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Let A = A 4 be any finite algebra and let o« < 3 be any covering pair of
congruences. Let U be a a neighborhood of A that is minimal for |y # S|u.
Then |y < S|y on Ay, and Ay is (a|y, B|r)-minimal. Thus,

(o, B)-minimal algebras arise as the minimal localizations for congruence
separation.
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Assume A = A 4 has congruences o < (. Assume that A is («, 3)-minimal.
If some [3-class a/8 C A is not a full a-class, call N := a/f a trace. Call the
union B of all traces the body of A. Call the remainder A — B = T the tail
of A. For each trace N = a/[3, call the section A |y /aly the induced trace
algebra.

Theorem.
@ Trace algebras are simple, minimal algebras. (Classified!)
@ All trace algebras of A are polynomially isomorphic.
@ If A has more than one trace, then its type is 1 (G-set) or 2 (vector
space).
© Some detailed information can be lifted from trace algebras A|y/a|n
and refined to nontrivial information about A |y and A|p.
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Stage 1: The Twin Lemma

Definition. Let p(x, y) = py(z) be a polynomial of A andletp C A x Abea
binary relation on A.
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Definition. Let p(z, §) = py(z) be a polynomial of A andletp C A x Abea
binary relation on A. If a p b are p-related in each coordinate, then pz(z) and
p;(x) are called p-twin polynomials.
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Definition. Let p(z, §) = py(z) be a polynomial of A andletp C A x Abea
binary relation on A. If a p b are p-related in each coordinate, then pz(z) and

p;(x) are called p-twin polynomials.

Example.
If A is an R-module, then a polynomial p(x, i) has the form

p(z,y) =re+ 3 sy + a.
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Stage 1: The Twin Lemma

Definition. Let p(z, §) = py(z) be a polynomial of A andletp C A x Abea
binary relation on A. If a p b are p-related in each coordinate, then pz(z) and
p;(x) are called p-twin polynomials.

Example.

If A is an R-module, then a polynomial p(x, i) has the form

p(x,y) =rx+ Y s;y; + a. A pair (f, g) of polynomials will consist of
derived (A x A)-twins iff the pair has the form (rz + b, rx + c).
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Definition. Let p(z, §) = py(z) be a polynomial of A andletp C A x Abea
binary relation on A. If a p b are p-related in each coordinate, then pz(z) and
p;(x) are called p-twin polynomials.

Example.

If A is an R-module, then a polynomial p(x, i) has the form

p(x,y) =rx+ Y s;y; + a. A pair (f, g) of polynomials will consist of
derived (A x A)-twins iff the pair has the form (rz + b, rx + ¢). Le., if f and
g have the same “leading coefficient”
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Definition. Let p(z, §) = py(z) be a polynomial of A andletp C A x Abea
binary relation on A. If a p b are p-related in each coordinate, then pz(z) and
p;(x) are called p-twin polynomials.

Example.

If A is an R-module, then a polynomial p(x, i) has the form

p(x,y) =rx+ Y s;y; + a. A pair (f, g) of polynomials will consist of
derived (A x A)-twins iff the pair has the form (rz + b, rx + ¢). Le., if f and
g have the same “leading coefficient” or if f and ¢ “differ by a translation”.
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Definition. Let p(z, §) = py(z) be a polynomial of A andletp C A x Abea
binary relation on A. If a p b are p-related in each coordinate, then pz(z) and
p;(x) are called p-twin polynomials.

Example.

If A is an R-module, then a polynomial p(x, i) has the form

p(x,y) =rx+ Y s;y; + a. A pair (f, g) of polynomials will consist of
derived (A x A)-twins iff the pair has the form (rz + b, rx + ¢). Le., if f and
g have the same “leading coefficient” or if f and ¢ “differ by a translation”.

Twin Lemma.
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Definition. Let p(z, §) = py(z) be a polynomial of A andletp C A x Abea
binary relation on A. If a p b are p-related in each coordinate, then pz(z) and
p;(x) are called p-twin polynomials.

