Talk #7: $\langle \alpha, \beta \rangle$ -minimal algebras, 2

Terminology.

Terminology. Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$.

Terminology. Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal.

Terminology. Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**.

Terminology. Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union *B* of all traces the **body** of \mathbf{A} .

Terminology. Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union *B* of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} .

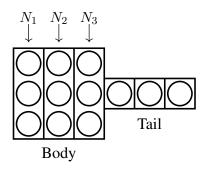
Terminology. Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

Terminology. Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

Picture:

Terminology. Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

Picture:



The Twin Lemma proves that if A is $\langle \alpha, \beta \rangle$ -minimal and A has a pair of polynomials that are body twins of different character,

The Twin Lemma proves that if \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal and \mathbf{A} has a pair of polynomials that are body twins of different character, then the body B of \mathbf{A} consists of a single trace N := B that is a union $I \cup O$ of two α -classes,

The Twin Lemma proves that if **A** is $\langle \alpha, \beta \rangle$ -minimal and **A** has a pair of polynomials that are body twins of different character, then the body *B* of **A** consists of a single trace N := B that is a union $I \cup O$ of two α -classes, and **A** has a binary polynomial m(x, y) that induces a semilattice operation $m(x, y)|_N/\alpha|_N$ on the trace algebra $\mathbf{A}|_N/\alpha|_N$.

The Twin Lemma proves that if \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal and \mathbf{A} has a pair of polynomials that are body twins of different character, then the body B of \mathbf{A} consists of a single trace N := B that is a union $I \cup O$ of two α -classes, and \mathbf{A} has a binary polynomial m(x, y) that induces a semilattice operation $m(x, y)|_N/\alpha|_N$ on the trace algebra $\mathbf{A}|_N/\alpha|_N$. (Equivalently, $m(I, I) \subseteq I$ and $m(I, O) \cup m(O, I) \cup m(O, O) \subseteq O$.)

The Twin Lemma proves that if \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal and \mathbf{A} has a pair of polynomials that are body twins of different character, then the body B of \mathbf{A} consists of a single trace N := B that is a union $I \cup O$ of two α -classes, and \mathbf{A} has a binary polynomial m(x, y) that induces a semilattice operation $m(x, y)|_N/\alpha|_N$ on the trace algebra $\mathbf{A}|_N/\alpha|_N$. (Equivalently, $m(I, I) \subseteq I$ and $m(I, O) \cup m(O, I) \cup m(O, O) \subseteq O$.) This information can be refined,

\wedge	0	1
0	0	0
1	0	1

m(x,y)	0	Ι	T
0	0	0	?
Ι	0	Ι	?
Т	?	?	?

From Lemma 4.15. of [HM]

From Lemma 4.15. of [HM]

From Lemma 4.15. of [HM]

1
$$I = \{1\}.$$

From Lemma 4.15. of [HM]

1
$$I = \{1\}.$$

From Lemma 4.15. of [HM]

1
$$I = \{1\}.$$

2
$$m(1,x) = m(x,1) = m(x,x) = x$$
 for $x \in A$.

From Lemma 4.15. of [HM]

1
$$I = \{1\}.$$

2
$$m(1,x) = m(x,1) = m(x,x) = x$$
 for $x \in A$.

From Lemma 4.15. of [HM]

•
$$I = \{1\}.$$

• $m(1, x) = m(x, 1) = m(x, x) = x$ for $x \in A$.

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Let's explain why the neutral coset I is a singleton α -class (Part 1). Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$.

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$),

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$), so π is a permutation of \mathbf{A}

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$), so π is a permutation of \mathbf{A} (which induces the identity on $\mathbf{A}|_B/\alpha|_B$).

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$), so π is a permutation of \mathbf{A} (which induces the identity on $\mathbf{A}|_B/\alpha|_B$). Let $g(x, y) = \pi^{-1}(f(x, y))$.

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$), so π is a permutation of \mathbf{A} (which induces the identity on $\mathbf{A}|_B/\alpha|_B$). Let $g(x, y) = \pi^{-1}(f(x, y))$. Then $g(x, x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $\mathbf{A}|_B/\alpha|_B$.

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$), so π is a permutation of \mathbf{A} (which induces the identity on $\mathbf{A}|_B/\alpha|_B$). Let $g(x, y) = \pi^{-1}(f(x, y))$. Then $g(x, x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $\mathbf{A}|_B/\alpha|_B$. Iterate g(x, y) in its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on \mathbf{A} .

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$), so π is a permutation of \mathbf{A} (which induces the identity on $\mathbf{A}|_B/\alpha|_B$). Let $g(x, y) = \pi^{-1}(f(x, y))$. Then $g(x, x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $\mathbf{A}|_B/\alpha|_B$. Iterate g(x, y) in its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on \mathbf{A} . f, g and h induce the same operation on $\mathbf{A}|_B/\alpha|_B$, and h and g are both idempotent polynomials,

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$), so π is a permutation of \mathbf{A} (which induces the identity on $\mathbf{A}|_B/\alpha|_B$). Let $g(x, y) = \pi^{-1}(f(x, y))$. Then $g(x, x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $\mathbf{A}|_B/\alpha|_B$. Iterate g(x, y) in its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on \mathbf{A} . f, g and h induce the same operation on $\mathbf{A}|_B/\alpha|_B$, and h and g are both idempotent polynomials,

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$), so π is a permutation of \mathbf{A} (which induces the identity on $\mathbf{A}|_B/\alpha|_B$). Let $g(x, y) = \pi^{-1}(f(x, y))$. Then $g(x, x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $\mathbf{A}|_B/\alpha|_B$. Iterate g(x, y) in its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on \mathbf{A} . f, g and h induce the same operation on $\mathbf{A}|_B/\alpha|_B$, and h and g are both idempotent polynomials, but now h(x, u) = x for any $x \in A$ and $u \in I$.

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$), so π is a permutation of \mathbf{A} (which induces the identity on $\mathbf{A}|_B/\alpha|_B$). Let $g(x, y) = \pi^{-1}(f(x, y))$. Then $g(x, x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $\mathbf{A}|_B/\alpha|_B$. Iterate g(x, y) in its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on \mathbf{A} . f, g and h induce the same operation on $\mathbf{A}|_B/\alpha|_B$, and h and g are both idempotent polynomials, but now h(x, u) = x for any $x \in A$ and $u \in I$. Next, iterate h(x, y) in its second variable to obtain m(x, y) satisfying m(x, m(x, y)) = m(x, y) on \mathbf{A} .

