

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is (0, 1)-minimal.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is (0, 1)-minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is (0, 1)-minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.)

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

G-sets.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

G-sets.

- G-sets.
- Vector spaces.

- G-sets.
- Vector spaces.

- G-sets.
- Vector spaces.
- 3 2-element algebras.

- G-sets.
- Vector spaces.
- 3 2-element algebras.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

After examining the 2-element algebras, we can reorganize the cases as

• (Type 1) *G*-sets.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

After examining the 2-element algebras, we can reorganize the cases as

• (Type 1) *G*-sets.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

- (Type 1) *G*-sets.
- (Type 2) Vector spaces.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

- (Type 1) *G*-sets.
- (Type 2) Vector spaces.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

- (Type 1) *G*-sets.
- (Type 2) Vector spaces.
- (Type 3) 2-element Boolean algebras.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

- (Type 1) *G*-sets.
- (Type 2) Vector spaces.
- (Type 3) 2-element Boolean algebras.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

- (Type 1) *G*-sets.
- (Type 2) Vector spaces.
- (Type 3) 2-element Boolean algebras.
- (Type 4) 2-element lattices.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

- (Type 1) *G*-sets.
- (Type 2) Vector spaces.
- (Type 3) 2-element Boolean algebras.
- (Type 4) 2-element lattices.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

- (Type 1) *G*-sets.
- (Type 2) Vector spaces.
- (Type 3) 2-element Boolean algebras.
- (Type 4) 2-element lattices.
- (Type 5) 2-element semilattices.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

- (Type 1) *G*-sets.
- (Type 2) Vector spaces.
- (Type 3) 2-element Boolean algebras.
- (Type 4) 2-element lattices.
- (Type 5) 2-element semilattices.

A nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is **minimal** if it is $\langle 0, 1 \rangle$ -minimal. This means that every unary polynomial p(x) is a permutation of A or satisfies $p(1) \subseteq 0$. (The condition $p(1) \subseteq 0$ means p is constant.) Minimal algebras are classified by Pálfy's Theorem. They are:

- G-sets.
- Vector spaces.
- 3 2-element algebras.

- (Type 1) *G*-sets.
- (Type 2) Vector spaces.
- (Type 3) 2-element Boolean algebras.
- (Type 4) 2-element lattices.
- (Type 5) 2-element semilattices.

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} .

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$.

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality,

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

• A finite group is $\langle \alpha, \beta \rangle$ -minimal for some $\alpha \prec \beta$

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

• A finite group is $\langle \alpha, \beta \rangle$ -minimal for some $\alpha \prec \beta$

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

A finite group is ⟨α, β⟩-minimal for some α ≺ β iff it is ⟨α, β⟩-minimal for all α ≺ β

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

A finite group is ⟨α, β⟩-minimal for some α ≺ β iff it is ⟨α, β⟩-minimal for all α ≺ β iff it is a p-group.

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

- A finite group is ⟨α, β⟩-minimal for some α ≺ β iff it is ⟨α, β⟩-minimal for all α ≺ β iff it is a p-group.
- ② Only elementary abelian *p*-groups are (0, 1)-minimal.
My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

- A finite group is ⟨α, β⟩-minimal for some α ≺ β iff it is ⟨α, β⟩-minimal for all α ≺ β iff it is a p-group.
- ② Only elementary abelian *p*-groups are (0, 1)-minimal.

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

- A finite group is ⟨α, β⟩-minimal for some α ≺ β iff it is ⟨α, β⟩-minimal for all α ≺ β iff it is a p-group.
- ② Only elementary abelian *p*-groups are (0, 1)-minimal.

Significance of $\langle \alpha, \beta \rangle$ -minimal algebras.

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

- A finite group is ⟨α, β⟩-minimal for some α ≺ β iff it is ⟨α, β⟩-minimal for all α ≺ β iff it is a p-group.
- ② Only elementary abelian *p*-groups are (0, 1)-minimal.

Significance of $\langle \alpha, \beta \rangle$ -minimal algebras.

Let $\mathbf{A} = \mathbf{A}_A$ be any finite algebra and let $\alpha \prec \beta$ be any covering pair of congruences.

