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Recall

Terminology. Assume A = AA has congruences α ≺ β. Assume that A is
⟨α, β⟩-minimal. If some β-class a/β ⊆ A is not a full α-class, call N := a/β
a trace. Call the union B of all traces the body of A. Call the remainder
A − B = T the tail of A. For each trace N = a/β, call the section A|N /α|N
the induced trace algebra.
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The Twin Lemma

The Twin Lemma proves that if A is ⟨α, β⟩-minimal and A has a pair of
polynomials that are body twins of different character, then the body B of A
consists of a single trace N := B that is a union I ∪ O of two α-classes, and
A has a binary polynomial m(x, y) that induces a semilattice operation
m(x, y)|N /α|N on the trace algebra A|N /α|N . (Equivalently, m(I, I) ⊆ I
and m(I, O) ∪ m(O, I) ∪ m(O, O) ⊆ O.) This information can be refined,
but first let’s compare the table for a 2-element semilattice with what we know
about m(x, y) (so far). A = B ∪ T = (O ∪ I) ∪ T .

∧ 0 1
0 0 0
1 0 1

m(x, y) O I T

O O O ?
I O I ?
T ? ? ?
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Refining the information of the Twin Lemma

From Lemma 4.15. of [HM]
When A has a pair of body twins of different character, then there exist 1 ∈ A
and a special choice of m(x, y) such that

1 I = {1}.
2 m(1, x) = m(x, 1) = m(x, x) = x for x ∈ A.
3 m(x, m(x, y)) = m(x, y) for x, y ∈ A.

Talk #7: ⟨α, β⟩-minimal algebras, 2 4 / 13



Refining the information of the Twin Lemma

From Lemma 4.15. of [HM]

When A has a pair of body twins of different character, then there exist 1 ∈ A
and a special choice of m(x, y) such that

1 I = {1}.
2 m(1, x) = m(x, 1) = m(x, x) = x for x ∈ A.
3 m(x, m(x, y)) = m(x, y) for x, y ∈ A.

Talk #7: ⟨α, β⟩-minimal algebras, 2 4 / 13



Refining the information of the Twin Lemma

From Lemma 4.15. of [HM]
When A has a pair of body twins of different character, then there exist 1 ∈ A
and a special choice of m(x, y) such that

1 I = {1}.
2 m(1, x) = m(x, 1) = m(x, x) = x for x ∈ A.
3 m(x, m(x, y)) = m(x, y) for x, y ∈ A.

Talk #7: ⟨α, β⟩-minimal algebras, 2 4 / 13



Refining the information of the Twin Lemma

From Lemma 4.15. of [HM]
When A has a pair of body twins of different character, then there exist 1 ∈ A
and a special choice of m(x, y) such that

1 I = {1}.

2 m(1, x) = m(x, 1) = m(x, x) = x for x ∈ A.
3 m(x, m(x, y)) = m(x, y) for x, y ∈ A.

Talk #7: ⟨α, β⟩-minimal algebras, 2 4 / 13



Refining the information of the Twin Lemma

From Lemma 4.15. of [HM]
When A has a pair of body twins of different character, then there exist 1 ∈ A
and a special choice of m(x, y) such that

1 I = {1}.

2 m(1, x) = m(x, 1) = m(x, x) = x for x ∈ A.
3 m(x, m(x, y)) = m(x, y) for x, y ∈ A.

Talk #7: ⟨α, β⟩-minimal algebras, 2 4 / 13



Refining the information of the Twin Lemma

From Lemma 4.15. of [HM]
When A has a pair of body twins of different character, then there exist 1 ∈ A
and a special choice of m(x, y) such that

1 I = {1}.
2 m(1, x) = m(x, 1) = m(x, x) = x for x ∈ A.

3 m(x, m(x, y)) = m(x, y) for x, y ∈ A.

Talk #7: ⟨α, β⟩-minimal algebras, 2 4 / 13



Refining the information of the Twin Lemma

From Lemma 4.15. of [HM]
When A has a pair of body twins of different character, then there exist 1 ∈ A
and a special choice of m(x, y) such that

1 I = {1}.
2 m(1, x) = m(x, 1) = m(x, x) = x for x ∈ A.

3 m(x, m(x, y)) = m(x, y) for x, y ∈ A.

Talk #7: ⟨α, β⟩-minimal algebras, 2 4 / 13



Refining the information of the Twin Lemma

From Lemma 4.15. of [HM]
When A has a pair of body twins of different character, then there exist 1 ∈ A
and a special choice of m(x, y) such that

1 I = {1}.
2 m(1, x) = m(x, 1) = m(x, x) = x for x ∈ A.
3 m(x, m(x, y)) = m(x, y) for x, y ∈ A.

Talk #7: ⟨α, β⟩-minimal algebras, 2 4 / 13



Proof of the refinement

Let’s explain why the neutral coset I is a singleton α-class (Part 1).

