$.

Stage 3. (Surjectivity of $|_U : \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$.

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation.

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation. Let $\beta = \alpha \cap \alpha^{\cup}$.

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation. Let $\beta = \alpha \cap \alpha^{\cup}$.

$$\beta|_U = (\alpha \cap \alpha^{\cup})|_U = \alpha|_U \cap \alpha^{\cup}|_U = \sigma \cap \sigma^{\cup} = \sigma.$$

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation. Let $\beta = \alpha \cap \alpha^{\cup}$.

$$\beta|_U = (\alpha \cap \alpha^{\cup})|_U = \alpha|_U \cap \alpha^{\cup}|_U = \sigma \cap \sigma^{\cup} = \sigma.$$

Choose n so that $\gamma = \circ_n \beta$ be the transitive closure of β .

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation. Let $\beta = \alpha \cap \alpha^{\cup}$.

$$\beta|_U = (\alpha \cap \alpha^{\cup})|_U = \alpha|_U \cap \alpha^{\cup}|_U = \sigma \cap \sigma^{\cup} = \sigma.$$

Choose n so that $\gamma = \circ_n \beta$ be the transitive closure of β .

$$\gamma|_U = \circ_n \beta|_U = \circ_n \sigma = \sigma.$$

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation. Let $\beta = \alpha \cap \alpha^{\cup}$.

$$\beta|_U = (\alpha \cap \alpha^{\cup})|_U = \alpha|_U \cap \alpha^{\cup}|_U = \sigma \cap \sigma^{\cup} = \sigma.$$

Choose n so that $\gamma = \circ_n \beta$ be the transitive closure of β .

$$\gamma|_U = \circ_n \beta|_U = \circ_n \sigma = \sigma.$$

We have $\gamma \in \operatorname{Con}(\mathbf{A})$ and $\gamma|_U = \sigma$.

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation. Let $\beta = \alpha \cap \alpha^{\cup}$.

$$\beta|_U = (\alpha \cap \alpha^{\cup})|_U = \alpha|_U \cap \alpha^{\cup}|_U = \sigma \cap \sigma^{\cup} = \sigma.$$

Choose n so that $\gamma = \circ_n \beta$ be the transitive closure of β .

$$\gamma|_U = \circ_n \beta|_U = \circ_n \sigma = \sigma.$$

We have $\gamma \in \operatorname{Con}(\mathbf{A})$ and $\gamma|_U = \sigma$.

Stage 4.

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation. Let $\beta = \alpha \cap \alpha^{\cup}$.

$$\beta|_U = (\alpha \cap \alpha^{\cup})|_U = \alpha|_U \cap \alpha^{\cup}|_U = \sigma \cap \sigma^{\cup} = \sigma.$$

Choose n so that $\gamma = \circ_n \beta$ be the transitive closure of β .

$$\gamma|_U = \circ_n \beta|_U = \circ_n \sigma = \sigma.$$

We have $\gamma \in \operatorname{Con}(\mathbf{A})$ and $\gamma|_U = \sigma$.

Stage 4. ($|_U$ is label-preserving)

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation. Let $\beta = \alpha \cap \alpha^{\cup}$.

$$\beta|_U = (\alpha \cap \alpha^{\cup})|_U = \alpha|_U \cap \alpha^{\cup}|_U = \sigma \cap \sigma^{\cup} = \sigma.$$

Choose n so that $\gamma = \circ_n \beta$ be the transitive closure of β .

$$\gamma|_U = \circ_n \beta|_U = \circ_n \sigma = \sigma.$$

We have $\gamma \in \operatorname{Con}(\mathbf{A})$ and $\gamma|_U = \sigma$.

Stage 4. ($|_U$ is label-preserving) Assume that $\alpha \stackrel{\mathbf{i}}{\prec} \beta$ in Con(**A**) and $\alpha|_U \neq \beta|_U$.

