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The Twin Lemma

The Twin Lemma proves that if A is («, #)-minimal and A has a pair of
polynomials that are body twins of different character, then the body B of A
consists of a single trace N := B that is a union I U O of two a-classes, and
A has a binary polynomial m(x, y) that induces a semilattice operation
m(x,y)|n/a|n on the trace algebra A |y /a|n.
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consists of a single trace N := B that is a union I U O of two a-classes, and
A has a binary polynomial m(x, y) that induces a semilattice operation
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Refining the information of the Twin Lemma

From Lemma 4.15. of [HM]
When A has a pair of body twins of different character, then there exist 1 € A

and a special choice of m(x,y) such that
Q I={1}.
Q@ m(l,z) =m(x,1) =m(z,x) =x forz € A.
@ m(x,m(z,y)) = m(z,y) forz,y € A.
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Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Letg(z,y) = 7 (f(z,y)).

Talk #7: (¢, 3)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/a|p.

Talk #7: (¢, 3)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/alp. Iterate g(x,y) in
its first variable to obtain h(x, y) satisfying h(h(z,y),y) = h(z,y) on A.

Talk #7: (¢, 3)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/alp. Iterate g(x,y) in
its first variable to obtain h(x, y) satisfying h(h(z,y),y) = h(z,y) on A.

f, g and h induce the same operation on A|p/a|p, and h and g are both
idempotent polynomials,

Talk #7: (v, 8)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/alp. Iterate g(x,y) in
its first variable to obtain h(x, y) satisfying h(h(z,y),y) = h(z,y) on A.

f, g and h induce the same operation on A|p/a|p, and h and g are both
idempotent polynomials,

Talk #7: (v, 8)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/alp. Iterate g(x,y) in
its first variable to obtain h(x, y) satisfying h(h(z,y),y) = h(z,y) on A.

f, g and h induce the same operation on A|p/a|p, and h and g are both
idempotent polynomials, but now h(z,u) = x forany z € Aand u € I.

Talk #7: (v, 8)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/alp. Iterate g(x,y) in
its first variable to obtain h(x, y) satisfying h(h(z,y),y) = h(z,y) on A.

f, g and h induce the same operation on A|p/a|p, and h and g are both
idempotent polynomials, but now h(z,u) = x forany z € Aand u € I.
Next, iterate h(z, y) in its second variable to obtain m(x, y) satisfying
m(z,m(z,y)) = m(z,y) on A.

Talk #7: (v, 8)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/alp. Iterate g(x,y) in
its first variable to obtain h(x, y) satisfying h(h(z,y),y) = h(z,y) on A.

f, g and h induce the same operation on A|p/a|p, and h and g are both
idempotent polynomials, but now h(z,u) = x forany z € Aand u € I.
Next, iterate h(z, y) in its second variable to obtain m(x, y) satisfying
m(z,m(z,y)) = m(z,y) on A. f, g, h and m induce the same operation on
Alp/alp.

Talk #7: (v, 8)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/alp. Iterate g(x,y) in
its first variable to obtain h(x, y) satisfying h(h(z,y),y) = h(z,y) on A.

f, g and h induce the same operation on A|p/a|p, and h and g are both
idempotent polynomials, but now h(z,u) = x forany z € Aand u € I.
Next, iterate h(z, y) in its second variable to obtain m(x, y) satisfying
m(z,m(z,y)) = m(z,y) on A. f, g, h and m induce the same operation on
Al|g/alp. g, h,m are idempotent.

Talk #7: (v, 8)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/alp. Iterate g(x,y) in
its first variable to obtain h(x, y) satisfying h(h(z,y),y) = h(z,y) on A.

f, g and h induce the same operation on A|p/a|p, and h and g are both
idempotent polynomials, but now h(z,u) = x forany z € Aand u € I.
Next, iterate h(z, y) in its second variable to obtain m(x, y) satisfying
m(z,m(z,y)) = m(z,y) on A. f, g, h and m induce the same operation on
A|g/alp. g, h,m are idempotent. h and m both satisfy

h(z,u) =z =m(z,u) forz € Aandu € I,

Talk #7: (v, 8)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/alp. Iterate g(x,y) in
its first variable to obtain h(x, y) satisfying h(h(z,y),y) = h(z,y) on A.

f, g and h induce the same operation on A|p/a|p, and h and g are both
idempotent polynomials, but now h(z,u) = x forany z € Aand u € I.
Next, iterate h(z, y) in its second variable to obtain m(x, y) satisfying
m(z,m(z,y)) = m(z,y) on A. f, g, h and m induce the same operation on
A|g/alp. g, h,m are idempotent. h and m both satisfy

h(z,u) = x = m(x,u) forz € Aand u € I, butI claim that m(x, y) also
satisfies m(u, ) = x for such u, x.