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$, so π is a permutation of A (which induces the identity on $A|_B/\alpha|_B$. Let $q(x,y) = \pi^{-1}(f(x,y))$. Then $q(x,x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $A|_B/\alpha|_B$. Iterate g(x, y) in its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on **A**. f, g and h induce the same operation on $\mathbf{A}|_B/\alpha|_B$, and h and g are both idempotent polynomials, but now h(x, u) = x for any $x \in A$ and $u \in I$. Next, iterate h(x, y) in its second variable to obtain m(x, y) satisfying m(x, m(x, y)) = m(x, y) on A. f, q, h and m induce the same operation on $\mathbf{A}|_{R}/\alpha|_{R}$

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$, so π is a permutation of A (which induces the identity on $A|_B/\alpha|_B$. Let $q(x,y) = \pi^{-1}(f(x,y))$. Then $q(x,x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $A|_B/\alpha|_B$. Iterate g(x, y) in its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on **A**. f, g and h induce the same operation on $\mathbf{A}|_B/\alpha|_B$, and h and g are both idempotent polynomials, but now h(x, u) = x for any $x \in A$ and $u \in I$. Next, iterate h(x, y) in its second variable to obtain m(x, y) satisfying m(x, m(x, y)) = m(x, y) on A. f, q, h and m induce the same operation on $\mathbf{A}|_{B}/\alpha|_{B}$. g, h, m are idempotent.

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$, so π is a permutation of A (which induces the identity on $A|_B/\alpha|_B$. Let $q(x,y) = \pi^{-1}(f(x,y))$. Then $q(x,x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $A|_B/\alpha|_B$. Iterate g(x, y) in its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on **A**. f, g and h induce the same operation on $\mathbf{A}|_B/\alpha|_B$, and h and g are both idempotent polynomials, but now h(x, u) = x for any $x \in A$ and $u \in I$. Next, iterate h(x, y) in its second variable to obtain m(x, y) satisfying m(x, m(x, y)) = m(x, y) on A. f, q, h and m induce the same operation on $\mathbf{A}|_{B}/\alpha|_{B}$. g, h, m are idempotent. h and m both satisfy h(x, u) = x = m(x, u) for $x \in A$ and $u \in I$,

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$, so π is a permutation of A (which induces the identity on $A|_B/\alpha|_B$. Let $q(x,y) = \pi^{-1}(f(x,y))$. Then $q(x,x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $A|_B/\alpha|_B$. Iterate g(x, y) in its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on **A**. f, g and h induce the same operation on $\mathbf{A}|_B/\alpha|_B$, and h and g are both idempotent polynomials, but now h(x, u) = x for any $x \in A$ and $u \in I$. Next, iterate h(x, y) in its second variable to obtain m(x, y) satisfying m(x, m(x, y)) = m(x, y) on A. f, q, h and m induce the same operation on $\mathbf{A}|_{B}/\alpha|_{B}$. g, h, m are idempotent. h and m both satisfy h(x, u) = x = m(x, u) for $x \in A$ and $u \in I$, but I claim that m(x, y) also satisfies m(u, x) = x for such u, x.

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$, so π is a permutation of **A** (which induces the identity on $A|_B/\alpha|_B$. Let $q(x,y) = \pi^{-1}(f(x,y))$. Then $q(x,x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $\mathbf{A}|_B/\alpha|_B$. Iterate g(x,y) in its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on **A**. f, g and h induce the same operation on $\mathbf{A}|_B/\alpha|_B$, and h and g are both idempotent polynomials, but now h(x, u) = x for any $x \in A$ and $u \in I$. Next, iterate h(x, y) in its second variable to obtain m(x, y) satisfying m(x, m(x, y)) = m(x, y) on A. f, q, h and m induce the same operation on $\mathbf{A}|_{B}/\alpha|_{B}$. g, h, m are idempotent. h and m both satisfy h(x, u) = x = m(x, u) for $x \in A$ and $u \in I$, but I claim that m(x, y) also satisfies m(u, x) = x for such u, x. Finally, if $u, u' \in I$, then u = m(u, u') = u' by the properties of m.

Let's explain why the neutral coset I is a singleton α -class (Part 1).

Start with any f(x, y) that induces a semilattice operation on $\mathbf{A}|_B/\alpha|_B$. The polynomial $\pi(x) := f(x, x)$ does not collapse β into α ($\pi(I) \subseteq I$ and $\pi(O) \subseteq O$, so π is a permutation of **A** (which induces the identity on $A|_B/\alpha|_B$. Let $q(x,y) = \pi^{-1}(f(x,y))$. Then $q(x,x) = \pi^{-1}(\pi(x)) = x$ and g induces the same semilattice operation as f on $\mathbf{A}|_B/\alpha|_B$. Iterate g(x,y) in its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on **A**. f, g and h induce the same operation on $\mathbf{A}|_B/\alpha|_B$, and h and g are both idempotent polynomials, but now h(x, u) = x for any $x \in A$ and $u \in I$. Next, iterate h(x, y) in its second variable to obtain m(x, y) satisfying m(x, m(x, y)) = m(x, y) on A. f, q, h and m induce the same operation on $\mathbf{A}|_{B}/\alpha|_{B}$. g, h, m are idempotent. h and m both satisfy h(x, u) = x = m(x, u) for $x \in A$ and $u \in I$, but I claim that m(x, y) also satisfies m(u, x) = x for such u, x. Finally, if $u, u' \in I$, then u = m(u, u') = u' by the properties of m. \Box

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation.

When A has body twins of different characters, then the trace algebra $A|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure.

When A has body twins of different characters, then the trace algebra $A|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is:

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5),

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4),

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4), or Boolean algebra

When A has body twins of different characters, then the trace algebra $A|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $A|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4), or Boolean algebra (type 3).

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace algebra $\mathbf{A}|_N/\alpha|_N = \mathbf{A}|_B/\alpha|_B$ has two semilattice operations and each element of the trace algebra is a unit element for one of them.

When **A** has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type **5**), lattice (type **4**), or Boolean algebra (type **3**). In the latter two cases the trace algebra $\mathbf{A}|_N/\alpha|_N = \mathbf{A}|_B/\alpha|_B$ has two semilattice operations and each element of the trace algebra is a unit element for one of them. Using arguments similar to the above, we derive that $B = I \cup O = \{1\} \cup \{0\}$ is a two-element β -class consisting of two singleton α -classes.

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B / \alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B / \alpha|_B$ is polynomially equivalent to a 2-element semilattice (type **5**), lattice (type **4**), or Boolean algebra (type **3**). In the latter two cases the trace algebra $\mathbf{A}|_N / \alpha|_N = \mathbf{A}|_B / \alpha|_B$ has two semilattice operations and each element of the trace algebra is a unit element for one of them. Using arguments similar to the above, we derive that $B = I \cup O = \{1\} \cup \{0\}$ is a two-element β -class consisting of two singleton α -classes. Moreover, there are binary polynomials m(x, y), j(x, y) of **A** such that $\langle B; m(x, y), j(x, y) \rangle = \langle \{0, 1\}; \land, \lor \rangle$ is a 2-element lattice,

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B / \alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B / \alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace algebra $\mathbf{A}|_N / \alpha|_N = \mathbf{A}|_B / \alpha|_B$ has two semilattice operations and each element of the trace algebra is a unit element for one of them. Using arguments similar to the above, we derive that $B = I \cup O = \{1\} \cup \{0\}$ is a two-element β -class consisting of two singleton α -classes. Moreover, there are binary polynomials m(x, y), j(x, y) of **A** such that $\langle B; m(x, y), j(x, y) \rangle = \langle \{0, 1\}; \land, \lor \rangle$ is a 2-element lattice, and the following hold for $x, y \in A$:

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace algebra $\mathbf{A}|_N/\alpha|_N = \mathbf{A}|_B/\alpha|_B$ has two semilattice operations and each element of the trace algebra is a unit element for one of them. Using arguments similar to the above, we derive that $B = I \cup O = \{1\} \cup \{0\}$ is a two-element β -class consisting of two singleton α -classes. Moreover, there are binary polynomials m(x, y), j(x, y) of **A** such that $\langle B; m(x, y), j(x, y) \rangle = \langle \{0, 1\}; \land, \lor \rangle$ is a 2-element lattice, and the following hold for $x, y \in A$:

$$x = m(x,1) = m(x,x) = m(1,x) = j(0,x) = j(x,x) = j(x,0).$$

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace algebra $\mathbf{A}|_N/\alpha|_N = \mathbf{A}|_B/\alpha|_B$ has two semilattice operations and each element of the trace algebra is a unit element for one of them. Using arguments similar to the above, we derive that $B = I \cup O = \{1\} \cup \{0\}$ is a two-element β -class consisting of two singleton α -classes. Moreover, there are binary polynomials m(x, y), j(x, y) of **A** such that $\langle B; m(x, y), j(x, y) \rangle = \langle \{0, 1\}; \land, \lor \rangle$ is a 2-element lattice, and the following hold for $x, y \in A$:

$$x = m(x,1) = m(x,x) = m(1,x) = j(0,x) = j(x,x) = j(x,0).$$

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace algebra $\mathbf{A}|_N/\alpha|_N = \mathbf{A}|_B/\alpha|_B$ has two semilattice operations and each element of the trace algebra is a unit element for one of them. Using arguments similar to the above, we derive that $B = I \cup O = \{1\} \cup \{0\}$ is a two-element β -class consisting of two singleton α -classes. Moreover, there are binary polynomials m(x, y), j(x, y) of **A** such that $\langle B; m(x, y), j(x, y) \rangle = \langle \{0, 1\}; \land, \lor \rangle$ is a 2-element lattice, and the following hold for $x, y \in A$:

$$x = m(x,1) = m(x,x) = m(1,x) = j(0,x) = j(x,x) = j(x,0).$$

2 m(x, m(x, y)) = m(x, y) and j(x, j(x, y)) = j(x, y).

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace algebra $\mathbf{A}|_N/\alpha|_N = \mathbf{A}|_B/\alpha|_B$ has two semilattice operations and each element of the trace algebra is a unit element for one of them. Using arguments similar to the above, we derive that $B = I \cup O = \{1\} \cup \{0\}$ is a two-element β -class consisting of two singleton α -classes. Moreover, there are binary polynomials m(x, y), j(x, y) of **A** such that $\langle B; m(x, y), j(x, y) \rangle = \langle \{0, 1\}; \land, \lor \rangle$ is a 2-element lattice, and the following hold for $x, y \in A$:

$$x = m(x,1) = m(x,x) = m(1,x) = j(0,x) = j(x,x) = j(x,0).$$

2 m(x, m(x, y)) = m(x, y) and j(x, j(x, y)) = j(x, y).

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace algebra $\mathbf{A}|_N/\alpha|_N = \mathbf{A}|_B/\alpha|_B$ has two semilattice operations and each element of the trace algebra is a unit element for one of them. Using arguments similar to the above, we derive that $B = I \cup O = \{1\} \cup \{0\}$ is a two-element β -class consisting of two singleton α -classes. Moreover, there are binary polynomials m(x, y), j(x, y) of **A** such that $\langle B; m(x, y), j(x, y) \rangle = \langle \{0, 1\}; \land, \lor \rangle$ is a 2-element lattice, and the following hold for $x, y \in A$:

$$\ \, {\bf 0} \ \, x=m(x,1)=m(x,x)=m(1,x)=j(0,x)=j(x,x)=j(x,0).$$

2 m(x, m(x, y)) = m(x, y) and j(x, j(x, y)) = j(x, y).

Solution If t ∈ A \ B belongs to the tail, then m(0,t) ≡_α m(t,0) ≡_α t and j(1,t) ≡_α j(t,1) ≡_α t.

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace algebra $\mathbf{A}|_N/\alpha|_N = \mathbf{A}|_B/\alpha|_B$ has two semilattice operations and each element of the trace algebra is a unit element for one of them. Using arguments similar to the above, we derive that $B = I \cup O = \{1\} \cup \{0\}$ is a two-element β -class consisting of two singleton α -classes. Moreover, there are binary polynomials m(x, y), j(x, y) of **A** such that $\langle B; m(x, y), j(x, y) \rangle = \langle \{0, 1\}; \land, \lor \rangle$ is a 2-element lattice, and the following hold for $x, y \in A$:

$$\ \, {\bf 0} \ \, x=m(x,1)=m(x,x)=m(1,x)=j(0,x)=j(x,x)=j(x,0).$$

2 m(x, m(x, y)) = m(x, y) and j(x, j(x, y)) = j(x, y).

Solution If t ∈ A \ B belongs to the tail, then m(0,t) ≡_α m(t,0) ≡_α t and j(1,t) ≡_α j(t,1) ≡_α t.

When A has body twins of different characters, then the trace algebra $\mathbf{A}|_B/\alpha|_B$ is a 2-element algebra with a semilattice operation. It can have extra structure. The list of possibilities is: $\mathbf{A}|_B/\alpha|_B$ is polynomially equivalent to a 2-element semilattice (type 5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace algebra $\mathbf{A}|_N/\alpha|_N = \mathbf{A}|_B/\alpha|_B$ has two semilattice operations and each element of the trace algebra is a unit element for one of them. Using arguments similar to the above, we derive that $B = I \cup O = \{1\} \cup \{0\}$ is a two-element β -class consisting of two singleton α -classes. Moreover, there are binary polynomials m(x, y), j(x, y) of **A** such that $\langle B; m(x, y), j(x, y) \rangle = \langle \{0, 1\}; \land, \lor \rangle$ is a 2-element lattice, and the following hold for $x, y \in A$:

$$x = m(x,1) = m(x,x) = m(1,x) = j(0,x) = j(x,x) = j(x,0).$$

 $\ \, { o \ \, and \ \, j(x,m(x,y)) = m(x,y) \ \, and \ \, j(x,j(x,y)) = j(x,y). }$

Solution If t ∈ A \ B belongs to the tail, then m(0,t) ≡_α m(t,0) ≡_α t and j(1,t) ≡_α j(t,1) ≡_α t.

m(x, y) is called a **pseudo-meet** polynomial and j(x, y) is called a **pseudo-join** polynomial of **A** with respect to $\langle \alpha, \beta \rangle$ if they have these properties.

The remaining cases

- (Type 1) G-set,
- (Type 2) Vector space,

- (Type 1) G-set,
- (Type 2) Vector space,

- (Type 1) G-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,

- (Type 1) G-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or
- (Type 5) 2-element semilattice.

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or
- (Type 5) 2-element semilattice.

Each trace algebra $\mathbf{A}|_N/\alpha|_N$ satisfies the definition of a minimal algebra, so it is a

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or
- (Type 5) 2-element semilattice.

We have explained that if A has body twins of different characters, then the type must be 3, 4, or 5.