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation. Let $\beta = \alpha \cap \alpha^{\cup}$.

$$\beta|_U = (\alpha \cap \alpha^{\cup})|_U = \alpha|_U \cap \alpha^{\cup}|_U = \sigma \cap \sigma^{\cup} = \sigma.$$

Choose n so that $\gamma = \circ_n \beta$ be the transitive closure of β .

$$\gamma|_U = \circ_n \beta|_U = \circ_n \sigma = \sigma.$$

We have $\gamma \in \operatorname{Con}(\mathbf{A})$ and $\gamma|_U = \sigma$.

Stage 4. ($|_U$ is label-preserving) Assume that $\alpha \stackrel{\mathbf{i}}{\prec} \beta$ in Con(**A**) and $\alpha|_U \neq \beta|_U$. Then $\alpha|_U \prec \beta|_U$

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation. Let $\beta = \alpha \cap \alpha^{\cup}$.

$$\beta|_U = (\alpha \cap \alpha^{\cup})|_U = \alpha|_U \cap \alpha^{\cup}|_U = \sigma \cap \sigma^{\cup} = \sigma.$$

Choose n so that $\gamma = \circ_n \beta$ be the transitive closure of β .

$$\gamma|_U = \circ_n \beta|_U = \circ_n \sigma = \sigma.$$

We have $\gamma \in \operatorname{Con}(\mathbf{A})$ and $\gamma|_U = \sigma$.

Stage 4. ($|_U$ is label-preserving)

Assume that $\alpha \stackrel{\mathbf{i}}{\prec} \beta$ in Con(**A**) and $\alpha|_U \neq \beta|_U$. Then $\alpha|_U \prec \beta|_U$ and any $V \in M_{\mathbf{A}|_U}(\alpha|_U, \beta|_U)$ belongs to $M_{\mathbf{A}}(\alpha, \beta)$

Stage 3. (Surjectivity of $|_U: \operatorname{Con}(\mathbf{A}) \to \operatorname{Con}(\mathbf{A}|_U)$) Choose $\sigma \in \operatorname{Con}(\mathbf{A}|_U) \subseteq \operatorname{Rel}(\mathbf{A}|_U)$. There exists $\alpha \in \operatorname{Rel}(\mathbf{A})$ such that $\alpha|_U = \sigma$. Since $\mathbf{A} = \mathbf{A}|_A$, α is a reflexive relation. Let $\beta = \alpha \cap \alpha^{\cup}$.

$$\beta|_U = (\alpha \cap \alpha^{\cup})|_U = \alpha|_U \cap \alpha^{\cup}|_U = \sigma \cap \sigma^{\cup} = \sigma.$$

Choose n so that $\gamma = \circ_n \beta$ be the transitive closure of β .

$$\gamma|_U = \circ_n \beta|_U = \circ_n \sigma = \sigma.$$

We have $\gamma \in \operatorname{Con}(\mathbf{A})$ and $\gamma|_U = \sigma$.

Stage 4. ($|_U$ is label-preserving)

Assume that $\alpha \stackrel{\mathbf{i}}{\prec} \beta$ in Con(**A**) and $\alpha|_U \neq \beta|_U$. Then $\alpha|_U \prec \beta|_U$ and any $V \in M_{\mathbf{A}|_U}(\alpha|_U, \beta|_U)$ belongs to $M_{\mathbf{A}}(\alpha, \beta)$ and the trace algebras are the same since $\alpha|_V = (\alpha|_U)|_V$ and $\beta|_V = (\beta|_U)|_V$.

Theorem.

Theorem. (E. W. Kiss, 1997)

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both $M_{\mathbf{A}}(\alpha, \beta)$ and $M_{\mathbf{A}}(\gamma, \delta)$.

• If $\alpha \stackrel{\mathbf{i}}{\prec} \beta$ and $\gamma \stackrel{\mathbf{j}}{\prec} \delta$, then $\mathbf{i} = \mathbf{j}$.

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both $M_{\mathbf{A}}(\alpha, \beta)$ and $M_{\mathbf{A}}(\gamma, \delta)$.

• If $\alpha \stackrel{\mathbf{i}}{\prec} \beta$ and $\gamma \stackrel{\mathbf{j}}{\prec} \delta$, then $\mathbf{i} = \mathbf{j}$.