Talk #7: (v, 8)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/alp. Iterate g(x,y) in
its first variable to obtain h(x, y) satisfying h(h(z,y),y) = h(z,y) on A.

f, g and h induce the same operation on A|p/a|p, and h and g are both
idempotent polynomials, but now h(z,u) = x forany z € Aand u € I.
Next, iterate h(z, y) in its second variable to obtain m(x, y) satisfying
m(z,m(z,y)) = m(z,y) on A. f, g, h and m induce the same operation on
A|g/alp. g, h,m are idempotent. h and m both satisfy

h(z,u) = x = m(x,u) forz € Aand u € I, butI claim that m(x, y) also
satisfies m(u, z) = x for such u, z. Finally, if u, v’ € I, then

u = m(u,u’) = u’ by the properties of m.

Talk #7: (v, 8)-minimal algebras, 2



Proof of the refinement

Let’s explain why the neutral coset [ is a singleton a-class (Part 1).

Start with any f(z,y) that induces a semilattice operation on A|p/a|p. The
polynomial 7(z) := f(z,x) does not collapse /3 into o (w(I) C I and

m(0O) C 0), so 7 is a permutation of A (which induces the identity on
Alp/alp). Let g(z,y) = 7 (f(z,1)). Then gz, ) = 7~ (n(x)) = = and
g induces the same semilattice operation as f on A|p/alp. Iterate g(x,y) in
its first variable to obtain h(x, y) satisfying h(h(z,y),y) = h(z,y) on A.

f, g and h induce the same operation on A|p/a|p, and h and g are both
idempotent polynomials, but now h(z,u) = x forany z € Aand u € I.
Next, iterate h(z, y) in its second variable to obtain m(x, y) satisfying
m(z,m(z,y)) = m(z,y) on A. f, g, h and m induce the same operation on
A|g/alp. g, h,m are idempotent. h and m both satisfy

h(z,u) = x = m(x,u) forz € Aand u € I, butI claim that m(x, y) also
satisfies m(u, z) = x for such u, z. Finally, if u, v’ € I, then

u = m(u,u’) = u’ by the properties of m. O

Talk #7: (v, 8)-minimal algebras, 2



Corollary

inimal algebra



Corollary

When A has body twins of different characters, then the trace algebra A |p/«a|p is a
2-element algebra with a semilattice operation.
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the trace algebra is a unit element for one of them.
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possibilities is: A|p/a|p is polynomially equivalent to a 2-element semilattice (type
5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace
algebra A|y/a|y = A|p/a|p has two semilattice operations and each element of
the trace algebra is a unit element for one of them. Using arguments similar to the
above, we derive that B = T U O = {1} U {0} is a two-element [-class consisting of
two singleton a-classes.
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two singleton a-classes. Moreover, there are binary polynomials m(x,y), j(x,y) of
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© Ift € A\ B belongs to the tail, then m(0,t) =, m(t,0) =, t and
J(,8) Za (1) =a t.
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When A has body twins of different characters, then the trace algebra A |p/«a|p is a
2-element algebra with a semilattice operation. It can have extra structure. The list of
possibilities is: A|p/a|p is polynomially equivalent to a 2-element semilattice (type
5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace
algebra A|y/a|y = A|p/a|p has two semilattice operations and each element of
the trace algebra is a unit element for one of them. Using arguments similar to the
above, we derive that B = T U O = {1} U {0} is a two-element [-class consisting of
two singleton a-classes. Moreover, there are binary polynomials m(x,y), j(x,y) of
A such that (B;m(x,y),j(z,y)) = ({0,1}; A, V) is a 2-element lattice, and the
following hold for z,y € A:

Q z=m(x,1) =m(z,z) =m(l,z) = j(0,z) = j(z,x) = j(z,0).

@ m(z,m(z,y)) = mlz,y) and j(z, j(z, 1)) = (z.y).

© Ift € A\ B belongs to the tail, then m(0,t) =, m(t,0) =, t and
J(1,t) =a j(t,1) =a t.

m(x,y) is called a pseudo-meet polynomial and j(z, y) is called a pseudo-join
polynomial of A with respect to {«, 8) if they have these properties.
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Each trace algebra A |y /oy satisfies the definition of a minimal algebra, so it is a
Q@ (Typel) G-set,
© (Type 2) Vector space,
@ (Type 3) 2-element Boolean algebra,
© (Type 4) 2-element lattice, or
© (Type 5) 2-element semilattice.