Each trace algebra $\mathbf{A}|_N/\alpha|_N$ satisfies the definition of a minimal algebra, so it is a

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or
- (Type 5) 2-element semilattice.

We have explained that if A has body twins of different characters, then the type must be 3, 4, or 5. The converse is also true,

Each trace algebra $\mathbf{A}|_N/\alpha|_N$ satisfies the definition of a minimal algebra, so it is a

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or
- (Type 5) 2-element semilattice.

We have explained that if A has body twins of different characters, then the type must be 3, 4, or 5. The converse is also true, since for types 3, 4, and 5 m(1, x) and m(0, x) are body twins of different characters.

Each trace algebra $\mathbf{A}|_N/\alpha|_N$ satisfies the definition of a minimal algebra, so it is a

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or
- (Type 5) 2-element semilattice.

We have explained that if A has body twins of different characters, then the type must be 3, 4, or 5. The converse is also true, since for types 3, 4, and 5 m(1, x) and m(0, x) are body twins of different characters. Thus, there is only one trace of A when the type is 3, 4, or 5.

Each trace algebra $\mathbf{A}|_N/\alpha|_N$ satisfies the definition of a minimal algebra, so it is a

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or
- (Type 5) 2-element semilattice.

We have explained that if A has body twins of different characters, then the type must be 3, 4, or 5. The converse is also true, since for types 3, 4, and 5 m(1, x) and m(0, x) are body twins of different characters. Thus, there is only one trace of A when the type is 3, 4, or 5. There can be more traces/trace algebras in types 1 or 2, but we do have this general fact:

Each trace algebra $\mathbf{A}|_N/\alpha|_N$ satisfies the definition of a minimal algebra, so it is a

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or
- (Type 5) 2-element semilattice.

We have explained that if A has body twins of different characters, then the type must be 3, 4, or 5. The converse is also true, since for types 3, 4, and 5 m(1, x) and m(0, x) are body twins of different characters. Thus, there is only one trace of A when the type is 3, 4, or 5. There can be more traces/trace algebras in types 1 or 2, but we do have this general fact:

Observation. If N_1, N_2 are both traces of the same $\langle \alpha, \beta \rangle$ -minimal algebra, then N_1 and N_2 are polynomially isomorphic,

Each trace algebra $\mathbf{A}|_N/\alpha|_N$ satisfies the definition of a minimal algebra, so it is a

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or
- (Type 5) 2-element semilattice.

We have explained that if A has body twins of different characters, then the type must be 3, 4, or 5. The converse is also true, since for types 3, 4, and 5 m(1, x) and m(0, x) are body twins of different characters. Thus, there is only one trace of A when the type is 3, 4, or 5. There can be more traces/trace algebras in types 1 or 2, but we do have this general fact:

Observation. If N_1, N_2 are both traces of the same $\langle \alpha, \beta \rangle$ -minimal algebra, then N_1 and N_2 are polynomially isomorphic, and therefore $\mathbf{A}|_{N_1}$ and $\mathbf{A}|_{N_2}$ have isomorphic polynomial clones.

Each trace algebra $\mathbf{A}|_N/\alpha|_N$ satisfies the definition of a minimal algebra, so it is a

- **(**Type **1**) *G*-set,
- (Type 2) Vector space,
- (Type 3) 2-element Boolean algebra,
- (Type 4) 2-element lattice, or
- (Type 5) 2-element semilattice.

We have explained that if A has body twins of different characters, then the type must be 3, 4, or 5. The converse is also true, since for types 3, 4, and 5 m(1, x) and m(0, x) are body twins of different characters. Thus, there is only one trace of A when the type is 3, 4, or 5. There can be more traces/trace algebras in types 1 or 2, but we do have this general fact:

Observation. If N_1, N_2 are both traces of the same $\langle \alpha, \beta \rangle$ -minimal algebra, then N_1 and N_2 are polynomially isomorphic, and therefore $\mathbf{A}|_{N_1}$ and $\mathbf{A}|_{N_2}$ have isomorphic polynomial clones. (This is sufficient to show that the structure of a trace algebra $\mathbf{A}|_N/\alpha|_N$ does not depend on the choice of N, but rather it is an invariant of \mathbf{A} .)

Keep assumptions about A, and N_1, N_2 .

Keep assumptions about A, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2, b_2) \in \beta = \mathbf{Cg}(\{(a_1, b_1)\} \cup \alpha).$$

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2,b_2) \in \beta = \mathsf{Cg}(\{(a_1,b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) .

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2,b_2) \in \beta = \mathsf{Cg}(\{(a_1,b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) . Each link of the chain is a β -link, so the the chain lies entirely inside N_2 .

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2, b_2) \in \beta = \mathsf{Cg}(\{(a_1, b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) . Each link of the chain is a β -link, so the the chain lies entirely inside N_2 . Since the chain connects $a_2, b_2 \in N_2$ and $(a_2, b_2) \notin \alpha$, there must be a link that is not an α -link, necessarily of the form $(p(a_1), p(b_1))$.

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2, b_2) \in \beta = \mathsf{Cg}(\{(a_1, b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) . Each link of the chain is a β -link, so the the chain lies entirely inside N_2 . Since the chain connects $a_2, b_2 \in N_2$ and $(a_2, b_2) \notin \alpha$, there must be a link that is not an α -link, necessarily of the form $(p(a_1), p(b_1))$. Relabelling if necessary, we may assume that $(a_2, b_2) = (p(a_1), p(b_1)) \in N_2^2 \setminus \alpha$.

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2,b_2) \in \beta = \mathsf{Cg}(\{(a_1,b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) . Each link of the chain is a β -link, so the the chain lies entirely inside N_2 . Since the chain connects $a_2, b_2 \in N_2$ and $(a_2, b_2) \notin \alpha$, there must be a link that is not an α -link, necessarily of the form $(p(a_1), p(b_1))$. Relabelling if necessary, we may assume that $(a_2, b_2) = (p(a_1), p(b_1)) \in N_2^2 \setminus \alpha$. The same argument yields a polynomial q such that $(q(a_2), q(b_2)) \in N_1^2 \setminus \alpha$.

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2, b_2) \in \beta = \mathsf{Cg}(\{(a_1, b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) . Each link of the chain is a β -link, so the the chain lies entirely inside N_2 . Since the chain connects $a_2, b_2 \in N_2$ and $(a_2, b_2) \notin \alpha$, there must be a link that is not an α -link, necessarily of the form $(p(a_1), p(b_1))$. Relabelling if necessary, we may assume that $(a_2, b_2) = (p(a_1), p(b_1)) \in N_2^2 \setminus \alpha$. The same argument yields a polynomial q such that $(q(a_2), q(b_2)) \in N_1^2 \setminus \alpha$. The composite $\pi(x) := qp(x)$ maps N_1 into itself in a noncollapsing way, so it is a permutation of N_1 .