- $If \alpha \stackrel{\mathbf{i}}{\prec} \beta and \gamma \stackrel{\mathbf{j}}{\prec} \delta, then \mathbf{i} = \mathbf{j}.$
- **2** If i=2, 3, or 4, then the $\langle \alpha, \beta \rangle$ -body of U equals the $\langle \gamma, \delta \rangle$ -body of U.

- $If \alpha \stackrel{\mathbf{i}}{\prec} \beta and \gamma \stackrel{\mathbf{j}}{\prec} \delta, then \mathbf{i} = \mathbf{j}.$
- **2** If i=2, 3, or 4, then the $\langle \alpha, \beta \rangle$ -body of U equals the $\langle \gamma, \delta \rangle$ -body of U.

- $If \alpha \stackrel{\mathbf{i}}{\prec} \beta and \gamma \stackrel{\mathbf{j}}{\prec} \delta, then \mathbf{i} = \mathbf{j}.$
- **2** If i=2, 3, or 4, then the $\langle \alpha, \beta \rangle$ -body of U equals the $\langle \gamma, \delta \rangle$ -body of U.
- If i=5, then the bodies might be different
Theorem. (E. W. Kiss, 1997) Assume that U belongs to both $M_{\mathbf{A}}(\alpha, \beta)$ and $M_{\mathbf{A}}(\gamma, \delta)$.

- $If \alpha \stackrel{\mathbf{i}}{\prec} \beta and \gamma \stackrel{\mathbf{j}}{\prec} \delta, then \mathbf{i} = \mathbf{j}.$
- **2** If i=2, 3, or 4, then the $\langle \alpha, \beta \rangle$ -body of U equals the $\langle \gamma, \delta \rangle$ -body of U.
- If i=5, then the bodies might be different

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both $M_{\mathbf{A}}(\alpha, \beta)$ and $M_{\mathbf{A}}(\gamma, \delta)$.

- $If \alpha \stackrel{\mathbf{i}}{\prec} \beta and \gamma \stackrel{\mathbf{j}}{\prec} \delta, then \mathbf{i} = \mathbf{j}.$
- **2** If i=2, 3, or 4, then the $\langle \alpha, \beta \rangle$ -body of U equals the $\langle \gamma, \delta \rangle$ -body of U.
- If i=5, then the bodies might be different but there is a largest body and the (α, β)-unit element of U equals the (γ, δ)-unit element of U.

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both $M_{\mathbf{A}}(\alpha, \beta)$ and $M_{\mathbf{A}}(\gamma, \delta)$.

- $If \alpha \stackrel{\mathbf{i}}{\prec} \beta and \gamma \stackrel{\mathbf{j}}{\prec} \delta, then \mathbf{i} = \mathbf{j}.$
- **2** If i=2, 3, or 4, then the $\langle \alpha, \beta \rangle$ -body of U equals the $\langle \gamma, \delta \rangle$ -body of U.
- If i=5, then the bodies might be different but there is a largest body and the (α, β)-unit element of U equals the (γ, δ)-unit element of U.

Nothing nontrivial can be said about type-1 bodies.

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both $M_{\mathbf{A}}(\alpha, \beta)$ and $M_{\mathbf{A}}(\gamma, \delta)$.

- $If \alpha \stackrel{\mathbf{i}}{\prec} \beta and \gamma \stackrel{\mathbf{j}}{\prec} \delta, then \mathbf{i} = \mathbf{j}.$
- **2** If i=2, 3, or 4, then the $\langle \alpha, \beta \rangle$ -body of U equals the $\langle \gamma, \delta \rangle$ -body of U.
- If i=5, then the bodies might be different but there is a largest body and the (α, β)-unit element of U equals the (γ, δ)-unit element of U.

Nothing nontrivial can be said about type-**1** bodies. For example, an unstructured set is a minimal set in many ways, and any nontrivial subset can be a body.

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both $M_{\mathbf{A}}(\alpha, \beta)$ and $M_{\mathbf{A}}(\gamma, \delta)$.

