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Recall

A nontrivial finite algebra A = AA is minimal if it is ⟨0, 1⟩-minimal. This
means that every unary polynomial p(x) is a permutation of A or satisfies
p(1) ⊆ 0. (The condition p(1) ⊆ 0 means p is constant.) Minimal algebras
are classified by Pálfy’s Theorem. They are:

1 G-sets.
2 Vector spaces.
3 2-element algebras.

After examining the 2-element algebras, we can reorganize the cases as

1 (Type 1) G-sets.
2 (Type 2) Vector spaces.
3 (Type 3) 2-element Boolean algebras.
4 (Type 4) 2-element lattices.
5 (Type 5) 2-element semilattices.
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⟨α, β⟩-minimal algebras

My goal today is to expose some of the structure of ⟨α, β⟩-minimal algebras
when A = AA and α ≺ β are congruences of A. Here, a nontrivial finite
algebra A = AA is ⟨α, β⟩-minimal if every unary polynomial p(x) is a
permutation of A or satisfies p(β) ⊆ α. Note that, since 0 ≤ α ≺ β ≤ 1,
⟨α, β⟩-minimality is weaker than ⟨0, 1⟩-minimality, so ⟨α, β⟩-minimal
algebras are more general than ⟨0, 1⟩-minimal algebras.

Example.

1 A finite group is ⟨α, β⟩-minimal for some α ≺ β iff it is ⟨α, β⟩-minimal
for all α ≺ β iff it is a p-group.

2 Only elementary abelian p-groups are ⟨0, 1⟩-minimal.

Significance of ⟨α, β⟩-minimal algebras.
Let A = AA be any finite algebra and let α ≺ β be any covering pair of
congruences. Let U be a a neighborhood of A that is minimal for α|U ̸= β|U .
Then α|U ≺ β|U on A|U , and A|U is ⟨α|U , β|U ⟩-minimal. Thus,
⟨α, β⟩-minimal algebras arise as the minimal localizations for congruence
separation.
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The Target Theorem

Assume A = AA has congruences α ≺ β. Assume that A is ⟨α, β⟩-minimal.
If some β-class a/β ⊆ A is not a full α-class, call N := a/β a trace. Call the
union B of all traces the body of A. Call the remainder A − B = T the tail
of A. For each trace N = a/β, call the section A|N /α|N the induced trace
algebra.

Theorem.

1 Trace algebras are simple, minimal algebras. (Classified!)
2 All trace algebras of A are polynomially isomorphic.
3 If A has more than one trace, then its type is 1 (G-set) or 2 (vector

space).
4 Some detailed information can be lifted from trace algebras A|N /α|N

and refined to nontrivial information about A|N and A|B .
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Stage 1: The Twin Lemma

Definition. Let p(x, ȳ) = pȳ(x) be a polynomial of A and let ρ ⊆ A × A be a
binary relation on A. If ā ρ b̄ are ρ-related in each coordinate, then pā(x) and
pb̄(x) are called ρ-twin polynomials.

Example.
If A is an R-module, then a polynomial p(x, ȳ) has the form
p(x, ȳ) = rx +

∑
siyi + a. A pair (f, g) of polynomials will consist of

derived (A × A)-twins iff the pair has the form (rx + b, rx + c). I.e., if f and
g have the same “leading coefficient” or if f and g “differ by a translation”.

Twin Lemma. Assume that A is ⟨α, β⟩-minimal. Assume that pā(x) and
pb̄(x) are “body twins” of different “character”. (That is, they are ρ-twins for
ρ = B × B where one is a permutation and the other is not.) Then the body B
of A consists of a single trace N := B that is a union of two α-classes, and A
has a binary polynomial m(x, y) that induces a semilattice operation on the
trace algebra A|N /α|N .
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p(x, ȳ) = rx +

∑
siyi + a. A pair (f, g) of polynomials will consist of

derived (A × A)-twins iff the pair has the form (rx + b, rx + c). I.e., if f and
g have the same “leading coefficient” or if f and g “differ by a translation”.

Twin Lemma. Assume that A is ⟨α, β⟩-minimal. Assume that pā(x) and
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binary relation on A. If ā ρ b̄ are ρ-related in each coordinate, then pā(x) and
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Definition. Let p(x, ȳ) = pȳ(x) be a polynomial of A and let ρ ⊆ A × A be a
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Proof of the Twin Lemma

It suffice to prove the Twin Lemma in the case where α = 0.