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2, b_2) \in \beta = \mathsf{Cg}(\{(a_1, b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) . Each link of the chain is a β -link, so the the chain lies entirely inside N_2 . Since the chain connects $a_2, b_2 \in N_2$ and $(a_2, b_2) \notin \alpha$, there must be a link that is not an α -link, necessarily of the form $(p(a_1), p(b_1))$. Relabelling if necessary, we may assume that $(a_2, b_2) = (p(a_1), p(b_1)) \in N_2^2 \setminus \alpha$. The same argument yields a polynomial q such that $(q(a_2), q(b_2)) \in N_1^2 \setminus \alpha$. The composite $\pi(x) := qp(x)$ maps N_1 into itself in a noncollapsing way, so it is a permutation of N_1 . The polynomials $\pi^{-1}q \colon N_2 \to N_1$

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2, b_2) \in \beta = \mathsf{Cg}(\{(a_1, b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) . Each link of the chain is a β -link, so the the chain lies entirely inside N_2 . Since the chain connects $a_2, b_2 \in N_2$ and $(a_2, b_2) \notin \alpha$, there must be a link that is not an α -link, necessarily of the form $(p(a_1), p(b_1))$. Relabelling if necessary, we may assume that $(a_2, b_2) = (p(a_1), p(b_1)) \in N_2^2 \setminus \alpha$. The same argument yields a polynomial q such that $(q(a_2), q(b_2)) \in N_1^2 \setminus \alpha$. The composite $\pi(x) := qp(x)$ maps N_1 into itself in a noncollapsing way, so it is a permutation of N_1 . The polynomials $\pi^{-1}q \colon N_2 \to N_1$ and $p \colon N_1 \to N_2$

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2, b_2) \in \beta = \mathsf{Cg}(\{(a_1, b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) . Each link of the chain is a β -link, so the the chain lies entirely inside N_2 . Since the chain connects $a_2, b_2 \in N_2$ and $(a_2, b_2) \notin \alpha$, there must be a link that is not an α -link, necessarily of the form $(p(a_1), p(b_1))$. Relabelling if necessary, we may assume that $(a_2, b_2) = (p(a_1), p(b_1)) \in N_2^2 \setminus \alpha$. The same argument yields a polynomial q such that $(q(a_2), q(b_2)) \in N_1^2 \setminus \alpha$. The composite $\pi(x) := qp(x)$ maps N_1 into itself in a noncollapsing way, so it is a permutation of N_1 . The polynomials $\pi^{-1}q \colon N_2 \to N_1$ and $p \colon N_1 \to N_2$ realize N_1 as a retract of N_2 , hence $|N_1| \leq |N_2|$.

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2, b_2) \in \beta = \mathsf{Cg}(\{(a_1, b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) . Each link of the chain is a β -link, so the the chain lies entirely inside N_2 . Since the chain connects $a_2, b_2 \in N_2$ and $(a_2, b_2) \notin \alpha$, there must be a link that is not an α -link, necessarily of the form $(p(a_1), p(b_1))$. Relabelling if necessary, we may assume that $(a_2, b_2) = (p(a_1), p(b_1)) \in N_2^2 \setminus \alpha$. The same argument yields a polynomial q such that $(q(a_2), q(b_2)) \in N_1^2 \setminus \alpha$. The composite $\pi(x) := qp(x)$ maps N_1 into itself in a noncollapsing way, so it is a permutation of N_1 . The polynomials $\pi^{-1}q \colon N_2 \to N_1$ and $p \colon N_1 \to N_2$ realize N_1 as a retract of N_2 , hence $|N_1| \leq |N_2|$. Similarly, $|N_2| \leq |N_1|$,

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2, b_2) \in \beta = \mathsf{Cg}(\{(a_1, b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) . Each link of the chain is a β -link, so the chain lies entirely inside N_2 . Since the chain connects $a_2, b_2 \in N_2$ and $(a_2, b_2) \notin \alpha$, there must be a link that is not an α -link, necessarily of the form $(p(a_1), p(b_1))$. Relabelling if necessary, we may assume that $(a_2, b_2) = (p(a_1), p(b_1)) \in N_2^2 \setminus \alpha$. The same argument yields a polynomial q such that $(q(a_2), q(b_2)) \in N_1^2 \setminus \alpha$. The composite $\pi(x) := qp(x)$ maps N_1 into itself in a noncollapsing way, so it is a permutation of N_1 . The polynomials $\pi^{-1}q: N_2 \to N_1$ and $p: N_1 \to N_2$ realize N_1 as a retract of N_2 , hence $|N_1| < |N_2|$. Similarly, $|N_2| < |N_1|$, so $\pi^{-1}q$ and p must be inverse polynomial bijections between N_1 and N_2 .

Keep assumptions about **A**, and N_1, N_2 . Choose $(a_i, b_i) \in N_i^2 \setminus \alpha$.

$$(a_2, b_2) \in \beta = \mathsf{Cg}(\{(a_1, b_1)\} \cup \alpha).$$

Hence there is a Maltsev chain connecting a_2 to b_2 that consists of α -links and links that are polynomial images $(p(a_1), p(b_1))$ of the pair (a_1, b_1) . Each link of the chain is a β -link, so the chain lies entirely inside N_2 . Since the chain connects $a_2, b_2 \in N_2$ and $(a_2, b_2) \notin \alpha$, there must be a link that is not an α -link, necessarily of the form $(p(a_1), p(b_1))$. Relabelling if necessary, we may assume that $(a_2, b_2) = (p(a_1), p(b_1)) \in N_2^2 \setminus \alpha$. The same argument yields a polynomial q such that $(q(a_2), q(b_2)) \in N_1^2 \setminus \alpha$. The composite $\pi(x) := qp(x)$ maps N_1 into itself in a noncollapsing way, so it is a permutation of N_1 . The polynomials $\pi^{-1}q: N_2 \to N_1$ and $p: N_1 \to N_2$ realize N_1 as a retract of N_2 , hence $|N_1| < |N_2|$. Similarly, $|N_2| < |N_1|$, so $\pi^{-1}q$ and p must be inverse polynomial bijections between N_1 and N_2 . \Box

Type 1

In the Type 1 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a G-set.

In the Type 1 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a *G*-set. We will be in this case exactly when every polynomial of $\mathbf{A}|_N$ is non-collapsing in at most one variable.

In the Type 1 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a *G*-set. We will be in this case exactly when every polynomial of $\mathbf{A}|_N$ is non-collapsing in at most one variable. We will say nothing more about this case.

In the Type 1 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a *G*-set. We will be in this case exactly when every polynomial of $\mathbf{A}|_N$ is non-collapsing in at most one variable. We will say nothing more about this case.

Example.

In the Type 1 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a *G*-set. We will be in this case exactly when every polynomial of $\mathbf{A}|_N$ is non-collapsing in at most one variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is $\langle \alpha, \beta \rangle$ -minimal of Type 1 for every covering $\alpha \prec \beta$.

In the Type 1 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a *G*-set. We will be in this case exactly when every polynomial of $\mathbf{A}|_N$ is non-collapsing in at most one variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is $\langle \alpha, \beta \rangle$ -minimal of Type **1** for every covering $\alpha \prec \beta$. It is conjectured (but open) that almost all finite semigroups are nilpotent of nilpotence degree 3.