We have explained that if A has body twins of different characters, then the type
must be 3, 4, or 5.
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We have explained that if A has body twins of different characters, then the type

must be 3, 4, or 5. The converse is also true, since for types 3, 4, and 5 m(1, z) and
m(0, z) are body twins of different characters.

Talk #7: (¢, 3)-minimal algebras, 2



The remaining cases
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Q@ (Typel) G-set,
© (Type 2) Vector space,
@ (Type 3) 2-element Boolean algebra,
© (Type 4) 2-element lattice, or
© (Type 5) 2-element semilattice.
We have explained that if A has body twins of different characters, then the type
must be 3, 4, or 5. The converse is also true, since for types 3, 4, and 5 m(1, z) and

m(0, z) are body twins of different characters. Thus, there is only one trace of A
when the type is 3, 4, or 5.
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when the type is 3, 4, or 5. There can be more traces/trace algebras in types 1 or 2,
but we do have this general fact:
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m(0, z) are body twins of different characters. Thus, there is only one trace of A

when the type is 3, 4, or 5. There can be more traces/trace algebras in types 1 or 2,
but we do have this general fact:

Observation. If N1, Ny are both traces of the same (v, 3)-minimal algebra, then Ny
and N, are polynomially isomorphic,
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when the type is 3, 4, or 5. There can be more traces/trace algebras in types 1 or 2,
but we do have this general fact:

Observation. If N1, Ny are both traces of the same (v, 3)-minimal algebra, then Ny
and N are polynomially isomorphic, and therefore A |y, andA|y, have isomorphic
polynomial clones.
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The remaining cases

Each trace algebra A |y /oy satisfies the definition of a minimal algebra, so it is a
Q@ (Typel) G-set,
© (Type 2) Vector space,
@ (Type 3) 2-element Boolean algebra,
© (Type 4) 2-element lattice, or
© (Type 5) 2-element semilattice.

We have explained that if A has body twins of different characters, then the type
must be 3, 4, or 5. The converse is also true, since for types 3, 4, and 5 m(1, z) and
m(0, z) are body twins of different characters. Thus, there is only one trace of A
when the type is 3, 4, or 5. There can be more traces/trace algebras in types 1 or 2,
but we do have this general fact:

Observation. If N1, Ny are both traces of the same (v, 3)-minimal algebra, then Ny
and N are polynomially isomorphic, and therefore A |y, andA|y, have isomorphic
polynomial clones. (This is sufficient to show that the structure of a trace algebra
A|n/a|n does not depend on the choice of N, but rather it is an invariant of A.)
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Reasoning for this Observation

Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.

(az2,b2) € B = Cg({(a1,b1)} Ua).
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Reasoning for this Observation

Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.
(az,b2) € B =Cg({(a1,b1)} Ua).

Hence there is a Maltsev chain connecting a9 to by that consists of a-links and
links that are polynomial images (p(ay),p(b1)) of the pair (ay, b1).

Talk #7: (¢, 3)-minimal algebras, 2



Reasoning for this Observation

Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.

(az2,b2) € B = Cg({(a1,b1)} Ua).

Hence there is a Maltsev chain connecting a9 to by that consists of a-links and
links that are polynomial images (p(a1),p(b1)) of the pair (ay, b1). Each link
of the chain is a 5-link, so the the chain lies entirely inside No.
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Reasoning for this Observation

Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.

(az2,b2) € B = Cg({(a1,b1)} Ua).

Hence there is a Maltsev chain connecting a9 to by that consists of a-links and
links that are polynomial images (p(a1),p(b1)) of the pair (ay, b1). Each link
of the chain is a -link, so the the chain lies entirely inside /Vy. Since the
chain connects ag, by € N2 and (ag, ba) ¢ «, there must be a link that is not
an a-link, necessarily of the form (p(aq), p(b1)).
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Reasoning for this Observation

Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.

(az2,b2) € B = Cg({(a1,b1)} Ua).

Hence there is a Maltsev chain connecting a9 to by that consists of a-links and
links that are polynomial images (p(a1),p(b1)) of the pair (ay, b1). Each link
of the chain is a -link, so the the chain lies entirely inside /Vy. Since the
chain connects ag, by € N2 and (ag, ba) ¢ «, there must be a link that is not
an a-link, necessarily of the form (p(aq), p(b1)). Relabelling if necessary, we
may assume that (a2, b2) = (p(a1),p(b1)) € N3 \ c.
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Reasoning for this Observation

Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.

