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Assume that A is a finite algebra, « < 5 in Con(A), U € Ma(a, ), e(z) is
an idempotent unary polynomial of A for which e(A) = U.
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Assume that A is a finite algebra, « < 5 in Con(A), U € Ma(a, ), e(z) is
an idempotent unary polynomial of A for which e(A) = U. We have partially

classified the structure

Aly = e(A) = (U;{e(p(x)) | p € Pol(A)}).
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Ay is an invariant of («, )

Assume that U,V € Ma(a, ).
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Ay is an invariant of («, )

Assume that U,V € Ma (a, 5). Assume also that V' = f(A) for idempotent
f.
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Assume that U,V € Ma (a, 5). Assume also that V' = f(A) for idempotent
f. Our goal is to prove that U ~ V.
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Ay is an invariant of («, )

Assume that U,V € Ma (a, 5). Assume also that V' = f(A) for idempotent
f. Our goal is to prove that U ~ V.
Choose (p,q) € flv —aand (1, s) € By — a.
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Ay is an invariant of («, 3)

Assume that U,V € Ma (a, 5). Assume also that V' = f(A) for idempotent
f. Our goal is to prove that U ~ V.
Choose (p,q) € flv —aand (1, s) € By — a.

(r,8) € B=CglaU{(p,0)}),
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Assume that U,V € Ma (a, 5). Assume also that V' = f(A) for idempotent
f. Our goal is to prove that U ~ V.
Choose (p,q) € flv —aand (1, s) € By — a.

(r,8) € B=CglaU{(p,0)}),
so there is a Maltsev chain

r=mgy—mjp—---—M =S
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Ay is an invariant of («, 3)

Assume that U,V € Ma (a, 5). Assume also that V' = f(A) for idempotent
f. Our goal is to prove that U ~ V.
Choose (p,q) € flv —aand (1, s) € By — a.

(r,8) € B=CglaU{(p,0)}),
so there is a Maltsev chain
r=mgy—mjp—---—M =S

where each link is an a-link or a polynomial image of {p, ¢}.
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Ay is an invariant of («, 3)

Assume that U,V € Ma (a, 5). Assume also that V' = f(A) for idempotent
f. Our goal is to prove that U ~ V.
Choose (p,q) € flv —aand (1, s) € By — a.

(r,8) € B=CglaU{(p,0)}),
so there is a Maltsev chain
r=mgy—mjp—---—M =S

where each link is an a-link or a polynomial image of {p, ¢}. Use f to push
the chain into V:
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Ay is an invariant of («, 3)

Assume that U,V € Ma (a, 5). Assume also that V' = f(A) for idempotent
f. Our goal is to prove that U ~ V.
Choose (p,q) € flv —aand (1, s) € By — a.

(r,8) € B=CglaU{(p,0)}),
so there is a Maltsev chain
r=mgy—mjp—---—M =S

where each link is an a-link or a polynomial image of {p, ¢}. Use f to push
the chain into V:

r=f(r) = f(mo) — f(m1) — - = f(mg) = f(s) = s.

Since (7, s) ¢ «, at least one link is not an a-link
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Ay is an invariant of («, 3)

Assume that U,V € Ma (a, 5). Assume also that V' = f(A) for idempotent
f. Our goal is to prove that U ~ V.
Choose (p,q) € flv —aand (1, s) € By — a.

(r,8) € B=CglaU{(p,0)}),
so there is a Maltsev chain
r=mgy—mjp—---—M =S

where each link is an a-link or a polynomial image of {p, ¢}. Use f to push
the chain into V:

r=f(r) = f(mo) — f(m1) — - = f(mg) = f(s) = s.