In the Type 1 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a *G*-set. We will be in this case exactly when every polynomial of $\mathbf{A}|_N$ is non-collapsing in at most one variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is $\langle \alpha, \beta \rangle$ -minimal of Type **1** for every covering $\alpha \prec \beta$. It is conjectured (but open) that almost all finite semigroups are nilpotent of nilpotence degree 3. The total number of semigroups of size n grows very fast

In the Type 1 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a *G*-set. We will be in this case exactly when every polynomial of $\mathbf{A}|_N$ is non-collapsing in at most one variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is $\langle \alpha, \beta \rangle$ -minimal of Type **1** for every covering $\alpha \prec \beta$. It is conjectured (but open) that almost all finite semigroups are nilpotent of nilpotence degree 3. The total number of semigroups of size n grows very fast (OEIS A027851):

In the Type 1 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a *G*-set. We will be in this case exactly when every polynomial of $\mathbf{A}|_N$ is non-collapsing in at most one variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is $\langle \alpha, \beta \rangle$ -minimal of Type **1** for every covering $\alpha \prec \beta$. It is conjectured (but open) that almost all finite semigroups are nilpotent of nilpotence degree 3. The total number of semigroups of size n grows very fast (OEIS A027851):

 $1, 1, 5, 24, 188, 1915, 28634, 1627672, 3684030417, 105978177936292, \ldots$

In the Type 1 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a *G*-set. We will be in this case exactly when every polynomial of $\mathbf{A}|_N$ is non-collapsing in at most one variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is $\langle \alpha, \beta \rangle$ -minimal of Type **1** for every covering $\alpha \prec \beta$. It is conjectured (but open) that almost all finite semigroups are nilpotent of nilpotence degree 3. The total number of semigroups of size n grows very fast (OEIS A027851):

 $1, 1, 5, 24, 188, 1915, 28634, 1627672, 3684030417, 105978177936292, \ldots$

This provides many examples of $\langle \alpha, \beta \rangle$ -minimal algebras of Type 1.

In the Type 2 case, each trace algebra $\mathbf{A}|_N/lpha|_N$ is a vector space.

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$)

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables.

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$.

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} .

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences,

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} ,

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} , must permute the β -classes of \mathbf{A} ,

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} , must permute the β -classes of \mathbf{A} , hence must permute the traces of \mathbf{A} .

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} , must permute the β -classes of \mathbf{A} , hence must permute the traces of \mathbf{A} . This is enough to show that $p(a, B) \subseteq B$ and $p(B, b) \subseteq B$.

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} , must permute the β -classes of \mathbf{A} , hence must permute the traces of \mathbf{A} . This is enough to show that $p(a, B) \subseteq B$ and $p(B, b) \subseteq B$. The same conclusion holds if we replace a with any $a' \in B$ and b with any $b' \in B$, since body twins have the same character.

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} , must permute the β -classes of \mathbf{A} , hence must permute the traces of \mathbf{A} . This is enough to show that $p(a, B) \subseteq B$ and $p(B, b) \subseteq B$. The same conclusion holds if we replace a with any $a' \in B$ and b with any $b' \in B$, since body twins have the same character.

Condensing:

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} , must permute the β -classes of \mathbf{A} , hence must permute the traces of \mathbf{A} . This is enough to show that $p(a, B) \subseteq B$ and $p(B, b) \subseteq B$. The same conclusion holds if we replace a with any $a' \in B$ and b with any $b' \in B$, since body twins have the same character.

Condensing: If **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2**,

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} , must permute the β -classes of \mathbf{A} , hence must permute the traces of \mathbf{A} . This is enough to show that $p(a, B) \subseteq B$ and $p(B, b) \subseteq B$. The same conclusion holds if we replace a with any $a' \in B$ and b with any $b' \in B$, since body twins have the same character.

Condensing: If **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2**, N is a trace of **A**,

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} , must permute the β -classes of \mathbf{A} , hence must permute the traces of \mathbf{A} . This is enough to show that $p(a, B) \subseteq B$ and $p(B, b) \subseteq B$. The same conclusion holds if we replace a with any $a' \in B$ and b with any $b' \in B$, since body twins have the same character.

Condensing: If A is $\langle \alpha, \beta \rangle$ -minimal of Type 2, N is a trace of A, and p(x, y) is any polynomial of A that can be restricted to N and which induces an polynomial $p(x, y)|_N/\alpha|_N$ that is not essentially unary,

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} , must permute the β -classes of \mathbf{A} , hence must permute the traces of \mathbf{A} . This is enough to show that $p(a, B) \subseteq B$ and $p(B, b) \subseteq B$. The same conclusion holds if we replace a with any $a' \in B$ and b with any $b' \in B$, since body twins have the same character.

Condensing: If **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2**, N is a trace of **A**, and p(x, y) is any polynomial of **A** that can be restricted to N and which induces an polynomial $p(x, y)|_N/\alpha|_N$ that is not essentially unary, then p(x, y) can even be restricted to the body B of **A**

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} , must permute the β -classes of \mathbf{A} , hence must permute the traces of \mathbf{A} . This is enough to show that $p(a, B) \subseteq B$ and $p(B, b) \subseteq B$. The same conclusion holds if we replace a with any $a' \in B$ and b with any $b' \in B$, since body twins have the same character.

Condensing: If A is $\langle \alpha, \beta \rangle$ -minimal of Type 2, N is a trace of A, and p(x, y) is any polynomial of A that can be restricted to N and which induces an polynomial $p(x, y)|_N/\alpha|_N$ that is not essentially unary, then p(x, y) can even be restricted to the body B of A $(p(B, B) \subseteq B)$

In the Type 2 case, each trace algebra $\mathbf{A}|_N/\alpha|_N$ is a vector space. There must exist a polynomial p(x, y) of \mathbf{A} that can be restricted to N ($p(N, N) \subseteq N$) such that p(x, y) is noncollapsing in both variables. Choose $a, b \in N$ such that $p(a, N^2) \not\subseteq \alpha$ and $p(N^2, b) \not\subseteq \alpha$. For any such choice, the polynomials p(a, x) and p(x, b) must be permutations of \mathbf{A} . Since polynomials preserve congruences, p(a, x) and p(x, b) must permute the α -classes of \mathbf{A} , must permute the β -classes of \mathbf{A} , hence must permute the traces of \mathbf{A} . This is enough to show that $p(a, B) \subseteq B$ and $p(B, b) \subseteq B$. The same conclusion holds if we replace a with any $a' \in B$ and b with any $b' \in B$, since body twins have the same character.

Condensing: If A is $\langle \alpha, \beta \rangle$ -minimal of Type 2, N is a trace of A, and p(x, y) is any polynomial of A that can be restricted to N and which induces an polynomial $p(x, y)|_N/\alpha|_N$ that is not essentially unary, then p(x, y) can even be restricted to the body B of A $(p(B, B) \subseteq B)$ and p(x, y) is a quasigroup polynomial of A|_B.

We have argued before that the clone generated by a quasigroup operation p(x,y) on a finite set A contains a Maltsev operation d(x,y,z)

We have argued before that the clone generated by a quasigroup operation p(x, y) on a finite set A contains a Maltsev operation d(x, y, z) (d(y, x, x) = y = d(x, x, y)).