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

- A finite group is ⟨α, β⟩-minimal for some α ≺ β iff it is ⟨α, β⟩-minimal for all α ≺ β iff it is a p-group.
- ② Only elementary abelian *p*-groups are (0, 1)-minimal.

Significance of $\langle \alpha, \beta \rangle$ -minimal algebras.

Let $\mathbf{A} = \mathbf{A}_A$ be any finite algebra and let $\alpha \prec \beta$ be any covering pair of congruences. Let U be a neighborhood of \mathbf{A} that is minimal for $\alpha|_U \neq \beta|_U$.

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

- A finite group is ⟨α, β⟩-minimal for some α ≺ β iff it is ⟨α, β⟩-minimal for all α ≺ β iff it is a p-group.
- ② Only elementary abelian *p*-groups are (0, 1)-minimal.

Significance of $\langle \alpha, \beta \rangle$ -minimal algebras.

Let $\mathbf{A} = \mathbf{A}_A$ be any finite algebra and let $\alpha \prec \beta$ be any covering pair of congruences. Let U be a neighborhood of \mathbf{A} that is minimal for $\alpha|_U \neq \beta|_U$. Then $\alpha|_U \prec \beta|_U$ on $\mathbf{A}|_U$,

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

- A finite group is ⟨α, β⟩-minimal for some α ≺ β iff it is ⟨α, β⟩-minimal for all α ≺ β iff it is a p-group.
- ② Only elementary abelian *p*-groups are (0, 1)-minimal.

Significance of $\langle \alpha, \beta \rangle$ -minimal algebras.

Let $\mathbf{A} = \mathbf{A}_A$ be any finite algebra and let $\alpha \prec \beta$ be any covering pair of congruences. Let U be a neighborhood of \mathbf{A} that is minimal for $\alpha|_U \neq \beta|_U$. Then $\alpha|_U \prec \beta|_U$ on $\mathbf{A}|_U$, and $\mathbf{A}|_U$ is $\langle \alpha|_U, \beta|_U \rangle$ -minimal.

My goal today is to expose some of the structure of $\langle \alpha, \beta \rangle$ -minimal algebras when $\mathbf{A} = \mathbf{A}_A$ and $\alpha \prec \beta$ are congruences of \mathbf{A} . Here, a nontrivial finite algebra $\mathbf{A} = \mathbf{A}_A$ is $\langle \alpha, \beta \rangle$ -minimal if every unary polynomial p(x) is a permutation of A or satisfies $p(\beta) \subseteq \alpha$. Note that, since $0 \le \alpha \prec \beta \le 1$, $\langle \alpha, \beta \rangle$ -minimality is weaker than $\langle 0, 1 \rangle$ -minimality, so $\langle \alpha, \beta \rangle$ -minimal algebras are more general than $\langle 0, 1 \rangle$ -minimal algebras.

Example.

- A finite group is ⟨α, β⟩-minimal for some α ≺ β iff it is ⟨α, β⟩-minimal for all α ≺ β iff it is a p-group.
- ② Only elementary abelian *p*-groups are (0, 1)-minimal.

Significance of $\langle \alpha, \beta \rangle$ -minimal algebras.

Let $\mathbf{A} = \mathbf{A}_A$ be any finite algebra and let $\alpha \prec \beta$ be any covering pair of congruences. Let U be a neighborhood of \mathbf{A} that is minimal for $\alpha|_U \neq \beta|_U$. Then $\alpha|_U \prec \beta|_U$ on $\mathbf{A}|_U$, and $\mathbf{A}|_U$ is $\langle \alpha|_U, \beta|_U \rangle$ -minimal. Thus, $\langle \alpha, \beta \rangle$ -minimal algebras arise as the minimal localizations for congruence separation.

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$.

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal.

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**.

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union *B* of all traces the **body** of \mathbf{A} .

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} .

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

Theorem.

• Trace algebras are simple, minimal algebras.

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

Theorem.

• Trace algebras are simple, minimal algebras.

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

Theorem.

• Trace algebras are simple, minimal algebras. (Classified!)