- $If \alpha \stackrel{\mathbf{i}}{\prec} \beta and \gamma \stackrel{\mathbf{j}}{\prec} \delta, then \mathbf{i} = \mathbf{j}.$
- **2** If i=2, 3, or 4, then the $\langle \alpha, \beta \rangle$ -body of U equals the $\langle \gamma, \delta \rangle$ -body of U.
- If i=5, then the bodies might be different but there is a largest body and the (α, β)-unit element of U equals the (γ, δ)-unit element of U.

Nothing nontrivial can be said about type-**1** bodies. For example, an unstructured set is a minimal set in many ways, and any nontrivial subset can be a body.

Corollary.

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both $M_{\mathbf{A}}(\alpha, \beta)$ and $M_{\mathbf{A}}(\gamma, \delta)$.

- $If \alpha \stackrel{\mathbf{i}}{\prec} \beta and \gamma \stackrel{\mathbf{j}}{\prec} \delta, then \mathbf{i} = \mathbf{j}.$
- **2** If i=2, 3, or 4, then the $\langle \alpha, \beta \rangle$ -body of U equals the $\langle \gamma, \delta \rangle$ -body of U.
- If i=5, then the bodies might be different but there is a largest body and the (α, β)-unit element of U equals the (γ, δ)-unit element of U.

Nothing nontrivial can be said about type-**1** bodies. For example, an unstructured set is a minimal set in many ways, and any nontrivial subset can be a body.

Corollary. If $\alpha \stackrel{\mathbf{i}}{\prec} \beta, \gamma \stackrel{\mathbf{j}}{\prec} \delta$, and $Cg(\alpha, \beta) = Cg(\gamma, \delta)$ in $Con(Con(\mathbf{A}))$,

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both $M_{\mathbf{A}}(\alpha, \beta)$ and $M_{\mathbf{A}}(\gamma, \delta)$.

- $If \alpha \stackrel{\mathbf{i}}{\prec} \beta and \gamma \stackrel{\mathbf{j}}{\prec} \delta, then \mathbf{i} = \mathbf{j}.$
- **2** If i=2, 3, or 4, then the $\langle \alpha, \beta \rangle$ -body of U equals the $\langle \gamma, \delta \rangle$ -body of U.
- If i=5, then the bodies might be different but there is a largest body and the (α, β)-unit element of U equals the (γ, δ)-unit element of U.

Nothing nontrivial can be said about type-**1** bodies. For example, an unstructured set is a minimal set in many ways, and any nontrivial subset can be a body.

Corollary. If $\alpha \stackrel{\mathbf{i}}{\prec} \beta, \gamma \stackrel{\mathbf{j}}{\prec} \delta$, and $Cg(\alpha, \beta) = Cg(\gamma, \delta)$ in $Con(Con(\mathbf{A}))$, then $\mathbf{i} = \mathbf{j}$.

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both $M_{\mathbf{A}}(\alpha, \beta)$ and $M_{\mathbf{A}}(\gamma, \delta)$.

- $If \alpha \stackrel{\mathbf{i}}{\prec} \beta and \gamma \stackrel{\mathbf{j}}{\prec} \delta, then \mathbf{i} = \mathbf{j}.$
- **2** If i=2, 3, or 4, then the $\langle \alpha, \beta \rangle$ -body of U equals the $\langle \gamma, \delta \rangle$ -body of U.
- If i=5, then the bodies might be different but there is a largest body and the (α, β)-unit element of U equals the (γ, δ)-unit element of U.

Nothing nontrivial can be said about type-**1** bodies. For example, an unstructured set is a minimal set in many ways, and any nontrivial subset can be a body.

Corollary. If $\alpha \stackrel{\mathbf{i}}{\prec} \beta, \gamma \stackrel{\mathbf{j}}{\prec} \delta$, and $Cg(\alpha, \beta) = Cg(\gamma, \delta)$ in $Con(Con(\mathbf{A}))$, then $\mathbf{i} = \mathbf{j}$. In particular, perspective coverings have the same label.