We have argued before that the clone generated by a quasigroup operation p(x, y) on a finite set A contains a Maltsev operation d(x, y, z) (d(y, x, x) = y = d(x, x, y)). (See the slides on Pálfy's Theorem or Lemma 4.6 of [HM].)

We have argued before that the clone generated by a quasigroup operation p(x, y) on a finite set A contains a Maltsev operation d(x, y, z) (d(y, x, x) = y = d(x, x, y)). (See the slides on Pálfy's Theorem or Lemma 4.6 of [HM].) From the previous slide, we obtain that if **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2**, then **A** has a ternary polynomial d(x, y, z) that can be restricted to the body

We have argued before that the clone generated by a quasigroup operation p(x, y) on a finite set A contains a Maltsev operation d(x, y, z) (d(y, x, x) = y = d(x, x, y)). (See the slides on Pálfy's Theorem or Lemma 4.6 of [HM].) From the previous slide, we obtain that if **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2**, then **A** has a ternary polynomial d(x, y, z) that can be restricted to the body ($d(B, B, B) \subseteq B$),

•
$$d(x, x, x) = x$$
 on **A**.

•
$$d(x, x, x) = x$$
 on **A**.

$$d(y, x, x) = y = d(x, x, y) \text{ if } x \in B \text{ and } \underline{y \in A}.$$

$$d(y, x, x) = y = d(x, x, y) \text{ if } x \in B \text{ and } \underline{y \in A}.$$

$$d(x, x, x) = x \text{ on } \mathbf{A}$$

- For any a, b ∈ B, d(x, a, b), d(a, x, b), d(a, b, x) are polynomial permutations of A.

$$d(x, x, x) = x \text{ on } \mathbf{A}$$

- For any a, b ∈ B, d(x, a, b), d(a, x, b), d(a, b, x) are polynomial permutations of A.

We have argued before that the clone generated by a quasigroup operation p(x, y) on a finite set A contains a Maltsev operation d(x, y, z) (d(y, x, x) = y = d(x, x, y)). (See the slides on Pálfy's Theorem or Lemma 4.6 of [HM].) From the previous slide, we obtain that if **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2**, then **A** has a ternary polynomial d(x, y, z) that can be restricted to the body ($d(B, B, B) \subseteq B$), and which is Maltsev on the body. Using iteration, you can produce a Maltsev operation with some extra properties:

- For any a, b ∈ B, d(x, a, b), d(a, x, b), d(a, b, x) are polynomial permutations of A.

See Lemma 4.20 of [HM].

We have argued before that the clone generated by a quasigroup operation p(x, y) on a finite set A contains a Maltsev operation d(x, y, z) (d(y, x, x) = y = d(x, x, y)). (See the slides on Pálfy's Theorem or Lemma 4.6 of [HM].) From the previous slide, we obtain that if **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2**, then **A** has a ternary polynomial d(x, y, z) that can be restricted to the body ($d(B, B, B) \subseteq B$), and which is Maltsev on the body. Using iteration, you can produce a Maltsev operation with some extra properties:

$$1 d(x, x, x) = x \text{ on } \mathbf{A}$$

$$\ \ \, {\it O} \ \ \, d(y,x,x)=y=d(x,x,y) \ {\rm if} \ x\in B \ {\rm and} \ \underline{y\in A}.$$

For any a, b ∈ B, d(x, a, b), d(a, x, b), d(a, b, x) are polynomial permutations of A.

See Lemma 4.20 of [HM]. A polynomial with these properties is called a **pseudo-Maltsev** operation of **A** with respect to $\langle \alpha, \beta \rangle$.

We have argued before that the clone generated by a quasigroup operation p(x, y) on a finite set A contains a Maltsev operation d(x, y, z) (d(y, x, x) = y = d(x, x, y)). (See the slides on Pálfy's Theorem or Lemma 4.6 of [HM].) From the previous slide, we obtain that if **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2**, then **A** has a ternary polynomial d(x, y, z) that can be restricted to the body ($d(B, B, B) \subseteq B$), and which is Maltsev on the body. Using iteration, you can produce a Maltsev operation with some extra properties:

$$1 d(x, x, x) = x \text{ on } \mathbf{A}$$

For any a, b ∈ B, d(x, a, b), d(a, x, b), d(a, b, x) are polynomial permutations of A.

See Lemma 4.20 of [HM]. A polynomial with these properties is called a **pseudo-Maltsev** operation of **A** with respect to $\langle \alpha, \beta \rangle$. For any such:

We have argued before that the clone generated by a quasigroup operation p(x, y) on a finite set A contains a Maltsev operation d(x, y, z) (d(y, x, x) = y = d(x, x, y)). (See the slides on Pálfy's Theorem or Lemma 4.6 of [HM].) From the previous slide, we obtain that if **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2**, then **A** has a ternary polynomial d(x, y, z) that can be restricted to the body ($d(B, B, B) \subseteq B$), and which is Maltsev on the body. Using iteration, you can produce a Maltsev operation with some extra properties:

$$label{eq:distance} d(x,x,x) = x \text{ on } \mathbf{A}$$

$$\ \, {\it O} \ \, d(y,x,x)=y=d(x,x,y) \ \, {\rm if} \ x\in B \ \, {\rm and} \ \underline{y\in A}.$$

For any a, b ∈ B, d(x, a, b), d(a, x, b), d(a, b, x) are polynomial permutations of A.

See Lemma 4.20 of [HM]. A polynomial with these properties is called a **pseudo-Maltsev** operation of **A** with respect to $\langle \alpha, \beta \rangle$. For any such:

• there do not exist $b \in B, t \in T$ such that $d(b, t, t) \equiv_{\beta} b$ or $d(t, t, b) \equiv_{\beta} b$.

Example 1.

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$.

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty (**A** is "full-bodied"),

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty (**A** is "full-bodied"), and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on **A**.

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty (**A** is "full-bodied"), and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on **A**.

Example 2.

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty (**A** is "full-bodied"), and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on **A**.

Example 2. Any finite semigroup \mathbf{A}^0 obtained from a finite *p*-group \mathbf{A} by adding a multiplicatively absorbing element 0 is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any group congruences $\alpha \prec \beta$.

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty (**A** is "full-bodied"), and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on **A**.

Example 2. Any finite semigroup \mathbf{A}^0 obtained from a finite *p*-group \mathbf{A} by adding a multiplicatively absorbing element 0 is $\langle \alpha, \beta \rangle$ -minimal of Type 2 for any group congruences $\alpha \prec \beta$. The tail is $\{0\}$, and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on \mathbf{A}^0 .

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty (**A** is "full-bodied"), and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on **A**.

Example 2. Any finite semigroup \mathbf{A}^0 obtained from a finite *p*-group \mathbf{A} by adding a multiplicatively absorbing element 0 is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any group congruences $\alpha \prec \beta$. The tail is $\{0\}$, and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on \mathbf{A}^0 . You can repeat this construction to get a longer tail:

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty (**A** is "full-bodied"), and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on **A**.

Example 2. Any finite semigroup \mathbf{A}^0 obtained from a finite *p*-group \mathbf{A} by adding a multiplicatively absorbing element 0 is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any group congruences $\alpha \prec \beta$. The tail is $\{0\}$, and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on \mathbf{A}^0 . You can repeat this construction to get a longer tail: $(\mathbf{A}^0)^{0'}, T = \{0, 0'\}$.