(az2,b2) € B = Cg({(a1,b1)} Ua).

Hence there is a Maltsev chain connecting a9 to by that consists of a-links and
links that are polynomial images (p(a1),p(b1)) of the pair (ay, b1). Each link
of the chain is a -link, so the the chain lies entirely inside /Vy. Since the
chain connects ag, by € N2 and (ag, ba) ¢ «, there must be a link that is not
an a-link, necessarily of the form (p(aq), p(b1)). Relabelling if necessary, we
may assume that (ag, ba) = (p(a1),p(b1)) € N3 \ a. The same argument
yields a polynomial ¢ such that (g(az), ¢(b2)) € N\ c.
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Reasoning for this Observation

Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.

(az2,b2) € B = Cg({(a1,b1)} Ua).

Hence there is a Maltsev chain connecting a9 to by that consists of a-links and
links that are polynomial images (p(a1),p(b1)) of the pair (ay, b1). Each link
of the chain is a -link, so the the chain lies entirely inside /Vy. Since the
chain connects ag, by € N2 and (ag, ba) ¢ «, there must be a link that is not
an a-link, necessarily of the form (p(aq), p(b1)). Relabelling if necessary, we
may assume that (ag, ba) = (p(a1),p(b1)) € N3 \ a. The same argument
yields a polynomial g such that (q(az), q(b2)) € N? \ a. The composite

7(x) := gp(x) maps N into itself in a noncollapsing way, so it is a
permutation of Vj.
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Reasoning for this Observation

Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.

(az2,b2) € B = Cg({(a1,b1)} Ua).

Hence there is a Maltsev chain connecting a9 to by that consists of a-links and
links that are polynomial images (p(a1),p(b1)) of the pair (ay, b1). Each link
of the chain is a -link, so the the chain lies entirely inside /Vy. Since the
chain connects ag, by € N2 and (ag, ba) ¢ «, there must be a link that is not
an a-link, necessarily of the form (p(aq), p(b1)). Relabelling if necessary, we
may assume that (ag, ba) = (p(a1),p(b1)) € N3 \ a. The same argument
yields a polynomial g such that (q(az), q(b2)) € N? \ a. The composite

7(x) := gp(x) maps N into itself in a noncollapsing way, so it is a
permutation of N;. The polynomials 7~ 1q: Ny — Nj
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Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.

(az2,b2) € B = Cg({(a1,b1)} Ua).

Hence there is a Maltsev chain connecting a9 to by that consists of a-links and
links that are polynomial images (p(a1),p(b1)) of the pair (ay, b1). Each link
of the chain is a -link, so the the chain lies entirely inside /Vy. Since the
chain connects ag, by € N2 and (ag, ba) ¢ «, there must be a link that is not
an a-link, necessarily of the form (p(aq), p(b1)). Relabelling if necessary, we
may assume that (ag, ba) = (p(a1),p(b1)) € N3 \ a. The same argument
yields a polynomial g such that (q(az), q(b2)) € N? \ a. The composite

7(x) := gp(x) maps N into itself in a noncollapsing way, so it is a
permutation of Nj. The polynomials 7r_1q: Ny — Njand p: Ny — No
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Reasoning for this Observation

Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.

(az2,b2) € B = Cg({(a1,b1)} Ua).

Hence there is a Maltsev chain connecting a9 to by that consists of a-links and
links that are polynomial images (p(a1),p(b1)) of the pair (ay, b1). Each link
of the chain is a -link, so the the chain lies entirely inside /Vy. Since the
chain connects ag, by € N2 and (ag, ba) ¢ «, there must be a link that is not
an a-link, necessarily of the form (p(aq), p(b1)). Relabelling if necessary, we
may assume that (ag, ba) = (p(a1),p(b1)) € N3 \ a. The same argument
yields a polynomial g such that (q(az), q(b2)) € N? \ a. The composite

7(x) := gp(x) maps N into itself in a noncollapsing way, so it is a
permutation of Nj. The polynomials 7r_1q: Ny — Njand p: Ny — No
realize V] as a retract of No, hence | N1| < |Na|.
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an a-link, necessarily of the form (p(aq), p(b1)). Relabelling if necessary, we
may assume that (ag, ba) = (p(a1),p(b1)) € N3 \ a. The same argument
yields a polynomial g such that (q(az), q(b2)) € N? \ a. The composite

7(x) := gp(x) maps N into itself in a noncollapsing way, so it is a
permutation of Nj. The polynomials 7r_1q: Ny — Njand p: Ny — No
realize V] as a retract of No, hence | N1| < |Na|. Similarly, | No| < |Ny
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Reasoning for this Observation

Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.