Since (7, s) ¢ a, at least one link is not an a-link and necessarily it is of the
form {g(p), g(q)} for some polynomial g such that g(A4) C f(A) = V.
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Ay is an invariant of («, 3), 2
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Ay is an invariant of («, 3), 2

We have just established that there is a polynomial g such that
9(U) € g(A) €V and (g(p),9(q)) € Blv — .
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Ay is an invariant of («, 3), 2

We have just established that there is a polynomial g such that
g(U) C g(A) CV and (9(p),9(¢q)) € Blv — a. Rename (r, s) so that it

equals (g(p), 9(q))-
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Ay is an invariant of («, 3), 2

We have just established that there is a polynomial g such that
g(U) C g(A) CV and (9(p),9(¢q)) € Blv — a. Rename (r, s) so that it
equals (g(p), g(q)). Reverse the argument to get a polynomial & such that

h(V) C U and (h(r), h(s)) € Blv — a.
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Ay is an invariant of («, 3), 2

We have just established that there is a polynomial g such that

g(U) C g(A) CV and (9(p),9(¢q)) € Blv — a. Rename (r, s) so that it
equals (g(p), g(q)). Reverse the argument to get a polynomial & such that
h(V) C U and (h(r),h(s)) € Bly — . The composition satisfies

hg(U) € U and hg(Blv) £ a.
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hg(U) C U and hg(f5|v) € a. (Le., hg is not collapsing on U.)
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Ay is an invariant of («, 3), 2

We have just established that there is a polynomial g such that

g(U) C g(A) CV and (9(p),9(¢q)) € Blv — a. Rename (r, s) so that it
equals (g(p), g(q)). Reverse the argument to get a polynomial & such that
h(V) C U and (h(r),h(s)) € Bly — . The composition satisfies

hg(U) C U and hg(fS|v) € a. (Le., hg is not collapsing on U.) By the

(o, B)-minimality of U, 7(x) = hg(z) is a permutation of U. If we replace h
with 7= 1h, we get that hg(z) = z on U,
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Ay is an invariant of («, 3), 2

We have just established that there is a polynomial g such that

g(U) C g(A) CV and (9(p),9(¢q)) € Blv — a. Rename (r, s) so that it
equals (g(p), g(q)). Reverse the argument to get a polynomial & such that
h(V) C U and (h(r),h(s)) € Bly — . The composition satisfies

hg(U) C U and hg(fS|v) € a. (Le., hg is not collapsing on U.) By the

(o, B)-minimality of U, 7(x) = hg(z) is a permutation of U. If we replace h
with 77 1h, we get that hg(z) = z on U, so the set U is a retract of the finite
set V,so |U| < |V].
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We have just established that there is a polynomial g such that

g(U) C g(A) CV and (9(p),9(¢q)) € Blv — a. Rename (r, s) so that it
equals (g(p), g(q)). Reverse the argument to get a polynomial & such that
h(V) C U and (h(r),h(s)) € Bly — . The composition satisfies

hg(U) C U and hg(fS|v) € a. (Le., hg is not collapsing on U.) By the

(o, B)-minimality of U, 7(x) = hg(z) is a permutation of U. If we replace h
with 77 1h, we get that hg(z) = z on U, so the set U is a retract of the finite
set V, so |U| < |V|. Similarly, V must be a retract of the finite set U, so

|U| = |V|. The fact that hg(z) = = on U implies that h and g are inverse
polynomial bijections between U and V,

Talk #8: Labeled congruence lattices



Ay is an invariant of («, 3), 2

We have just established that there is a polynomial g such that

g(U) C g(A) CV and (9(p),9(¢q)) € Blv — a. Rename (r, s) so that it
equals (g(p), g(q)). Reverse the argument to get a polynomial & such that
h(V) C U and (h(r),h(s)) € Bly — . The composition satisfies

hg(U) C U and hg(fS|v) € a. (Le., hg is not collapsing on U.) By the

(o, B)-minimality of U, 7(x) = hg(z) is a permutation of U. If we replace h
with 77 1h, we get that hg(z) = z on U, so the set U is a retract of the finite
set V, so |U| < |V|. Similarly, V must be a retract of the finite set U, so

|U| = |V|. The fact that hg(z) = = on U implies that h and g are inverse
polynomial bijections between U and V,so U ~ V.