The polynomial clones on $\{0, 1\}$, ordered by inclusion/strength/richness, are:

The polynomial clones on $\{0, 1\}$, ordered by inclusion/strength/richness, are:

The polynomial clones on $\{0, 1\}$, ordered by inclusion/strength/richness, are:

1 If Con(A) is simple and nonmodular, then all type labels must be **1**.

1 If Con(A) is simple and nonmodular, then all type labels must be **1**.

 If Con(A) is simple and nonmodular, then all type labels must be 1. (E.g., a partition lattice on a set of size ≥ 4.)

- If Con(A) is simple and nonmodular, then all type labels must be 1. (E.g., a partition lattice on a set of size ≥ 4.)
- If Con(A) is simple and nondistributive, then all type labels must be 1 or all type labels must be 2.

- If Con(A) is simple and nonmodular, then all type labels must be 1. (E.g., a partition lattice on a set of size ≥ 4.)
- If Con(A) is simple and nondistributive, then all type labels must be 1 or all type labels must be 2.

- If Con(A) is simple and nonmodular, then all type labels must be 1. (E.g., a partition lattice on a set of size ≥ 4.)
- If Con(A) is simple and nondistributive, then all type labels must be 1 or all type labels must be 2. (E.g., a subspace lattice in dimension ≥ 2.)

- If Con(A) is simple and nonmodular, then all type labels must be 1. (E.g., a partition lattice on a set of size ≥ 4.)
- If Con(A) is simple and nondistributive, then all type labels must be 1 or all type labels must be 2. (E.g., a subspace lattice in dimension ≥ 2.)
- If β ∈ Con(A) is a join of meet-semidistributivity failures, then all type labels in [0, β] must be 1 or 2.

- If Con(A) is simple and nonmodular, then all type labels must be 1. (E.g., a partition lattice on a set of size ≥ 4.)
- If Con(A) is simple and nondistributive, then all type labels must be 1 or all type labels must be 2. (E.g., a subspace lattice in dimension ≥ 2.)
- If β ∈ Con(A) is a join of meet-semidistributivity failures, then all type labels in [0, β] must be 1 or 2.

- If Con(A) is simple and nonmodular, then all type labels must be 1. (E.g., a partition lattice on a set of size ≥ 4.)
- If Con(A) is simple and nondistributive, then all type labels must be 1 or all type labels must be 2. (E.g., a subspace lattice in dimension ≥ 2.)
- If β ∈ Con(A) is a join of meet-semidistributivity failures, then all type labels in [0, β] must be 1 or 2.
- If $\alpha \prec \beta$ in Con(A) is a join-semidistributivity failure, then $\alpha \stackrel{1}{\prec} \beta$, $\alpha \stackrel{2}{\prec} \beta$, or $\alpha \stackrel{5}{\prec} \beta$.

- If Con(A) is simple and nonmodular, then all type labels must be 1. (E.g., a partition lattice on a set of size ≥ 4.)
- If Con(A) is simple and nondistributive, then all type labels must be 1 or all type labels must be 2. (E.g., a subspace lattice in dimension ≥ 2.)
- If β ∈ Con(A) is a join of meet-semidistributivity failures, then all type labels in [0, β] must be 1 or 2.
- If $\alpha \prec \beta$ in Con(A) is a join-semidistributivity failure, then $\alpha \stackrel{1}{\prec} \beta$, $\alpha \stackrel{2}{\prec} \beta$, or $\alpha \stackrel{5}{\prec} \beta$.

- If Con(A) is simple and nonmodular, then all type labels must be 1. (E.g., a partition lattice on a set of size ≥ 4.)
- If Con(A) is simple and nondistributive, then all type labels must be 1 or all type labels must be 2. (E.g., a subspace lattice in dimension ≥ 2.)
- If β ∈ Con(A) is a join of meet-semidistributivity failures, then all type labels in [0, β] must be 1 or 2.
- If $\alpha \prec \beta$ in Con(A) is a join-semidistributivity failure, then $\alpha \stackrel{1}{\prec} \beta$, $\alpha \stackrel{2}{\prec} \beta$, or $\alpha \stackrel{5}{\prec} \beta$.
- So If $typ[\sigma, \alpha] \subseteq \{1, 2\}$, then $typ[\beta, \gamma] \subseteq \{1\}$ in

If all types in Con(A) are strong types, then the shape of Con(A) cannot be too complicated.