(az2,b2) € B = Cg({(a1,b1)} Ua).

Hence there is a Maltsev chain connecting a9 to by that consists of a-links and
links that are polynomial images (p(a1),p(b1)) of the pair (ay, b1). Each link
of the chain is a -link, so the the chain lies entirely inside /Vy. Since the
chain connects ag, by € N2 and (ag, ba) ¢ «, there must be a link that is not
an a-link, necessarily of the form (p(aq), p(b1)). Relabelling if necessary, we
may assume that (ag, ba) = (p(a1),p(b1)) € N3 \ a. The same argument
yields a polynomial g such that (q(az), q(b2)) € N? \ a. The composite

7(x) := gp(x) maps N into itself in a noncollapsing way, so it is a
permutation of Nj. The polynomials 7r_1q: Ny — Njand p: Ny — No
realize V] as a retract of No, hence | N1| < |Na|. Similarly, | No| < |Ny
7~ 1q and p must be inverse polynomial bijections between N; and No.
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Reasoning for this Observation

Keep assumptions about A, and N1, No. Choose (a;, b;) € N2\ a.

(az2,b2) € B = Cg({(a1,b1)} Ua).

Hence there is a Maltsev chain connecting a9 to by that consists of a-links and
links that are polynomial images (p(a1),p(b1)) of the pair (ay, b1). Each link
of the chain is a -link, so the the chain lies entirely inside /Vy. Since the
chain connects ag, by € N2 and (ag, ba) ¢ «, there must be a link that is not
an a-link, necessarily of the form (p(aq), p(b1)). Relabelling if necessary, we
may assume that (ag, ba) = (p(a1),p(b1)) € N3 \ a. The same argument
yields a polynomial g such that (q(az), q(b2)) € N? \ a. The composite
7(x) := gp(x) maps N into itself in a noncollapsing way, so it is a
permutation of Nj. The polynomials 7r_1q: Ny — Njand p: Ny — No
realize V] as a retract of No, hence | N1| < |Na|. Similarly, | N2| < |Ny|, so
7~ 1q and p must be inverse polynomial bijections between N and Ny. O
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Type 1

In the Type 1 case, each trace algebra A|y/aly is a G-set.
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In the Type 1 case, each trace algebra A |y /oy is a G-set. We will be in this
case exactly when every polynomial of A|y is non-collapsing in at most one

variable.
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Type 1

In the Type 1 case, each trace algebra A |y /oy is a G-set. We will be in this
case exactly when every polynomial of A|y is non-collapsing in at most one
variable. We will say nothing more about this case.
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Type 1

In the Type 1 case, each trace algebra A |y /oy is a G-set. We will be in this
case exactly when every polynomial of A|y is non-collapsing in at most one
variable. We will say nothing more about this case.

Example.
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Type 1

In the Type 1 case, each trace algebra A |y /oy is a G-set. We will be in this
case exactly when every polynomial of A|y is non-collapsing in at most one
variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is («, 3)-minimal of Type 1 for every
covering o < f3.
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Type 1

In the Type 1 case, each trace algebra A |y /oy is a G-set. We will be in this
case exactly when every polynomial of A|y is non-collapsing in at most one
variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is («, 3)-minimal of Type 1 for every
covering o < f3. It is conjectured (but open) that almost all finite semigroups
are nilpotent of nilpotence degree 3.
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In the Type 1 case, each trace algebra A |y /oy is a G-set. We will be in this
case exactly when every polynomial of A|y is non-collapsing in at most one
variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is («, 3)-minimal of Type 1 for every
covering o < f3. It is conjectured (but open) that almost all finite semigroups
are nilpotent of nilpotence degree 3. The total number of semigroups of size n
grows very fast
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Type 1

In the Type 1 case, each trace algebra A |y /oy is a G-set. We will be in this
case exactly when every polynomial of A|y is non-collapsing in at most one
variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is («, 3)-minimal of Type 1 for every
covering o < f3. It is conjectured (but open) that almost all finite semigroups
are nilpotent of nilpotence degree 3. The total number of semigroups of size n
grows very fast (OEIS A027851):
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Type 1