Talk #8: Labeled congruence lattices



Ay is an invariant of («, 3), 2

We have just established that there is a polynomial g such that

g(U) C g(A) CV and (9(p),9(¢q)) € Blv — a. Rename (r, s) so that it
equals (g(p), g(q)). Reverse the argument to get a polynomial & such that
h(V) C U and (h(r),h(s)) € Bly — . The composition satisfies

hg(U) C U and hg(fS|v) € a. (Le., hg is not collapsing on U.) By the

(o, B)-minimality of U, 7(x) = hg(z) is a permutation of U. If we replace h
with 77 1h, we get that hg(z) = z on U, so the set U is a retract of the finite
set V, so |U| < |V|. Similarly, V must be a retract of the finite set U, so

|U| = |V|. The fact that hg(z) = = on U implies that h and g are inverse
polynomial bijections between U and V,so U ~ V. O
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Ay is an invariant of («, 3), 2

We have just established that there is a polynomial g such that

g(U) C g(A) CV and (9(p),9(¢q)) € Blv — a. Rename (r, s) so that it
equals (g(p), g(q)). Reverse the argument to get a polynomial & such that
h(V) C U and (h(r),h(s)) € Bly — . The composition satisfies

hg(U) C U and hg(fS|v) € a. (Le., hg is not collapsing on U.) By the

(o, B)-minimality of U, 7(x) = hg(z) is a permutation of U. If we replace h
with 77 1h, we get that hg(z) = z on U, so the set U is a retract of the finite
set V, so |U| < |V|. Similarly, V must be a retract of the finite set U, so

|U| = |V|. The fact that hg(z) = = on U implies that h and g are inverse
polynomial bijections between U and V,so U ~ V. O

Thus, the “type” of (v, ) is well defined,
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Ay is an invariant of («, 3), 2

We have just established that there is a polynomial g such that

g(U) C g(A) CV and (9(p),9(¢q)) € Blv — a. Rename (r, s) so that it
equals (g(p), g(q)). Reverse the argument to get a polynomial & such that
h(V) C U and (h(r),h(s)) € Bly — . The composition satisfies

hg(U) C U and hg(fS|v) € a. (Le., hg is not collapsing on U.) By the

(o, B)-minimality of U, 7(x) = hg(z) is a permutation of U. If we replace h
with 77 1h, we get that hg(z) = z on U, so the set U is a retract of the finite
set V, so |U| < |V|. Similarly, V must be a retract of the finite set U, so

|U| = |V|. The fact that hg(z) = = on U implies that h and g are inverse
polynomial bijections between U and V,so U ~ V. O

Thus, the “type” of (v, ) is well defined, and we write o < 3 for
i€ {1,2,3,4,5} to indicate it.
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Claim. Restriction to U is a surjective, label-preserving lattice
homomorphism.
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| is a lattice homomorphism

Claim. Restriction to U is a surjective, label-preserving lattice
homomorphism.

Notice that Con(A) (its elements and its operations) is a part of the relational
clone of A.
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| is a lattice homomorphism

Claim. Restriction to U is a surjective, label-preserving lattice
homomorphism.

Notice that Con(A) (its elements and its operations) is a part of the relational
clone of A. (A similar statement is true for Con(A|y).)
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| is a lattice homomorphism

Claim. Restriction to U is a surjective, label-preserving lattice
homomorphism.

Notice that Con(A) (its elements and its operations) is a part of the relational
clone of A. (A similar statement is true for Con(A|;;).) The only nonobvious
part of this statement is that the join of congruences is a term operation in the
language of relational clones.
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| is a lattice homomorphism

Claim. Restriction to U is a surjective, label-preserving lattice
homomorphism.

Notice that Con(A) (its elements and its operations) is a part of the relational
clone of A. (A similar statement is true for Con(A|;;).) The only nonobvious
part of this statement is that the join of congruences is a term operation in the
language of relational clones. Let’s verify that.)
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Notice that Con(A) (its elements and its operations) is a part of the relational
clone of A. (A similar statement is true for Con(A|;;).) The only nonobvious
part of this statement is that the join of congruences is a term operation in the
language of relational clones. Let’s verify that.)