If V is a locally finite variety that omits types 1 and 5, then there is a nontrivial lattice identity that holds in Con(A) for every A ∈ V.

If all types in Con(A) are strong types, then the shape of Con(A) cannot be too complicated.

If V is a locally finite variety that omits types 1 and 5, then there is a nontrivial lattice identity that holds in Con(A) for every A ∈ V.

If all types in Con(A) are strong types, then the shape of Con(A) cannot be too complicated.

If V is a locally finite variety that omits types 1 and 5, then there is a nontrivial lattice identity that holds in Con(A) for every A ∈ V. (The identity can be taken to be a generalized modular law.)

- If V is a locally finite variety that omits types 1 and 5, then there is a nontrivial lattice identity that holds in Con(A) for every A ∈ V. (The identity can be taken to be a generalized modular law.)
- The members of a locally finite variety V have modular congruence lattices if and only if V omits types 1 and 5 and all minimal sets have empty tails.

- If V is a locally finite variety that omits types 1 and 5, then there is a nontrivial lattice identity that holds in Con(A) for every A ∈ V. (The identity can be taken to be a generalized modular law.)
- The members of a locally finite variety V have modular congruence lattices if and only if V omits types 1 and 5 and all minimal sets have empty tails.

- If V is a locally finite variety that omits types 1 and 5, then there is a nontrivial lattice identity that holds in Con(A) for every A ∈ V. (The identity can be taken to be a generalized modular law.)
- The members of a locally finite variety V have modular congruence lattices if and only if V omits types 1 and 5 and all minimal sets have empty tails.
- If V is a locally finite variety that omits types 1, 2 and 5, then there is a lattice identity that holds in Con(A) for every A ∈ V that is strong enough to imply that all algebras have join-semidistributive congruences lattices.

- If V is a locally finite variety that omits types 1 and 5, then there is a nontrivial lattice identity that holds in Con(A) for every A ∈ V. (The identity can be taken to be a generalized modular law.)
- The members of a locally finite variety V have modular congruence lattices if and only if V omits types 1 and 5 and all minimal sets have empty tails.
- If V is a locally finite variety that omits types 1, 2 and 5, then there is a lattice identity that holds in Con(A) for every A ∈ V that is strong enough to imply that all algebras have join-semidistributive congruences lattices.

- If V is a locally finite variety that omits types 1 and 5, then there is a nontrivial lattice identity that holds in Con(A) for every A ∈ V. (The identity can be taken to be a generalized modular law.)
- The members of a locally finite variety V have modular congruence lattices if and only if V omits types 1 and 5 and all minimal sets have empty tails.
- If V is a locally finite variety that omits types 1, 2 and 5, then there is a lattice identity that holds in Con(A) for every A ∈ V that is strong enough to imply that all algebras have join-semidistributive congruences lattices.
- The members of a locally finite variety V have distributive congruence lattices if and only if V omits types 1, 2 and 5 and all minimal sets have empty tails.

- If V is a locally finite variety that omits types 1 and 5, then there is a nontrivial lattice identity that holds in Con(A) for every A ∈ V. (The identity can be taken to be a generalized modular law.)
- The members of a locally finite variety V have modular congruence lattices if and only if V omits types 1 and 5 and all minimal sets have empty tails.
- If V is a locally finite variety that omits types 1, 2 and 5, then there is a lattice identity that holds in Con(A) for every A ∈ V that is strong enough to imply that all algebras have join-semidistributive congruences lattices.
- The members of a locally finite variety V have distributive congruence lattices if and only if V omits types 1, 2 and 5 and all minimal sets have empty tails.