Start with any f(x, y) that induces a semilattice operation on A|B/α|B . The
polynomial π(x) := f(x, x) does not collapse β into α (π(I) ⊆ I and
π(O) ⊆ O), so π is a permutation of A (which induces the identity on
A|B/α|B). Let g(x, y) = π−1(f(x, y)). Then g(x, x) = π−1(π(x)) = x and
g induces the same semilattice operation as f on A|B/α|B . Iterate g(x, y) in
its first variable to obtain h(x, y) satisfying h(h(x, y), y) = h(x, y) on A.
f, g and h induce the same operation on A|B/α|B , and h and g are both
idempotent polynomials, but now h(x, u) = x for any x ∈ A and u ∈ I .
Next, iterate h(x, y) in its second variable to obtain m(x, y) satisfying
m(x, m(x, y)) = m(x, y) on A. f, g, h and m induce the same operation on
A|B/α|B . g, h, m are idempotent. h and m both satisfy
h(x, u) = x = m(x, u) for x ∈ A and u ∈ I , but I claim that m(x, y) also
satisfies m(u, x) = x for such u, x. Finally, if u, u′ ∈ I , then
u = m(u, u′) = u′ by the properties of m. 2
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Corollary

When A has body twins of different characters, then the trace algebra A|B/α|B is a
2-element algebra with a semilattice operation. It can have extra structure. The list of
possibilities is: A|B/α|B is polynomially equivalent to a 2-element semilattice (type
5), lattice (type 4), or Boolean algebra (type 3). In the latter two cases the trace
algebra A|N /α|N = A|B/α|B has two semilattice operations and each element of
the trace algebra is a unit element for one of them. Using arguments similar to the
above, we derive that B = I ∪ O = {1} ∪ {0} is a two-element β-class consisting of
two singleton α-classes. Moreover, there are binary polynomials m(x, y), j(x, y) of
A such that ⟨B; m(x, y), j(x, y)⟩ = ⟨{0, 1}; ∧, ∨⟩ is a 2-element lattice, and the
following hold for x, y ∈ A:

1 x = m(x, 1) = m(x, x) = m(1, x) = j(0, x) = j(x, x) = j(x, 0).

2 m(x, m(x, y)) = m(x, y) and j(x, j(x, y)) = j(x, y).

3 If t ∈ A \ B belongs to the tail, then m(0, t) ≡α m(t, 0) ≡α t and
j(1, t) ≡α j(t, 1) ≡α t.

m(x, y) is called a pseudo-meet polynomial and j(x, y) is called a pseudo-join
polynomial of A with respect to ⟨α, β⟩ if they have these properties.
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m(x, y) is called a pseudo-meet polynomial and j(x, y) is called a pseudo-join
polynomial of A with respect to ⟨α, β⟩ if they have these properties.
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The remaining cases

Each trace algebra A|N /α|N satisfies the definition of a minimal algebra, so it is a

1 (Type 1) G-set,

2 (Type 2) Vector space,

3 (Type 3) 2-element Boolean algebra,

4 (Type 4) 2-element lattice, or

5 (Type 5) 2-element semilattice.

We have explained that if A has body twins of different characters, then the type
must be 3, 4, or 5. The converse is also true, since for types 3, 4, and 5 m(1, x) and
m(0, x) are body twins of different characters. Thus, there is only one trace of A
when the type is 3, 4, or 5. There can be more traces/trace algebras in types 1 or 2,
but we do have this general fact:

Observation. If N1, N2 are both traces of the same ⟨α, β⟩-minimal algebra, then N1

and N2 are polynomially isomorphic, and therefore A|N1 andA|N2 have isomorphic
polynomial clones. (This is sufficient to show that the structure of a trace algebra
A|N /α|N does not depend on the choice of N , but rather it is an invariant of A.)
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Reasoning for this Observation

Keep assumptions about A, and N1, N2. Choose (ai, bi) ∈ N2
i \ α.

(a2, b2) ∈ β = Cg({(a1, b1)} ∪ α).

Hence there is a Maltsev chain connecting a2 to b2 that consists of α-links and
links that are polynomial images (p(a1), p(b1)) of the pair (a1, b1). Each link
of the chain is a β-link, so the the chain lies entirely inside N2. Since the
chain connects a2, b2 ∈ N2 and (a2, b2) /∈ α, there must be a link that is not
an α-link, necessarily of the form (p(a1), p(b1)). Relabelling if necessary, we
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Type 1

In the Type 1 case, each trace algebra A|N /α|N is a G-set. We will be in this
case exactly when every polynomial of A|N is non-collapsing in at most one
variable. We will say nothing more about this case.