Stage 1. Relational composition of binary relations is a term operation in the
language of relational clones.
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| is a lattice homomorphism

Claim. Restriction to U is a surjective, label-preserving lattice
homomorphism.

Notice that Con(A) (its elements and its operations) is a part of the relational
clone of A. (A similar statement is true for Con(A|;;).) The only nonobvious
part of this statement is that the join of congruences is a term operation in the
language of relational clones. Let’s verify that.)

Stage 1. Relational composition of binary relations is a term operation in the
language of relational clones.

got =projiu((c x7)N(Ax = xA))
= proji4({(s1, 52,1, t2)} N {(=,y, 9, 2)}).
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| is a lattice homomorphism

Claim. Restriction to U is a surjective, label-preserving lattice
homomorphism.

Notice that Con(A) (its elements and its operations) is a part of the relational
clone of A. (A similar statement is true for Con(A|;;).) The only nonobvious
part of this statement is that the join of congruences is a term operation in the
language of relational clones. Let’s verify that.)

Stage 1. Relational composition of binary relations is a term operation in the
language of relational clones.

got =projiu((c x7)N(Ax = xA))
= proji4({(s1, 52,1, t2)} N {(=,y, 9, 2)}).

Stage2. oV 3 =ao, 8 =aofoao--- for sufficiently large n.
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| is surjective and label-preserving

Stage 3.
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose 0 € Con(A|y)
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(Aly) C Rel(A|y).
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly =o.
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly = 0. Since A = A| 4, ais a reflexive relation.
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly = 0. Since A = A| 4, ais a reflexive relation. Let 8 = a N aV.
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly = 0. Since A = A| 4, ais a reflexive relation. Let 8 = a N aV.

Blv=(ana)|ly=alyna’ly =cno” =o0.
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly = 0. Since A = A| 4, ais a reflexive relation. Let 8 = a N aV.

Blv=(ana)|ly=alyna’ly =cno” =o0.

Choose n so that v = o, 3 be the transitive closure of .
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))

Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that

aly = 0. Since A = A| 4, ais a reflexive relation. Let 8 = a N aV.
Bluv=(ana)ly=alvna’ly=cno’ =o.

Choose n so that v = o, 3 be the transitive closure of .

Yo =on Bl =o0npo=o0.
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly = 0. Since A = A| 4, ais a reflexive relation. Let 8 = a N aV.
Blu=(ana )y =ealynaly =cno” =o0.
Choose n so that v = o, 3 be the transitive closure of .
Vo =onBlu =ono=0.

We have v € Con(A) and 7|y = o.
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly = 0. Since A = A| 4, ais a reflexive relation. Let 8 = a N aV.
Blu=(ana )y =ealynaly =cno” =o0.
Choose n so that v = o, 3 be the transitive closure of .
Vo =onBlu =ono=0.

We have v € Con(A) and 7|y = o.
Stage 4.
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly = 0. Since A = A| 4, ais a reflexive relation. Let 8 = a N aV.
Blu=(ana )y =ealynaly =cno” =o0.
Choose n so that v = o, 3 be the transitive closure of .
Vo =onBlu =ono=0.

We have v € Con(A) and 7|y = o.
Stage 4. (| is label-preserving)
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly = 0. Since A = A| 4, ais a reflexive relation. Let 8 = a N aV.

Blv=(ana)|ly=alyna’ly =cno” =o0.
Choose n so that v = o,, 3 be the transitive closure of .
Ylv =on Bly =on 0o =o0.

We have v € Con(A) and 7|y = o.
Stage 4. (| is label-preserving)
Assume that o < 3 in Con(A) and a|y # Blu.
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly = 0. Since A = A| 4, ais a reflexive relation. Let 8 = a N aV.

Blv=(ana)|ly=alyna’ly =cno” =o0.
Choose n so that v = o,, 3 be the transitive closure of .
Ylv =on Bly =on 0o =o0.

We have v € Con(A) and 7|y = o.
Stage 4. (| is label-preserving)
Assume that o < B in Con(A) and |y # S|y. Then o|y < Blu
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly = 0. Since A = A| 4, ais a reflexive relation. Let 8 = a N aV.