- If V is a locally finite variety that omits types 1 and 5, then there is a nontrivial lattice identity that holds in Con(A) for every A ∈ V. (The identity can be taken to be a generalized modular law.)
- The members of a locally finite variety V have modular congruence lattices if and only if V omits types 1 and 5 and all minimal sets have empty tails.
- If V is a locally finite variety that omits types 1, 2 and 5, then there is a lattice identity that holds in Con(A) for every A ∈ V that is strong enough to imply that all algebras have join-semidistributive congruences lattices.
- The members of a locally finite variety V have distributive congruence lattices if and only if V omits types 1, 2 and 5 and all minimal sets have empty tails.
Why?

$$\operatorname{Con}(\mathbf{A}) \to \prod_{U \in M_{\mathbf{A}}(\alpha,\beta)} \operatorname{Con}(\mathbf{A}|_U).$$

$$\operatorname{Con}(\mathbf{A}) \to \prod_{U \in M_{\mathbf{A}}(\alpha,\beta)} \operatorname{Con}(\mathbf{A}|_U).$$

This is enough to show that the lattice $Con(\mathbf{A})$ generates the same variety of lattices as the set $\{Con(\mathbf{A}|_U) \mid U \in M_{\mathbf{A}}(\alpha, \beta)\}$.

$$\operatorname{Con}(\mathbf{A}) \to \prod_{U \in M_{\mathbf{A}}(\alpha,\beta)} \operatorname{Con}(\mathbf{A}|_U).$$

This is enough to show that the lattice $Con(\mathbf{A})$ generates the same variety of lattices as the set $\{Con(\mathbf{A}|_U) \mid U \in M_{\mathbf{A}}(\alpha, \beta)\}$.

The other part of the explanation is that the satisfaction of congruence identities can be characterized by idempotent linear Maltsev conditions, and these restrict well to minimal sets.

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$,

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$,

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even,

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd.

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities.

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible.

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible. $ed_i(a, t, b) \equiv_{\beta} ed_i(a, t, a) = a \in N$, so $ed_i(a, x, b)$ is collapsing.

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ i even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ i odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible. $ed_i(a, t, b) \equiv_{\beta} ed_i(a, t, a) = a \in N$, so $ed_i(a, x, b)$ is collapsing. Now

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible. $ed_i(a, t, b) \equiv_{\beta} ed_i(a, t, a) = a \in N$, so $ed_i(a, x, b)$ is collapsing. Now

$$a = ed_0(a, b, b) = ed_1(a, b, b) \equiv_{\alpha} ed_1(a, a, b) = ed_2(a, a, b) \equiv_{\alpha} \cdots \equiv_{\alpha} b,$$

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible. $ed_i(a, t, b) \equiv_{\beta} ed_i(a, t, a) = a \in N$, so $ed_i(a, x, b)$ is collapsing. Now

$$a = ed_0(a, b, b) = ed_1(a, b, b) \equiv_{\alpha} ed_1(a, a, b) = ed_2(a, a, b) \equiv_{\alpha} \cdots \equiv_{\alpha} b,$$

contradicting $(a, b) \notin \alpha$.

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible. $ed_i(a, t, b) \equiv_{\beta} ed_i(a, t, a) = a \in N$, so $ed_i(a, x, b)$ is collapsing. Now

$$a = ed_0(a, b, b) = ed_1(a, b, b) \equiv_{\alpha} ed_1(a, a, b) = ed_2(a, a, b) \equiv_{\alpha} \cdots \equiv_{\alpha} b,$$

contradicting $(a, b) \notin \alpha$. This shows that U has empty tail

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible. $ed_i(a, t, b) \equiv_{\beta} ed_i(a, t, a) = a \in N$, so $ed_i(a, x, b)$ is collapsing. Now

$$a = ed_0(a, b, b) = ed_1(a, b, b) \equiv_{\alpha} ed_1(a, a, b) = ed_2(a, a, b) \equiv_{\alpha} \cdots \equiv_{\alpha} b,$$

contradicting $(a, b) \notin \alpha$. This shows that U has empty tail and $\mathbf{A}|_U$ has Jónsson polynomials.

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible. $ed_i(a, t, b) \equiv_{\beta} ed_i(a, t, a) = a \in N$, so $ed_i(a, x, b)$ is collapsing. Now

$$a = ed_0(a, b, b) = ed_1(a, b, b) \equiv_{\alpha} ed_1(a, a, b) = ed_2(a, a, b) \equiv_{\alpha} \cdots \equiv_{\alpha} b,$$

contradicting $(a, b) \notin \alpha$. This shows that U has empty tail and $\mathbf{A}|_U$ has Jónsson polynomials. Necessarily $\mathbf{A}|_N/\alpha$ has Jónsson polynomials.