Example. Any nilpotent semigroup is ⟨α, β⟩-minimal of Type 1 for every
covering α ≺ β. It is conjectured (but open) that almost all finite semigroups
are nilpotent of nilpotence degree 3. The total number of semigroups of size n
grows very fast (OEIS A027851):

1, 1, 5, 24, 188, 1915, 28634, 1627672, 3684030417, 105978177936292, . . .

This provides many examples of ⟨α, β⟩-minimal algebras of Type 1.
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Type 2

In the Type 2 case, each trace algebra A|N /α|N is a vector space. There must
exist a polynomial p(x, y) of A that can be restricted to N (p(N, N) ⊆ N )
such that p(x, y) is noncollapsing in both variables. Choose a, b ∈ N such
that p(a, N2) ̸⊆ α and p(N2, b) ̸⊆ α. For any such choice, the polynomials
p(a, x) and p(x, b) must be permutations of A. Since polynomials preserve
congruences, p(a, x) and p(x, b) must permute the α-classes of A, must
permute the β-classes of A, hence must permute the traces of A. This is
enough to show that p(a, B) ⊆ B and p(B, b) ⊆ B. The same conclusion
holds if we replace a with any a′ ∈ B and b with any b′ ∈ B, since body twins
have the same character.

Condensing: If A is ⟨α, β⟩-minimal of Type 2, N is a trace of A, and p(x, y)
is any polynomial of A that can be restricted to N and which induces an
polynomial p(x, y)|N /α|N that is not essentially unary, then p(x, y) can even
be restricted to the body B of A (p(B, B) ⊆ B) and p(x, y) is a quasigroup
polynomial of A|B .
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Recall

We have argued before that the clone generated by a quasigroup operation p(x, y) on
a finite set A contains a Maltsev operation d(x, y, z) (d(y, x, x) = y = d(x, x, y)).
(See the slides on Pálfy’s Theorem or Lemma 4.6 of [HM].) From the previous slide,
we obtain that if A is ⟨α, β⟩-minimal of Type 2, then A has a ternary polynomial
d(x, y, z) that can be restricted to the body (d(B, B, B) ⊆ B), and which is Maltsev
on the body. Using iteration, you can produce a Maltsev operation with some extra
properties:

1 d(x, x, x) = x on A.

2 d(y, x, x) = y = d(x, x, y) if x ∈ B and y ∈ A.

3 For any a, b ∈ B, d(x, a, b), d(a, x, b), d(a, b, x) are polynomial permutations of
A.

See Lemma 4.20 of [HM]. A polynomial with these properties is called a
pseudo-Maltsev operation of A with respect to ⟨α, β⟩. For any such:

1 there do not exist b ∈ B, t ∈ T such that d(b, t, t) ≡β b or d(t, t, b) ≡β b.
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Examples

Example 1. Any finite p-group A is ⟨α, β⟩-minimal of Type 2 for any α ≺ β.
The tail is empty (A is “full-bodied”), and the operation d(x, y, z) = xy−1z
is a pseudo-Maltsev operation on A.

Example 2. Any finite semigroup A0 obtained from a finite p-group A by
adding a multiplicatively absorbing element 0 is ⟨α, β⟩-minimal of Type 2 for
any group congruences α ≺ β. The tail is {0}, and the operation
d(x, y, z) = xy−1z is a pseudo-Maltsev operation on A0. You can repeat this
construction to get a longer tail: (A0)0′

, T = {0, 0′}.

Example 3. Any finite R-module M over a local ring R is ⟨α, β⟩-minimal of
Type 2 for any α ≺ β. The tail is empty, and the operation
d(x, y, z) = x − y + z is a pseudo-Maltsev operation on M. You can add tails
to this type of example, too.
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Final comments

1 The results described provide good knowledge of A|B for Types 2, 3, 4,
and 5 when A is ⟨α, β⟩-minimal.

2 We do not have comparable information about A|B for Type 1. We are
restricted to working only with the G-set A|N /α|N when the Type is 1.

3 The most important facts not discussed about ⟨α, β⟩-minimal algebras
involve the commutator:

1 A|B/α|B = A|N /α|N is nonabelian/perfect/neutral when the type is 3, 4,
or 5.

2 A|B is nilpotent and A|N /α|N is abelian when the type is 2.
3 A|N /α|N is strongly abelian when the type is 1.
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