Blv=(ana)|ly=alyna’ly =cno” =o0.
Choose n so that v = o,, 3 be the transitive closure of .
Ylv =on Bly =on 0o =o0.

We have v € Con(A) and 7|y = o.
Stage 4. (| is label-preserving)

Assume that o < 3 in Con(A) and a|y # Blu. Then a|y < 8|y and any
Ve MA|U(a|U75|U) belongs to MA(O[7[3)
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| is surjective and label-preserving

Stage 3. (Surjectivity of |;7: Con(A) — Con(A|r))
Choose o € Con(A|y) € Rel(A|y). There exists a € Rel(A) such that
aly = 0. Since A = A| 4, ais a reflexive relation. Let 8 = a N aV.

Blu=(ana )y =ealynaly =cno” =o0.
Choose n so that v = o,, 3 be the transitive closure of .
Vv = on Bly =on o =0.
We have v € Con(A) and 7|y = o.

Stage 4. (| is label-preserving)

Assume that o < 3 in Con(A) and a|y # Blu. Then a|y < 8|y and any
V € My, (aly, Blu) belongs to Ma (a, 3) and the trace algebras are the
same since a|y = (a|y)|v and Bly = (Blv)|v-

Talk #8: Labeled congruence lattices



Multiminimal algebras

Talk #8: Labeled congruence lattices



Multiminimal algebras

Theorem.
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Multiminimal algebras

Theorem. (E. W. Kiss, 1997)
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Multiminimal algebras

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both Ma («, 3) and
MA (’77 5) .
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Multiminimal algebras

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both Ma («, 3) and
MA (’77 5) .

(1] Ifaéﬁand'yié,theni:j.
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Multiminimal algebras

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both Ma («, 3) and
MA (’77 5) .

(1] Ifaéﬁand'yié,theni:j.
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Multiminimal algebras

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both Ma («, 3) and
MA (’77 5)

(1] Ifaéﬁand'yié,theni:j.

@ Ifi=2, 3, or 4, then the («, 3)-body of U equals the (v, §)-body of U.
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Theorem. (E. W. Kiss, 1997) Assume that U belongs to both Ma («, 3) and
MA (’77 5)

(1] Ifaéﬁand'yié,theni:j.

@ Ifi=2, 3, or 4, then the («, 3)-body of U equals the (v, §)-body of U.

© Ifi=5, then the bodies might be different but there is a largest body and
the (v, #)-unit element of U equals the (-, d)-unit element of U.
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Nothing nontrivial can be said about type-1 bodies.
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Theorem. (E. W. Kiss, 1997) Assume that U belongs to both Ma («, 3) and
MA (’77 5) .

(1] Ifaéﬁand'yié,theni:j.
@ Ifi=2, 3, or 4, then the («, 3)-body of U equals the (v, §)-body of U.

© Ifi=5, then the bodies might be different but there is a largest body and
the (v, #)-unit element of U equals the (-, d)-unit element of U.

Nothing nontrivial can be said about type-1 bodies. For example, an
unstructured set is a minimal set in many ways, and any nontrivial subset can
be a body.

Talk #8: Labeled congruence lattices



Multiminimal algebras

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both Ma («, 3) and
MA (’77 5)

(1] Ifaéﬁand'yié,theni:j.

@ Ifi=2, 3, or 4, then the («, 3)-body of U equals the (v, §)-body of U.

© Ifi=5, then the bodies might be different but there is a largest body and
the (v, #)-unit element of U equals the (-, d)-unit element of U.

Nothing nontrivial can be said about type-1 bodies. For example, an
unstructured set is a minimal set in many ways, and any nontrivial subset can
be a body.

Corollary.
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Theorem. (E. W. Kiss, 1997) Assume that U belongs to both Ma («, 3) and
MA (’77 5)

(1] Ifaéﬁand'yié,theni:j.

@ Ifi=2, 3, or 4, then the («, 3)-body of U equals the (v, §)-body of U.

© Ifi=5, then the bodies might be different but there is a largest body and
the (v, #)-unit element of U equals the (-, d)-unit element of U.