In the Type 1 case, each trace algebra A |y /oy is a G-set. We will be in this
case exactly when every polynomial of A|y is non-collapsing in at most one
variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is («, 3)-minimal of Type 1 for every
covering o < f3. It is conjectured (but open) that almost all finite semigroups
are nilpotent of nilpotence degree 3. The total number of semigroups of size n
grows very fast (OEIS A027851):

1,1,5,24,188,1915, 28634, 1627672, 3684030417, 105978177936292, . ..
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Type 1

In the Type 1 case, each trace algebra A |y /oy is a G-set. We will be in this
case exactly when every polynomial of A|y is non-collapsing in at most one
variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is («, 3)-minimal of Type 1 for every
covering o < f3. It is conjectured (but open) that almost all finite semigroups
are nilpotent of nilpotence degree 3. The total number of semigroups of size n
grows very fast (OEIS A027851):

1,1,5,24,188,1915, 28634, 1627672, 3684030417, 105978177936292, . ..

This provides many examples of («, #)-minimal algebras of Type 1.
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Type 2

In the Type 2 case, each trace algebra A |y /|y is a vector space.
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)

Talk #7: (v, 8)-minimal algebras, 2 10/13



Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)

such that p(z, y) is noncollapsing in both variables.
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such

that p(a, N?) € a and p(N?2,b) € .
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A.
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences,
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In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A,
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A, must
permute the 3-classes of A,
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A, must
permute the 3-classes of A, hence must permute the traces of A.
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A, must
permute the 3-classes of A, hence must permute the traces of A. This is
enough to show that p(a, B) C B and p(B,b) C B.
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A, must
permute the 3-classes of A, hence must permute the traces of A. This is
enough to show that p(a, B) C B and p(B,b) C B. The same conclusion
holds if we replace a with any a’ € B and b with any ¥’ € B, since body twins
have the same character.
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A, must
permute the 3-classes of A, hence must permute the traces of A. This is
enough to show that p(a, B) C B and p(B,b) C B. The same conclusion
holds if we replace a with any a’ € B and b with any ¥’ € B, since body twins
have the same character.

Condensing:
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A, must
permute the 3-classes of A, hence must permute the traces of A. This is
enough to show that p(a, B) C B and p(B,b) C B. The same conclusion
holds if we replace a with any a’ € B and b with any ¥’ € B, since body twins
have the same character.

Condensing: If A is («, #)-minimal of Type 2,
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A, must
permute the 3-classes of A, hence must permute the traces of A. This is
enough to show that p(a, B) C B and p(B,b) C B. The same conclusion
holds if we replace a with any a’ € B and b with any ¥’ € B, since body twins
have the same character.

Condensing: If A is (o, )-minimal of Type 2, N is a trace of A,
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A, must
permute the 3-classes of A, hence must permute the traces of A. This is
enough to show that p(a, B) C B and p(B,b) C B. The same conclusion
holds if we replace a with any a’ € B and b with any ¥’ € B, since body twins
have the same character.

Condensing: If A is (o, 3)-minimal of Type 2, N is a trace of A, and p(z,y)
is any polynomial of A that can be restricted to N and which induces an
polynomial p(z,y)|n/a|n that is not essentially unary,
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A, must
permute the 3-classes of A, hence must permute the traces of A. This is
enough to show that p(a, B) C B and p(B,b) C B. The same conclusion
holds if we replace a with any a’ € B and b with any ¥’ € B, since body twins
have the same character.

Condensing: If A is (o, 3)-minimal of Type 2, N is a trace of A, and p(z,y)
is any polynomial of A that can be restricted to N and which induces an
polynomial p(z,y)|n/a|n that is not essentially unary, then p(z, y) can even
be restricted to the body B of A
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A, must
permute the 3-classes of A, hence must permute the traces of A. This is
enough to show that p(a, B) C B and p(B,b) C B. The same conclusion
holds if we replace a with any a’ € B and b with any ¥’ € B, since body twins
have the same character.

Condensing: If A is (o, 3)-minimal of Type 2, N is a trace of A, and p(z,y)
is any polynomial of A that can be restricted to N and which induces an
polynomial p(z,y)|n/a|n that is not essentially unary, then p(z, y) can even
be restricted to the body B of A (p(B, B) C B)
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Type 2

In the Type 2 case, each trace algebra A |y /«|y is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) C N)
such that p(z, y) is noncollapsing in both variables. Choose a,b € N such
that p(a, N?) € a and p(N?2,b) Z a. For any such choice, the polynomials
p(a, x) and p(x,b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the a-classes of A, must
permute the 3-classes of A, hence must permute the traces of A. This is
enough to show that p(a, B) C B and p(B,b) C B. The same conclusion
holds if we replace a with any a’ € B and b with any ¥’ € B, since body twins
have the same character.