Example.

If A is an R-module, then a polynomial p(x, i) has the form

p(x,y) =rx+ Y s;y; + a. A pair (f, g) of polynomials will consist of
derived (A x A)-twins iff the pair has the form (rz + b, rx + ¢). Le., if f and
g have the same “leading coefficient” or if f and ¢ “differ by a translation”.

Twin Lemma. Assume that A is («, #)-minimal. Assume that pz(x) and
p;(x) are “body twins” of different “character”.

Talk #6: (¢, 3)-minimal algebras



Stage 1: The Twin Lemma

Definition. Let p(z, §) = py(z) be a polynomial of A andletp C A x Abea
binary relation on A. If a p b are p-related in each coordinate, then pz(z) and
p;(x) are called p-twin polynomials.

Example.

If A is an R-module, then a polynomial p(x, i) has the form

p(x,y) =rx+ Y s;y; + a. A pair (f, g) of polynomials will consist of
derived (A x A)-twins iff the pair has the form (rz + b, rx + ¢). Le., if f and
g have the same “leading coefficient” or if f and ¢ “differ by a translation”.

Twin Lemma. Assume that A is («, #)-minimal. Assume that pz(x) and
p;(x) are “body twins” of different “character”. (That is, they are p-twins for
p = B x B where one is a permutation and the other is not.)
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Definition. Let p(z, §) = py(z) be a polynomial of A andletp C A x Abea
binary relation on A. If a p b are p-related in each coordinate, then pz(z) and
p;(x) are called p-twin polynomials.

Example.

If A is an R-module, then a polynomial p(x, i) has the form

p(x,y) =rx+ Y s;y; + a. A pair (f, g) of polynomials will consist of
derived (A x A)-twins iff the pair has the form (rz + b, rx + ¢). Le., if f and
g have the same “leading coefficient” or if f and ¢ “differ by a translation”.

Twin Lemma. Assume that A is («, #)-minimal. Assume that pz(x) and
p;(x) are “body twins” of different “character”. (That is, they are p-twins for
p = B x B where one is a permutation and the other is not.) Then the body B
of A consists of a single trace /N := B that is a union of two a-classes, and A
has a binary polynomial m(x, y) that induces a semilattice operation on the
trace algebra A |y /a|n.
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p(x,y) =rx+ Y s;y; + a. A pair (f, g) of polynomials will consist of
derived (A x A)-twins iff the pair has the form (rz + b, rx + ¢). Le., if f and
g have the same “leading coefficient” or if f and ¢ “differ by a translation”.

Twin Lemma. Assume that A is («, #)-minimal. Assume that pz(x) and
p;(x) are “body twins” of different “character”. (That is, they are p-twins for
p = B x B where one is a permutation and the other is not.) Then the body B
of A consists of a single trace /N := B that is a union of two a-classes, and A
has a binary polynomial m(x, y) that induces a semilattice operation on the
trace algebra A |y /a|n.
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Proof of the Twin Lemma

It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p(z) are body twins of different character.
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Proof of the Twin Lemma

It suffice to prove the Twin Lemma in the case where oo = 0.
Assume that p(z) and p;(z) are body twins of different character. We may

assume that |a| = 1 = |b|.
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Proof of the Twin Lemma

It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may
assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a, b € B such that
P/ (x, a) is a permutation of A while p’(3,b) C a.
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Proof of the Twin Lemma

It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may
assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a,b € B such that

P/ (x, a) is a permutation of A while p’(3,b) C a.

Iterate p'(x, y) in its first variable to obtain

p(x,y) =p'(0'(--- (' (2,9),y) -+ ,y), y) satistying

p(p(z,y),y) = p(z,y) on A.
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Proof of the Twin Lemma

It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may
assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a, b € B such that
P/ (x, a) is a permutation of A while p’(3,b) C a.