Nothing nontrivial can be said about type-1 bodies. For example, an
unstructured set is a minimal set in many ways, and any nontrivial subset can
be a body.

Corollary. If o L B,y %5, and Cg(a, ) = Cg(,9) in Con(Con(A)),
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Multiminimal algebras

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both Ma («, 3) and
MA (’77 5)

(1] Ifaéﬁand'yié,theni:j.

@ Ifi=2, 3, or 4, then the («, 3)-body of U equals the (v, §)-body of U.

© Ifi=5, then the bodies might be different but there is a largest body and
the (v, #)-unit element of U equals the (-, d)-unit element of U.

Nothing nontrivial can be said about type-1 bodies. For example, an
unstructured set is a minimal set in many ways, and any nontrivial subset can
be a body.

Corollary. If o < f3, v %5, and Cg(a, B) = Cg(,0) in Con(Con(A)), then
i=j.
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Multiminimal algebras

Theorem. (E. W. Kiss, 1997) Assume that U belongs to both Ma («, 3) and
MA (’77 5)

(1] Ifaéﬁand'yié,theni:j.

@ Ifi=2, 3, or 4, then the («, 3)-body of U equals the (v, §)-body of U.

© Ifi=5, then the bodies might be different but there is a largest body and
the (v, #)-unit element of U equals the (-, d)-unit element of U.

Nothing nontrivial can be said about type-1 bodies. For example, an
unstructured set is a minimal set in many ways, and any nontrivial subset can
be a body.

Corollary. If o < f3, v %5, and Cg(a, B) = Cg(,0) in Con(Con(A)), then
i = j. In particular, perspective coverings have the same label.
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Ordering types by strength

The polynomial clones on {0, 1}, ordered by inclusion/strength/richness, are:
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Ordering types by strength

The polynomial clones on {0, 1}, ordered by inclusion/strength/richness, are:

A,V =
+ N,V
AN / AN
- A V
AN //
0,1
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Ordering types by strength

The polynomial clones on {0, 1}, ordered by inclusion/strength/richness, are:

AV, -
1 A,V
AN / AN

- A V

N

0,1

3
2 4
AN /N
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@ If Con(A) is simple and nonmodular, then all type labels must be 1.
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@ If Con(A) is simple and nonmodular, then all type labels must be 1.
(E.g., a partition lattice on a set of size > 4.)
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@ If Con(A) is simple and nonmodular, then all type labels must be 1.
(E.g., a partition lattice on a set of size > 4.)

@ If Con(A) is simple and nondistributive, then all type labels must be 1
or all type labels must be 2.
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(E.g., a partition lattice on a set of size > 4.)

@ If Con(A) is simple and nondistributive, then all type labels must be 1
or all type labels must be 2. (E.g., a subspace lattice in dimension > 2.)
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@ If Con(A) is simple and nonmodular, then all type labels must be 1.
(E.g., a partition lattice on a set of size > 4.)

@ If Con(A) is simple and nondistributive, then all type labels must be 1
or all type labels must be 2. (E.g., a subspace lattice in dimension > 2.)

@ If 5 € Con(A) is a join of meet-semidistributivity failures, then all type
labels in [0, ] must be 1 or 2.
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Complicated shapes are incompatible with strong types

@ If Con(A) is simple and nonmodular, then all type labels must be 1.
(E.g., a partition lattice on a set of size > 4.)

@ If Con(A) is simple and nondistributive, then all type labels must be 1
or all type labels must be 2. (E.g., a subspace lattice in dimension > 2.)

@ If 5 € Con(A) is a join of meet-semidistributivity failures, then all type
labels in [0, ] must be 1 or 2.
1
Q If o < Bin Con(A) is a join-semidistributivity failure, then o < 3,
2 5
a=<p,ora<f.
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Complicated shapes are incompatible with strong types

@ If Con(A) is simple and nonmodular, then all type labels must be 1.
(E.g., a partition lattice on a set of size > 4.)