Condensing: If A is (o, 3)-minimal of Type 2, N is a trace of A, and p(z,y)
is any polynomial of A that can be restricted to N and which induces an
polynomial p(z,y)|n/a|n that is not essentially unary, then p(z, y) can even
be restricted to the body B of A (p(B, B) C B) and p(x,y) is a quasigroup
polynomial of A|p.
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inimal



We have argued before that the clone generated by a quasigroup operation p(z, y) on
a finite set A contains a Maltsev operation d(z, y, z)
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We have argued before that the clone generated by a quasigroup operation p(z, y) on
a finite set A contains a Maltsev operation d(z, y, ) (d(y, z,z) = y = d(z, z,y)).
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We have argued before that the clone generated by a quasigroup operation p(z, y) on
a finite set A contains a Maltsev operation d(z,y, z) (d(y, z,x) = y = d(z, z,y)).
(See the slides on Palfy’s Theorem or Lemma 4.6 of [HM].)

Talk #7: («, 3)-minimal algebras, 2



We have argued before that the clone generated by a quasigroup operation p(z, y) on
a finite set A contains a Maltsev operation d(z,y, z) (d(y, z,x) = y = d(z, z,y)).
(See the slides on Palfy’s Theorem or Lemma 4.6 of [HM].) From the previous slide,
we obtain that if A is («, §)-minimal of Type 2, then A has a ternary polynomial
d(x,y, z) that can be restricted to the body
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We have argued before that the clone generated by a quasigroup operation p(z, y) on
a finite set A contains a Maltsev operation d(z,y, z) (d(y, z,x) = y = d(z, z,y)).
(See the slides on Palfy’s Theorem or Lemma 4.6 of [HM].) From the previous slide,
we obtain that if A is («, §)-minimal of Type 2, then A has a ternary polynomial
d(x,y, z) that can be restricted to the body (d(B, B, B) C B),

Talk #7: (¢, 3)-minimal algebras, 2



We have argued before that the clone generated by a quasigroup operation p(z, y) on
a finite set A contains a Maltsev operation d(z,y, z) (d(y, z,x) = y = d(z, z,y)).
(See the slides on Palfy’s Theorem or Lemma 4.6 of [HM].) From the previous slide,
we obtain that if A is («, §)-minimal of Type 2, then A has a ternary polynomial
d(x,y, z) that can be restricted to the body (d(B, B, B) C B), and which is Maltsev
on the body.
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We have argued before that the clone generated by a quasigroup operation p(z, y) on
a finite set A contains a Maltsev operation d(z,y, z) (d(y, z,x) = y = d(z, z,y)).
(See the slides on Palfy’s Theorem or Lemma 4.6 of [HM].) From the previous slide,
we obtain that if A is («, §)-minimal of Type 2, then A has a ternary polynomial
d(x,y, z) that can be restricted to the body (d(B, B, B) C B), and which is Maltsev
on the body. Using iteration, you can produce a Maltsev operation with some extra
properties:
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We have argued before that the clone generated by a quasigroup operation p(z, y) on
a finite set A contains a Maltsev operation d(z,y, z) (d(y, z,x) = y = d(z, z,y)).
(See the slides on Palfy’s Theorem or Lemma 4.6 of [HM].) From the previous slide,
we obtain that if A is («, §)-minimal of Type 2, then A has a ternary polynomial
d(x,y, z) that can be restricted to the body (d(B, B, B) C B), and which is Maltsev
on the body. Using iteration, you can produce a Maltsev operation with some extra
properties:
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we obtain that if A is («, §)-minimal of Type 2, then A has a ternary polynomial
d(x,y, z) that can be restricted to the body (d(B, B, B) C B), and which is Maltsev
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A.

See Lemma 4.20 of [HM].
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(See the slides on Palfy’s Theorem or Lemma 4.6 of [HM].) From the previous slide,
we obtain that if A is («, §)-minimal of Type 2, then A has a ternary polynomial
d(x,y, z) that can be restricted to the body (d(B, B, B) C B), and which is Maltsev
on the body. Using iteration, you can produce a Maltsev operation with some extra
properties:

Q d(z,z,z) =xo0nA.

Q d(y,z,z) =y=d(z,x,y)ifz € Bandy € A.

@ Forany a,b € B, d(z,a,b),d(a,z,b),d(a,b, x) are polynomial permutations of
A.