Assume that p′
ā(x) and p′

b̄
(x) are body twins of different character. We may

assume that |ā| = 1 = |b̄|. Thus, we have p′(x, y) and a, b ∈ B such that
p′(x, a) is a permutation of A while p′(β, b) ⊆ α.

Iterate p′(x, y) in its first variable to obtain
p(x, y) = p′(p′(· · · p′(p′(x, y), y) · · · , y), y) satisfying
p(p(x, y), y) = p(x, y) on A. p(x, a) and p(x, b) are body twins where the
first is a permutation and the second is collapsing. Since p(x, a) is an
idempotent permutation of A we have p(x, a) = x on A. Since p(x, b) is
collapsing on A, p(x, b) is constant on β-classes. (p(β, b) ⊆ 0.)

Claim 1. If c ∈ A \ {a}, then p(x, c) is collapsing.
Assume not. Choose elements a′ ̸= a and b′ ̸= b such that {a, a′} is contained
in a trace and {b, b′} is contained in a trace. (Here, using that a, b ∈ B)
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A fragment of the table for p(x, y).

p a a′ · · · b b′ · · · c · · ·
a a a · · · · · · a · · ·
a′ a′ a′ · · · · · · a′ · · ·
... · · · · · · · · ·
b b b · · · u u · · · b · · ·
b′ b′ b′ · · · u u · · · b′ · · ·
... · · · · · · · · ·
c c c · · · · · · c · · ·
... · · · · · · · · ·

1 a- and c-columns are the identity.
2 All rows are collapsing.
3 q(x) = p(x, x) is neither permutational nor collapsing. (q(x) = x on a/β and q

is constant on b/β) ⇒⇐
2 (Claim 1)
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Proof of the Twin Lemma

Claim 2. |B| = 2.
Assume not. If |B| > 2, then B contains more than one trace or B contains
one trace with more than 2-elements. Therefore, we may assume that there
exist distinct a, b, c ∈ B such that (b, c) ∈ β, p(x, a) = x, and such that
p(x, b) and p(x, c) are collapsing.

Subclaim. If (u, v) ∈ β|B , then p(u, y) and p(v, y) have the same character.

Proof of Subclaim. Assume that p(u, y) is collapsing. Then
p(v, b) = p(u, b) = p(u, c) = p(v, c), so p(v, y) is collapsing. 2 (Subclaim)
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Proof of the Twin Lemma

To finish Claim 2, notice that since p(x, a) = x we have p(a, a) = a. If N := a/β
and a′, a′′ ∈ N , then p(a′, a′′) ≡β p(a, a) = a ∈ a/β = N . That is, p(N, N) ⊆ N .
Thus, p|N (x, y) is a binary operation on N .

p|N a a′ a′′ · · ·
a a r s · · ·
a′ a′ r s
a′′ a′′ r s
...

. . .

1 All columns are constant except the a-column.

2 At most 1 row can be a permutation.
3 At least 1 row is collapsing.

4 By the Subclaim, all rows have the same character.
5 At least one column is constant, so p|N is constant.
6 But it is not. 2 (Claim 2)
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Proof of the Twin Lemma

It remains to show that A|B has a semilattice polynomial.

Necessarily B = {a, b} = a/β = N . We know that p(x, a) = x and that
p(x, b) is collapsing. We also know that p(N, N) ⊆ N . The only possibilities
for p|B are

p|B a b

a a b

b b b

or
p|B a b

a a a

b b a

In the first case, p(x, y) is a semilattice operation on B with absorbing
element b. In the second case, p(x, p(b, y)) is a semilattice operation on B
with absorbing element a. 2 (Twin Lemma)
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Necessarily B = {a, b} = a/β = N . We know that p(x, a) = x and that
p(x, b) is collapsing. We also know that p(N, N) ⊆ N . The only possibilities
for p|B are

p|B a b

a a b

b b b

or
p|B a b

a a a

b b a

In the first case, p(x, y) is a semilattice operation on B with absorbing
element b. In the second case, p(x, p(b, y)) is a semilattice operation on B
with absorbing element a.

2 (Twin Lemma)
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