Iterate p'(x, y) in its first variable to obtain

plz,y) =p' (@' (- (z,9),y) - ,y),y) satisfying

p(p(x,y),y) = p(x,y) on A. p(x,a) and p(x, b) are body twins where the
first is a permutation and the second is collapsing.
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It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may

assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a, b € B such that
P/ (x, a) is a permutation of A while p’(3,b) C a.

Iterate p'(x, y) in its first variable to obtain

plx,y) =p' (@' (- P (%,9),y) - ,y), y) satisfying

p(p(x,y),y) = p(x,y) on A. p(x,a) and p(x, b) are body twins where the
first is a permutation and the second is collapsing. Since p(z, a) is an
idempotent permutation of A we have p(z,a) = x on A.
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It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may

assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a, b € B such that
P/ (x, a) is a permutation of A while p’(3,b) C a.

Iterate p'(x, y) in its first variable to obtain

plx,y) =p' (@' (- P (%,9),y) - ,y), y) satisfying

p(p(x,y),y) = p(x,y) on A. p(x,a) and p(x, b) are body twins where the
first is a permutation and the second is collapsing. Since p(z, a) is an
idempotent permutation of A we have p(x,a) = x on A. Since p(z, b) is
collapsing on A,

Talk #6: (¢, 3)-minimal algebras



Proof of the Twin Lemma

It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may

assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a, b € B such that
P/ (x, a) is a permutation of A while p’(3,b) C a.

Iterate p'(x, y) in its first variable to obtain

plx,y) =p' (@' (- P (%,9),y) - ,y), y) satisfying

p(p(x,y),y) = p(x,y) on A. p(x,a) and p(x, b) are body twins where the
first is a permutation and the second is collapsing. Since p(z, a) is an
idempotent permutation of A we have p(x,a) = x on A. Since p(z, b) is
collapsing on A, p(z, b) is constant on /3-classes.
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Proof of the Twin Lemma

It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may

assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a, b € B such that
P/ (x, a) is a permutation of A while p’(3,b) C a.

Iterate p'(x, y) in its first variable to obtain

p(z,y) =p' (@' (P (z,y),y) -, y),y) satisfying

p(p(x,y),y) = p(x,y) on A. p(x,a) and p(x, b) are body twins where the
first is a permutation and the second is collapsing. Since p(z, a) is an
idempotent permutation of A we have p(x,a) = x on A. Since p(z, b) is
collapsing on A, p(z, b) is constant on S-classes. (p(/3,b) C 0.)
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Proof of the Twin Lemma

It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may

assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a, b € B such that
P/ (x, a) is a permutation of A while p’(3,b) C a.

Iterate p'(x, y) in its first variable to obtain

p(z,y) =p' (@' (P (z,y),y) -, y),y) satisfying

p(p(x,y),y) = p(x,y) on A. p(x,a) and p(x, b) are body twins where the
first is a permutation and the second is collapsing. Since p(z, a) is an
idempotent permutation of A we have p(x,a) = x on A. Since p(z, b) is
collapsing on A, p(z, b) is constant on S-classes. (p(/3,b) C 0.)

Claim 1.
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It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may

assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a, b € B such that
P/ (x, a) is a permutation of A while p’(3,b) C a.

Iterate p'(x, y) in its first variable to obtain

p(z,y) =p' (@' (P (z,y),y) -, y),y) satisfying

p(p(x,y),y) = p(x,y) on A. p(x,a) and p(x, b) are body twins where the
first is a permutation and the second is collapsing. Since p(z, a) is an
idempotent permutation of A we have p(x,a) = x on A. Since p(z, b) is
collapsing on A, p(z, b) is constant on S-classes. (p(/3,b) C 0.)

Claim 1. If c € A\ {a}, then p(z, ) is collapsing.

Talk #6: (¢, 3)-minimal algebras



Proof of the Twin Lemma

It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may

assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a, b € B such that
P/ (x, a) is a permutation of A while p’(3,b) C a.