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

- Trace algebras are simple, minimal algebras. (Classified!)
- All trace algebras of A are polynomially isomorphic.

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

- Trace algebras are simple, minimal algebras. (Classified!)
- All trace algebras of A are polynomially isomorphic.

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

- Trace algebras are simple, minimal algebras. (Classified!)
- All trace algebras of A are polynomially isomorphic.
- If A has more than one trace, then its type is 1 (G-set) or 2 (vector space).

Assume $\mathbf{A} = \mathbf{A}_A$ has congruences $\alpha \prec \beta$. Assume that \mathbf{A} is $\langle \alpha, \beta \rangle$ -minimal. If some β -class $a/\beta \subseteq A$ is not a full α -class, call $N := a/\beta$ a **trace**. Call the union B of all traces the **body** of \mathbf{A} . Call the remainder A - B = T the **tail** of \mathbf{A} . For each trace $N = a/\beta$, call the section $\mathbf{A}|_N/\alpha|_N$ the induced **trace algebra**.

- Trace algebras are simple, minimal algebras. (Classified!)
- All trace algebras of A are polynomially isomorphic.
- If A has more than one trace, then its type is 1 (G-set) or 2 (vector space).
- Some detailed information can be lifted from trace algebras $\mathbf{A}|_N/\alpha|_N$ and refined to nontrivial information about $\mathbf{A}|_N$ and $\mathbf{A}|_B$.

Visual Target

Visual Target

Definition.

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**.

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate,

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Example.

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Example.

If \mathbf{A} is an R-module,

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Example.

If **A** is an *R*-module, then a polynomial $p(x, \bar{y})$ has the form $p(x, \bar{y}) = rx + \sum s_i y_i + a$.

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Example.

If **A** is an *R*-module, then a polynomial $p(x, \bar{y})$ has the form $p(x, \bar{y}) = rx + \sum s_i y_i + a$. A pair (f, g) of polynomials will consist of derived $(A \times A)$ -twins iff the pair has the form (rx + b, rx + c).

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Example.

If **A** is an *R*-module, then a polynomial $p(x, \bar{y})$ has the form $p(x, \bar{y}) = rx + \sum s_i y_i + a$. A pair (f, g) of polynomials will consist of derived $(A \times A)$ -twins iff the pair has the form (rx + b, rx + c). I.e., if *f* and *g* have the same "leading coefficient"

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Example.

If **A** is an *R*-module, then a polynomial $p(x, \bar{y})$ has the form $p(x, \bar{y}) = rx + \sum s_i y_i + a$. A pair (f, g) of polynomials will consist of derived $(A \times A)$ -twins iff the pair has the form (rx + b, rx + c). I.e., if *f* and *g* have the same "leading coefficient" or if *f* and *g* "differ by a translation".

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Example.

If **A** is an *R*-module, then a polynomial $p(x, \bar{y})$ has the form $p(x, \bar{y}) = rx + \sum s_i y_i + a$. A pair (f, g) of polynomials will consist of derived $(A \times A)$ -twins iff the pair has the form (rx + b, rx + c). I.e., if *f* and *g* have the same "leading coefficient" or if *f* and *g* "differ by a translation".

Twin Lemma.
Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Example.

If **A** is an *R*-module, then a polynomial $p(x, \bar{y})$ has the form $p(x, \bar{y}) = rx + \sum s_i y_i + a$. A pair (f, g) of polynomials will consist of derived $(A \times A)$ -twins iff the pair has the form (rx + b, rx + c). I.e., if *f* and *g* have the same "leading coefficient" or if *f* and *g* "differ by a translation".

Twin Lemma. Assume that A is $\langle \alpha, \beta \rangle$ -minimal. Assume that $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are "body twins" of different "character".

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Example.

If **A** is an *R*-module, then a polynomial $p(x, \bar{y})$ has the form $p(x, \bar{y}) = rx + \sum s_i y_i + a$. A pair (f, g) of polynomials will consist of derived $(A \times A)$ -twins iff the pair has the form (rx + b, rx + c). I.e., if *f* and *g* have the same "leading coefficient" or if *f* and *g* "differ by a translation".