See Lemma 4.20 of [HM]. A polynomial with these properties is called a
pseudo-Maltsev operation of A with respect to {(«, 3). For any such:

@ there donotexist b € B,t € T such that d(b,¢,t) =g bor d(t,t,b) =3 b.

Talk #7: (¢, 3)-minimal algebras, 2



inimal



Example 1.

Talk #7: («,



Example 1. Any finite p-group A is («, $)-minimal of Type 2 for any o < 3.

Talk #7: (¢, 3)-minimal algebras, 2



Example 1. Any finite p-group A is («, $)-minimal of Type 2 for any o < 3.
The tail is empty

Talk #7: (¢, 3)-minimal algebras, 2



Example 1. Any finite p-group A is («, $)-minimal of Type 2 for any o < 3.
The tail is empty (A is “full-bodied”),

Talk #7: (¢, 3)-minimal algebras, 2



Example 1. Any finite p-group A is («, $)-minimal of Type 2 for any o < 3.

The tail is empty (A is “full-bodied”), and the operation d(x,y,2) = xy 'z

is a pseudo-Maltsev operation on A.

Talk #7: (¢, 3)-minimal algebras, 2



Example 1. Any finite p-group A is («, $)-minimal of Type 2 for any o < 3.
The tail is empty (A is “full-bodied”), and the operation d(x,y,2) = xy 'z

is a pseudo-Maltsev operation on A.

Example 2.

Talk #7: (¢, 3)-minimal algebras, 2



Example 1. Any finite p-group A is («, $)-minimal of Type 2 for any o < 3.
The tail is empty (A is “full-bodied”), and the operation d(x,y,2) = xy 'z
is a pseudo-Maltsev operation on A.

Example 2. Any finite semigroup A° obtained from a finite p-group A by
adding a multiplicatively absorbing element 0 is («, $)-minimal of Type 2 for
any group congruences o < [3.
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any group congruences « < 3. The tail is {0}, and the operation

d(z,y,2) = xy~ 'z is a pseudo-Maltsev operation on A°. You can repeat this
construction to get a longer tail: (A%)", 7" = {0,0}.

Example 3. Any finite R-module M over a local ring R is («, 5)-minimal of
Type 2 for any o < 3.

Talk #7: (v, 3)-minimal algebras, 2



Example 1. Any finite p-group A is («, $)-minimal of Type 2 for any o < 3.
The tail is empty (A is “full-bodied”), and the operation d(x,y,2) = xy 'z
is a pseudo-Maltsev operation on A.

Example 2. Any finite semigroup A° obtained from a finite p-group A by
adding a multiplicatively absorbing element 0 is («, $)-minimal of Type 2 for
any group congruences « < 3. The tail is {0}, and the operation

d(z,y,2) = xy~ 'z is a pseudo-Maltsev operation on A°. You can repeat this
construction to get a longer tail: (A%)", 7" = {0,0}.

Example 3. Any finite R-module M over a local ring R is («, 5)-minimal of
Type 2 for any o < (. The tail is empty, and the operation
d(x,y,z) = x —y + z is a pseudo-Maltsev operation on M.
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Example 1. Any finite p-group A is («, $)-minimal of Type 2 for any o < 3.
The tail is empty (A is “full-bodied”), and the operation d(x,y,2) = xy 'z
is a pseudo-Maltsev operation on A.

Example 2. Any finite semigroup A° obtained from a finite p-group A by
adding a multiplicatively absorbing element 0 is («, $)-minimal of Type 2 for
any group congruences « < 3. The tail is {0}, and the operation

d(z,y,2) = xy~ 'z is a pseudo-Maltsev operation on A°. You can repeat this
construction to get a longer tail: (A%)", 7" = {0,0}.

Example 3. Any finite R-module M over a local ring R is («, 5)-minimal of
Type 2 for any o < (. The tail is empty, and the operation

d(z,y,z) = x —y + z is a pseudo-Maltsev operation on M. You can add tails
to this type of example, too.
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Final comments

@ The results described provide good knowledge of A |g for Types 2, 3, 4,
and 5 when A is («, #)-minimal.

@ We do not have comparable information about A |5 for Type 1. We are
restricted to working only with the G-set A |y /a|n when the Type is 1.

@ The most important facts not discussed about (v, 3)-minimal algebras
involve the commutator:
® A|p/a|p = A|n/aly is nonabelian/perfect/neutral when the type is 3, 4,
or 5.
©® A|p isnilpotent and A |y /a|x is abelian when the type is 2.
©® A|y/a|y is strongly abelian when the type is 1.
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