Iterate p'(x, y) in its first variable to obtain

p(z,y) =p' (@' (P (z,y),y) -, y),y) satisfying

p(p(x,y),y) = p(x,y) on A. p(x,a) and p(x, b) are body twins where the
first is a permutation and the second is collapsing. Since p(z, a) is an
idempotent permutation of A we have p(x,a) = x on A. Since p(z, b) is
collapsing on A, p(z, b) is constant on S-classes. (p(/3,b) C 0.)

Claim 1. If c € A\ {a}, then p(z, ) is collapsing.
Assume not.
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It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may

assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a, b € B such that
P/ (x, a) is a permutation of A while p’(3,b) C a.

Iterate p'(x, y) in its first variable to obtain

p(z,y) =p' (@' (P (z,y),y) -, y),y) satisfying

p(p(x,y),y) = p(x,y) on A. p(x,a) and p(x, b) are body twins where the
first is a permutation and the second is collapsing. Since p(z, a) is an
idempotent permutation of A we have p(x,a) = x on A. Since p(z, b) is
collapsing on A, p(z, b) is constant on S-classes. (p(/3,b) C 0.)

Claim 1. If c € A\ {a}, then p(z, ) is collapsing.
Assume not. Choose elements a’ # a and b’ # b such that {a, a’} is contained
in a trace and {b, b’} is contained in a trace.
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Proof of the Twin Lemma

It suffice to prove the Twin Lemma in the case where oo = 0.

Assume that p(z) and p;(z) are body twins of different character. We may

assume that |a| = 1 = |b|. Thus, we have p/(z,y) and a, b € B such that
P/ (x, a) is a permutation of A while p’(3,b) C a.

Iterate p'(x, y) in its first variable to obtain

p(z,y) =p' (@' (P (z,y),y) -, y),y) satisfying

p(p(x,y),y) = p(x,y) on A. p(x,a) and p(x, b) are body twins where the
first is a permutation and the second is collapsing. Since p(z, a) is an
idempotent permutation of A we have p(x,a) = x on A. Since p(z, b) is
collapsing on A, p(z, b) is constant on S-classes. (p(/3,b) C 0.)

Claim 1. If c € A\ {a}, then p(z, ) is collapsing.
Assume not. Choose elements a’ # a and b’ # b such that {a, a’} is contained
in a trace and {b, b’} is contained in a trace. (Here, using that a,b € B)
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A fragment of the table for p(x, y).

lpflald - [b]V ] -Jec|-]
a a . a
a |l a | a a’
b blb u | u b
oY |y u | u v
cll el e c
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A fragment of the table for p(x, y).

lpflald - [b]V ] -Jec|-]
a a . a
a |l a | a a’
b blb u | u b
oY |y u | u v
cll el e c

@ - and c-columns are the identity.
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lpflald - [b]V ] -Jec|-]
a a . a
a |l a | a a’
b blb u | u b
oY |y u | u v
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@ - and c-columns are the identity.

© All rows are collapsing.
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A fragment of the table for p(x, y).

lpflald - [b]V ] -Jec|-]
a a . a
a |l a | a a’
b blb u | u b
oY |y u | u v
cll el e c

@ - and c-columns are the identity.
© All rows are collapsing.

@ ¢(x) = p(x, x) is neither permutational nor collapsing.
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@ - and c-columns are the identity.
© All rows are collapsing.

@ ¢(x) = p(x, x) is neither permutational nor collapsing.
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A fragment of the table for p(x, y).

lpflald - [b]V ] -Jec|-]
a a . a
a |l a | a a’
b blb u | u b
oY |y u | u v
cll el e c

@ - and c-columns are the identity.
© All rows are collapsing.

@ ¢(x) = p(x, x) is neither permutational nor collapsing. (¢(z) = z on a//3 and g
is constant on b/3)
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A fragment of the table for p(x, y).

lpflald - [b]V ] -Jec|-]
a a . a
a |l a | a a’
b blb u | u b
oY |y u | u v
cll el e c

@ - and c-columns are the identity.
© All rows are collapsing.