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible. $ed_i(a, t, b) \equiv_{\beta} ed_i(a, t, a) = a \in N$, so $ed_i(a, x, b)$ is collapsing. Now

$$a = ed_0(a, b, b) = ed_1(a, b, b) \equiv_{\alpha} ed_1(a, a, b) = ed_2(a, a, b) \equiv_{\alpha} \cdots \equiv_{\alpha} b,$$

contradicting $(a, b) \notin \alpha$. This shows that U has empty tail and $\mathbf{A}|_U$ has Jónsson polynomials. Necessarily $\mathbf{A}|_N/\alpha$ has Jónsson polynomials. G-sets, semilattices,

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible. $ed_i(a, t, b) \equiv_{\beta} ed_i(a, t, a) = a \in N$, so $ed_i(a, x, b)$ is collapsing. Now

$$a = ed_0(a, b, b) = ed_1(a, b, b) \equiv_{\alpha} ed_1(a, a, b) = ed_2(a, a, b) \equiv_{\alpha} \cdots \equiv_{\alpha} b,$$

contradicting $(a, b) \notin \alpha$. This shows that U has empty tail and $\mathbf{A}|_U$ has Jónsson polynomials. Necessarily $\mathbf{A}|_N/\alpha$ has Jónsson polynomials. G-sets, semilattices, and vector spaces do not have J'onsson polynomials,

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible. $ed_i(a, t, b) \equiv_{\beta} ed_i(a, t, a) = a \in N$, so $ed_i(a, x, b)$ is collapsing. Now

$$a = ed_0(a, b, b) = ed_1(a, b, b) \equiv_{\alpha} ed_1(a, a, b) = ed_2(a, a, b) \equiv_{\alpha} \cdots \equiv_{\alpha} b,$$

contradicting $(a, b) \notin \alpha$. This shows that U has empty tail and $\mathbf{A}|_U$ has Jónsson polynomials. Necessarily $\mathbf{A}|_N/\alpha$ has Jónsson polynomials. *G*-sets, semilattices, and vector spaces do not have J'onsson polynomials, so $\alpha \stackrel{\mathbf{3}}{\prec} \beta$ or $\alpha \stackrel{\mathbf{4}}{\prec} \beta$.

Recall that a variety is CD iff it has (Jónsson) terms $d_i(x, y, z)$ such that \mathcal{V} satisfies (0) $d_0(x, y, z) = x$, $d_n(x, y, z) = z$, (i) $d_i(x, y, x) = x$, (ii) $d_i(x, y, y) = d_{i+1}(x, y, y)$ *i* even, (iii) $d_i(x, x, y) = d_{i+1}(x, x, y)$ *i* odd. An $\langle \alpha, \beta \rangle$ -minimal algebra $\mathbf{A}|_U$ will have polynomials $ed_i(x, y, z)$ satisfying the same equalities. Choose a, b in a trace N, $(a, b) \notin \alpha$, and choose $t \in U$ to be a tail element, if possible. $ed_i(a, t, b) \equiv_{\beta} ed_i(a, t, a) = a \in N$, so $ed_i(a, x, b)$ is collapsing. Now

$$a = ed_0(a, b, b) = ed_1(a, b, b) \equiv_{\alpha} ed_1(a, a, b) = ed_2(a, a, b) \equiv_{\alpha} \cdots \equiv_{\alpha} b,$$

contradicting $(a, b) \notin \alpha$. This shows that U has empty tail and $\mathbf{A}|_U$ has Jónsson polynomials. Necessarily $\mathbf{A}|_N/\alpha$ has Jónsson polynomials. *G*-sets, semilattices, and vector spaces do not have J'onsson polynomials, so $\alpha \stackrel{\mathbf{3}}{\prec} \beta$ or $\alpha \stackrel{\mathbf{4}}{\prec} \beta$. \Box