Twin Lemma. Assume that **A** is $\langle \alpha, \beta \rangle$ -minimal. Assume that $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are "body twins" of different "character". (That is, they are ρ -twins for $\rho = B \times B$ where one is a permutation and the other is not.)

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Example.

If **A** is an *R*-module, then a polynomial $p(x, \bar{y})$ has the form $p(x, \bar{y}) = rx + \sum s_i y_i + a$. A pair (f, g) of polynomials will consist of derived $(A \times A)$ -twins iff the pair has the form (rx + b, rx + c). I.e., if *f* and *g* have the same "leading coefficient" or if *f* and *g* "differ by a translation".

Twin Lemma. Assume that **A** is $\langle \alpha, \beta \rangle$ -minimal. Assume that $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are "body twins" of different "character". (That is, they are ρ -twins for $\rho = B \times B$ where one is a permutation and the other is not.) Then the body B of **A** consists of a single trace N := B that is a union of two α -classes, and **A** has a binary polynomial m(x, y) that induces a semilattice operation on the trace algebra $\mathbf{A}|_N/\alpha|_N$.

Definition. Let $p(x, \bar{y}) = p_{\bar{y}}(x)$ be a polynomial of **A** and let $\rho \subseteq A \times A$ be a binary relation on **A**. If $\bar{a} \rho \bar{b}$ are ρ -related in each coordinate, then $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are called ρ -twin polynomials.

Example.

If **A** is an *R*-module, then a polynomial $p(x, \bar{y})$ has the form $p(x, \bar{y}) = rx + \sum s_i y_i + a$. A pair (f, g) of polynomials will consist of derived $(A \times A)$ -twins iff the pair has the form (rx + b, rx + c). I.e., if *f* and *g* have the same "leading coefficient" or if *f* and *g* "differ by a translation".

Twin Lemma. Assume that **A** is $\langle \alpha, \beta \rangle$ -minimal. Assume that $p_{\bar{a}}(x)$ and $p_{\bar{b}}(x)$ are "body twins" of different "character". (That is, they are ρ -twins for $\rho = B \times B$ where one is a permutation and the other is not.) Then the body B of **A** consists of a single trace N := B that is a union of two α -classes, and **A** has a binary polynomial m(x, y) that induces a semilattice operation on the trace algebra $\mathbf{A}|_N/\alpha|_N$.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

Iterate p'(x, y) in its first variable to obtain $p(x, y) = p'(p'(\dots p'(p'(x, y), y) \dots , y), y)$ satisfying p(p(x, y), y) = p(x, y) on **A**.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

Iterate p'(x, y) in its first variable to obtain $p(x, y) = p'(p'(\cdots p'(p'(x, y), y) \cdots, y), y)$ satisfying p(p(x, y), y) = p(x, y) on **A**. p(x, a) and p(x, b) are body twins where the first is a permutation and the second is collapsing.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

Iterate p'(x, y) in its first variable to obtain $p(x, y) = p'(p'(\cdots p'(p'(x, y), y) \cdots , y), y)$ satisfying p(p(x, y), y) = p(x, y) on **A**. p(x, a) and p(x, b) are body twins where the first is a permutation and the second is collapsing. Since p(x, a) is an idempotent permutation of **A** we have p(x, a) = x on **A**.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

Iterate p'(x, y) in its first variable to obtain $p(x, y) = p'(p'(\cdots p'(p'(x, y), y) \cdots, y), y)$ satisfying p(p(x, y), y) = p(x, y) on **A**. p(x, a) and p(x, b) are body twins where the first is a permutation and the second is collapsing. Since p(x, a) is an idempotent permutation of **A** we have p(x, a) = x on **A**. Since p(x, b) is collapsing on **A**,

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

Iterate p'(x, y) in its first variable to obtain $p(x, y) = p'(p'(\cdots p'(p'(x, y), y) \cdots , y), y)$ satisfying p(p(x, y), y) = p(x, y) on **A**. p(x, a) and p(x, b) are body twins where the first is a permutation and the second is collapsing. Since p(x, a) is an idempotent permutation of **A** we have p(x, a) = x on **A**. Since p(x, b) is collapsing on **A**, p(x, b) is constant on β -classes.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