@ ¢(x) = p(x, x) is neither permutational nor collapsing. (¢(z) = z on a//3 and g
is constanton b/B) =<«

Talk #6: (v, 3)-minimal algebras



A fragment of the table for p(x, y).

lpflald - [b]V ] -Jec|-]
a a . a
a |l a | a a’
b blb u | u b
oY |y u | u v
cll el e c

@ - and c-columns are the identity.
© All rows are collapsing.

@ ¢(x) = p(x, x) is neither permutational nor collapsing. (¢(z) = z on a//3 and g
is constanton b/B) =<«

O (Claim 1)
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Claim 2.
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Claim 2. |B| = 2.

Talk #6: (v, 3)-minimal algebras



Proof of the Twin Lemma

Claim 2. |B| = 2.
Assume not.
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Proof of the Twin Lemma

Claim 2. |B| = 2.
Assume not. If | B| > 2, then B contains more than one trace or B contains

one trace with more than 2-elements.
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Proof of the Twin Lemma

Claim 2. |B| = 2.

Assume not. If | B| > 2, then B contains more than one trace or B contains
one trace with more than 2-elements. Therefore, we may assume that there
exist distinct a, b, ¢ € B such that (b, ¢) € 3, p(z,a) = z, and such that
p(z,b) and p(z, ¢) are collapsing.
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Proof of the Twin Lemma

Claim 2. |B| = 2.

Assume not. If | B| > 2, then B contains more than one trace or B contains
one trace with more than 2-elements. Therefore, we may assume that there
exist distinct a, b, ¢ € B such that (b, ¢) € 3, p(z,a) = z, and such that
p(z,b) and p(z, ¢) are collapsing.

Subclaim.
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Claim 2. |B| = 2.

Assume not. If | B| > 2, then B contains more than one trace or B contains
one trace with more than 2-elements. Therefore, we may assume that there
exist distinct a, b, ¢ € B such that (b, ¢) € 3, p(z,a) = z, and such that
p(z,b) and p(z, ¢) are collapsing.

Subclaim. If (u,v) € §|p, then p(u,y) and p(v, y) have the same character.
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Claim 2. |B| = 2.

Assume not. If | B| > 2, then B contains more than one trace or B contains
one trace with more than 2-elements. Therefore, we may assume that there
exist distinct a, b, ¢ € B such that (b, ¢) € 3, p(z,a) = z, and such that
p(z,b) and p(z, ¢) are collapsing.

Subclaim. If (u,v) € §|p, then p(u,y) and p(v, y) have the same character.

Proof of Subclaim.
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To finish Claim 2, notice that since p(z,a) = x we have p(a,a) = a. If N := a/f
and a’,a” € N, thenp(a’,a”) = p(a,a) =a € a/f = N. Thatis, p(N,N) C N.
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© Atmost 1 row can be a permutation.
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© By the Subclaim, all rows have the same character.
© At least one column is constant, so p|y is constant.

@ Butitis not. O (Claim 2)
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It remains to show that A|p has a semilattice polynomial.

Necessarily B = {a,b} = a/3 = N. We know that p(z,a) = x and that
p(z,b) is collapsing. We also know that p(N, N) C N. The only possibilities
for p|p are
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b ||bl|b b ||b]a

In the first case, p(x, y) is a semilattice operation on B with absorbing
element b. In the second case, p(x, p(b, y)) is a semilattice operation on B
with absorbing element a.
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It remains to show that A|p has a semilattice polynomial.

Necessarily B = {a,b} = a/3 = N. We know that p(z,a) = x and that
p(z,b) is collapsing. We also know that p(N, N) C N. The only possibilities
for p|p are

plsflafb]  [pls]a]b]

a |la|b| or | a |la]|a
b ||bl|b b ||b]a

In the first case, p(x, y) is a semilattice operation on B with absorbing
element b. In the second case, p(x, p(b, y)) is a semilattice operation on B
with absorbing element a. O (Twin Lemma)
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