@ If Con(A) is simple and nondistributive, then all type labels must be 1
or all type labels must be 2. (E.g., a subspace lattice in dimension > 2.)

@ If 5 € Con(A) is a join of meet-semidistributivity failures, then all type
labels in [0, ] must be 1 or 2.

1
Q If o < Bin Con(A) is a join-semidistributivity failure, then o < 3,
2 5
a=<p,ora<f.
@ Iftyp[o,a] C {1,2}, thentyp[5,v] C {1} in

/
\
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If all types in Con(A) are strong types, then the shape of Con(A) cannot be
too complicated.
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If all types in Con(A) are strong types, then the shape of Con(A) cannot be
too complicated.
@ If Vis alocally finite variety that omits types 1 and 5, then there is a
nontrivial lattice identity that holds in Con(A) for every A € V.
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nontrivial lattice identity that holds in Con(A) for every A € V. (The
identity can be taken to be a generalized modular law.)
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too complicated.
@ If Vis alocally finite variety that omits types 1 and 5, then there is a
nontrivial lattice identity that holds in Con(A) for every A € V. (The
identity can be taken to be a generalized modular law.)

© The members of a locally finite variety V have modular congruence
lattices if and only if V omits types 1 and 5 and all minimal sets have
empty tails.
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Part of the explanation for this is that we have a subdirect representation

Con(A) — H Con(Aly).
UEMA(&,ﬁ)

This is enough to show that the lattice Con(A) generates the same variety of
lattices as the set {Con(Al|y) | U € Ma(«, 5)}.
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Part of the explanation for this is that we have a subdirect representation

Con(A) — H Con(Aly).
UEMA(&,ﬁ)

This is enough to show that the lattice Con(A) generates the same variety of
lattices as the set {Con(Al|y) | U € Ma(«, 5)}.

The other part of the explanation is that the satisfaction of congruence
identities can be characterized by idempotent linear Maltsev conditions, and
these restrict well to minimal sets.
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x,y, z) = z, dy(x,y, 2) = 2,
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(z,y, 2) = z, dn(2,y, 2) = 2, (i) di(x,y,v) = 2,

Talk #8: Labeled congruence lattices



The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(z,y, 2) = z, dn(2,y, 2) = 2, (i) di(x,y,v) = 2,
(i) di(z,y,y) = dit1(x,y,y) i even,
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,
(ll) d’L(‘T’ Y, y) = di-‘rl(x’ Y, y) { even, (lll) d’L(m’ x, y) = di+1(:r7 Z, y) ¢ odd.
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities.
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities. Choose a, b in a trace N, (a,b) ¢ «, and choose ¢t € U to
be a tail element, if possible.
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities. Choose a, b in a trace N, (a,b) ¢ «, and choose ¢t € U to
be a tail element, if possible. ed;(a,t,b) =3 ed;(a,t,a) = a € N, so
ed;(a,x,b) is collapsing.
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities. Choose a, b in a trace N, (a,b) ¢ «, and choose ¢t € U to
be a tail element, if possible. ed;(a,t,b) =3 ed;(a,t,a) = a € N, so
ed;(a,x,b) is collapsing. Now

a = edp(a,b,b) = edi(a,b,b) =, edy(a,a,b) = eda(a,a,b) =4 -+ =4 b,
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities. Choose a, b in a trace N, (a,b) ¢ «, and choose ¢t € U to
be a tail element, if possible. ed;(a,t,b) =3 ed;(a,t,a) = a € N, so
ed;(a,x,b) is collapsing. Now

a = edp(a,b,b) = edi(a,b,b) =, edy(a,a,b) = eda(a,a,b) =4 -+ =4 b,

contradicting (a,b) ¢ a.
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities. Choose a, b in a trace N, (a,b) ¢ «, and choose ¢t € U to
be a tail element, if possible. ed;(a,t,b) =3 ed;(a,t,a) = a € N, so
ed;(a,x,b) is collapsing. Now