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty (**A** is "full-bodied"), and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on **A**.

Example 2. Any finite semigroup \mathbf{A}^0 obtained from a finite *p*-group \mathbf{A} by adding a multiplicatively absorbing element 0 is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any group congruences $\alpha \prec \beta$. The tail is $\{0\}$, and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on \mathbf{A}^0 . You can repeat this construction to get a longer tail: $(\mathbf{A}^0)^{0'}, T = \{0, 0'\}$.

Example 3.

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty (**A** is "full-bodied"), and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on **A**.

Example 2. Any finite semigroup \mathbf{A}^0 obtained from a finite *p*-group \mathbf{A} by adding a multiplicatively absorbing element 0 is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any group congruences $\alpha \prec \beta$. The tail is $\{0\}$, and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on \mathbf{A}^0 . You can repeat this construction to get a longer tail: $(\mathbf{A}^0)^{0'}, T = \{0, 0'\}$.

Example 3. Any finite *R*-module **M** over a local ring *R* is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$.

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty (**A** is "full-bodied"), and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on **A**.

Example 2. Any finite semigroup \mathbf{A}^0 obtained from a finite *p*-group \mathbf{A} by adding a multiplicatively absorbing element 0 is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any group congruences $\alpha \prec \beta$. The tail is $\{0\}$, and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on \mathbf{A}^0 . You can repeat this construction to get a longer tail: $(\mathbf{A}^0)^{0'}, T = \{0, 0'\}$.

Example 3. Any finite *R*-module **M** over a local ring *R* is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty, and the operation d(x, y, z) = x - y + z is a pseudo-Maltsev operation on **M**.

Example 1. Any finite *p*-group **A** is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty (**A** is "full-bodied"), and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on **A**.

Example 2. Any finite semigroup \mathbf{A}^0 obtained from a finite *p*-group \mathbf{A} by adding a multiplicatively absorbing element 0 is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any group congruences $\alpha \prec \beta$. The tail is $\{0\}$, and the operation $d(x, y, z) = xy^{-1}z$ is a pseudo-Maltsev operation on \mathbf{A}^0 . You can repeat this construction to get a longer tail: $(\mathbf{A}^0)^{0'}, T = \{0, 0'\}$.

Example 3. Any finite *R*-module **M** over a local ring *R* is $\langle \alpha, \beta \rangle$ -minimal of Type **2** for any $\alpha \prec \beta$. The tail is empty, and the operation d(x, y, z) = x - y + z is a pseudo-Maltsev operation on **M**. You can add tails to this type of example, too.

• The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.

• The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.

- The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.
- **2** We do not have comparable information about $A|_B$ for Type 1.

- The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.
- **2** We do not have comparable information about $A|_B$ for Type 1.

- The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.
- **2** We do not have comparable information about $\mathbf{A}|_B$ for Type 1. We are restricted to working only with the *G*-set $\mathbf{A}|_N/\alpha|_N$ when the Type is 1.

- The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.
- **2** We do not have comparable information about $\mathbf{A}|_B$ for Type 1. We are restricted to working only with the *G*-set $\mathbf{A}|_N/\alpha|_N$ when the Type is 1.
- The most important facts not discussed about (α, β)-minimal algebras involve the commutator:

- The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.
- **2** We do not have comparable information about $\mathbf{A}|_B$ for Type 1. We are restricted to working only with the *G*-set $\mathbf{A}|_N/\alpha|_N$ when the Type is 1.
- The most important facts not discussed about (α, β)-minimal algebras involve the commutator:

- The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.
- **2** We do not have comparable information about $\mathbf{A}|_B$ for Type 1. We are restricted to working only with the *G*-set $\mathbf{A}|_N/\alpha|_N$ when the Type is 1.
- The most important facts not discussed about (α, β)-minimal algebras involve the commutator:
 - $\mathbf{A}|_B/\alpha|_B = \mathbf{A}|_N/\alpha|_N$ is nonabelian/perfect/neutral when the type is 3, 4, or 5.

- The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.
- **2** We do not have comparable information about $\mathbf{A}|_B$ for Type 1. We are restricted to working only with the *G*-set $\mathbf{A}|_N/\alpha|_N$ when the Type is 1.
- The most important facts not discussed about (α, β)-minimal algebras involve the commutator:
 - $\mathbf{A}|_B/\alpha|_B = \mathbf{A}|_N/\alpha|_N$ is nonabelian/perfect/neutral when the type is 3, 4, or 5.

- The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.
- **2** We do not have comparable information about $\mathbf{A}|_B$ for Type 1. We are restricted to working only with the *G*-set $\mathbf{A}|_N/\alpha|_N$ when the Type is 1.
- The most important facts not discussed about (α, β)-minimal algebras involve the commutator:
 - $\mathbf{A}|_B/\alpha|_B = \mathbf{A}|_N/\alpha|_N$ is nonabelian/perfect/neutral when the type is 3, 4, or 5.
 - **2** $\mathbf{A}|_B$ is nilpotent

- The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.
- **2** We do not have comparable information about $\mathbf{A}|_B$ for Type 1. We are restricted to working only with the *G*-set $\mathbf{A}|_N/\alpha|_N$ when the Type is 1.
- The most important facts not discussed about (α, β)-minimal algebras involve the commutator:
 - $\mathbf{A}|_B/\alpha|_B = \mathbf{A}|_N/\alpha|_N$ is nonabelian/perfect/neutral when the type is 3, 4, or 5.
 - **2** $\mathbf{A}|_B$ is nilpotent

- The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.
- **2** We do not have comparable information about $\mathbf{A}|_B$ for Type 1. We are restricted to working only with the *G*-set $\mathbf{A}|_N/\alpha|_N$ when the Type is 1.
- The most important facts not discussed about (α, β)-minimal algebras involve the commutator:
 - $\mathbf{A}|_B/\alpha|_B = \mathbf{A}|_N/\alpha|_N$ is nonabelian/perfect/neutral when the type is 3, 4, or 5.
 - **2** $\mathbf{A}|_B$ is nilpotent and $\mathbf{A}|_N/\alpha|_N$ is abelian when the type is **2**.

- The results described provide good knowledge of $A|_B$ for Types 2, 3, 4, and 5 when A is $\langle \alpha, \beta \rangle$ -minimal.
- **2** We do not have comparable information about $\mathbf{A}|_B$ for Type 1. We are restricted to working only with the *G*-set $\mathbf{A}|_N/\alpha|_N$ when the Type is 1.
- The most important facts not discussed about (α, β)-minimal algebras involve the commutator:
 - $\mathbf{A}|_B/\alpha|_B = \mathbf{A}|_N/\alpha|_N$ is nonabelian/perfect/neutral when the type is 3, 4, or 5.
 - **2** $\mathbf{A}|_B$ is nilpotent and $\mathbf{A}|_N/\alpha|_N$ is abelian when the type is **2**.
 - **3** $\mathbf{A}|_N/\alpha|_N$ is strongly abelian when the type is **1**.