a = edp(a,b,b) = edi(a,b,b) =, edy(a,a,b) = eda(a,a,b) =4 -+ =4 b,

contradicting (a, b) ¢ «. This shows that U has empty tail
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities. Choose a, b in a trace N, (a,b) ¢ «, and choose ¢t € U to
be a tail element, if possible. ed;(a,t,b) =3 ed;(a,t,a) = a € N, so
ed;(a,x,b) is collapsing. Now

a = edp(a,b,b) = edi(a,b,b) =, edy(a,a,b) = eda(a,a,b) =4 -+ =4 b,

contradicting (a, b) ¢ «. This shows that U has empty tail and A |y has
Jonsson polynomials.
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities. Choose a, b in a trace N, (a,b) ¢ «, and choose ¢t € U to
be a tail element, if possible. ed;(a,t,b) =3 ed;(a,t,a) = a € N, so
ed;(a,x,b) is collapsing. Now

a = edp(a,b,b) = edi(a,b,b) =, edy(a,a,b) = eda(a,a,b) =4 -+ =4 b,

contradicting (a, b) ¢ «. This shows that U has empty tail and A |y has
Jonsson polynomials. Necessarily A |y /a has Jénsson polynomials.
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities. Choose a, b in a trace N, (a,b) ¢ «, and choose ¢t € U to
be a tail element, if possible. ed;(a,t,b) =3 ed;(a,t,a) = a € N, so
ed;(a,x,b) is collapsing. Now

a = edp(a,b,b) = edi(a,b,b) =, edy(a,a,b) = eda(a,a,b) =4 -+ =4 b,

contradicting (a, b) ¢ «. This shows that U has empty tail and A |y has
Jonsson polynomials. Necessarily A |y /o has Jonsson polynomials. G-sets,

semilattices,
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities. Choose a, b in a trace N, (a,b) ¢ «, and choose ¢t € U to
be a tail element, if possible. ed;(a,t,b) =3 ed;(a,t,a) = a € N, so
ed;(a,x,b) is collapsing. Now

a = edp(a,b,b) = edi(a,b,b) =, edy(a,a,b) = eda(a,a,b) =4 -+ =4 b,

contradicting (a, b) ¢ «. This shows that U has empty tail and A |y has
Jonsson polynomials. Necessarily A |y /o has Jonsson polynomials. G-sets,

semilattices, and vector spaces do not have J’onsson polynomials,
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities. Choose a, b in a trace N, (a,b) ¢ «, and choose ¢t € U to
be a tail element, if possible. ed;(a,t,b) =3 ed;(a,t,a) = a € N, so
ed;(a,x,b) is collapsing. Now

a = edp(a,b,b) = edi(a,b,b) =, edy(a,a,b) = eda(a,a,b) =4 -+ =4 b,

contradicting (a, b) ¢ «. This shows that U has empty tail and A |y has
Jonsson polynomials. Necessarily A |y /o has Jonsson polynomials. G-sets,

oo , ) 3
semilattices, and vector spaces do not have J’onsson polynomials, so o < 3

4
ora < f.
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The congruence distributive case

Recall that a variety is CD iff it has (Jénsson) terms d;(x, y, z) such that V
satisfies (0) do(x, vy, z) = z, dy(x,y, 2) = 2, () d;(z, y,x) = =,

(ii) di(z,y,y) = di+1(x,y,y) i even, (iil) d;(x, z,y) = di+1(x, z,y) i odd.
An («a, §)-minimal algebra A |y will have polynomials ed;(z, y, z) satisfying
the same equalities. Choose a, b in a trace N, (a,b) ¢ «, and choose ¢t € U to
be a tail element, if possible. ed;(a,t,b) =3 ed;(a,t,a) = a € N, so
ed;(a,x,b) is collapsing. Now

a = edp(a,b,b) = edi(a,b,b) =, edy(a,a,b) = eda(a,a,b) =4 -+ =4 b,

contradicting (a, b) ¢ «. This shows that U has empty tail and A |y has
Jonsson polynomials. Necessarily A |y /o has Jonsson polynomials. G-sets,

oo , ) 3
semilattices, and vector spaces do not have J’onsson polynomials, so o < 3
4
ora =< f£.0
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