Iterate p'(x, y) in its first variable to obtain $p(x, y) = p'(p'(\cdots p'(p'(x, y), y) \cdots , y), y)$ satisfying p(p(x, y), y) = p(x, y) on **A**. p(x, a) and p(x, b) are body twins where the first is a permutation and the second is collapsing. Since p(x, a) is an idempotent permutation of **A** we have p(x, a) = x on **A**. Since p(x, b) is collapsing on **A**, p(x, b) is constant on β -classes. $(p(\beta, b) \subseteq 0.)$

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

Iterate p'(x, y) in its first variable to obtain $p(x, y) = p'(p'(\cdots p'(p'(x, y), y) \cdots, y), y)$ satisfying p(p(x, y), y) = p(x, y) on **A**. p(x, a) and p(x, b) are body twins where the first is a permutation and the second is collapsing. Since p(x, a) is an idempotent permutation of **A** we have p(x, a) = x on **A**. Since p(x, b) is collapsing on **A**, p(x, b) is constant on β -classes. $(p(\beta, b) \subseteq 0.)$

Claim 1.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

Iterate p'(x, y) in its first variable to obtain $p(x, y) = p'(p'(\cdots p'(p'(x, y), y) \cdots, y), y)$ satisfying p(p(x, y), y) = p(x, y) on **A**. p(x, a) and p(x, b) are body twins where the first is a permutation and the second is collapsing. Since p(x, a) is an idempotent permutation of **A** we have p(x, a) = x on **A**. Since p(x, b) is collapsing on **A**, p(x, b) is constant on β -classes. $(p(\beta, b) \subseteq 0.)$

Claim 1. If $c \in A \setminus \{a\}$, then p(x, c) is collapsing.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

Iterate p'(x, y) in its first variable to obtain $p(x, y) = p'(p'(\cdots p'(p'(x, y), y) \cdots , y), y)$ satisfying p(p(x, y), y) = p(x, y) on **A**. p(x, a) and p(x, b) are body twins where the first is a permutation and the second is collapsing. Since p(x, a) is an idempotent permutation of **A** we have p(x, a) = x on **A**. Since p(x, b) is collapsing on **A**, p(x, b) is constant on β -classes. $(p(\beta, b) \subseteq 0.)$

Claim 1. If $c \in A \setminus \{a\}$, then p(x, c) is collapsing. Assume not.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

Iterate p'(x, y) in its first variable to obtain $p(x, y) = p'(p'(\cdots p'(p'(x, y), y) \cdots, y), y)$ satisfying p(p(x, y), y) = p(x, y) on **A**. p(x, a) and p(x, b) are body twins where the first is a permutation and the second is collapsing. Since p(x, a) is an idempotent permutation of **A** we have p(x, a) = x on **A**. Since p(x, b) is collapsing on **A**, p(x, b) is constant on β -classes. $(p(\beta, b) \subseteq 0.)$

Claim 1. If $c \in A \setminus \{a\}$, then p(x, c) is collapsing. Assume not. Choose elements $a' \neq a$ and $b' \neq b$ such that $\{a, a'\}$ is contained in a trace and $\{b, b'\}$ is contained in a trace.

It suffice to prove the Twin Lemma in the case where $\alpha = 0$.

Assume that $p'_{\bar{a}}(x)$ and $p'_{\bar{b}}(x)$ are body twins of different character. We may assume that $|\bar{a}| = 1 = |\bar{b}|$. Thus, we have p'(x, y) and $a, b \in B$ such that p'(x, a) is a permutation of A while $p'(\beta, b) \subseteq \alpha$.

Iterate p'(x, y) in its first variable to obtain $p(x, y) = p'(p'(\cdots p'(p'(x, y), y) \cdots, y), y)$ satisfying p(p(x, y), y) = p(x, y) on **A**. p(x, a) and p(x, b) are body twins where the first is a permutation and the second is collapsing. Since p(x, a) is an idempotent permutation of **A** we have p(x, a) = x on **A**. Since p(x, b) is collapsing on **A**, p(x, b) is constant on β -classes. $(p(\beta, b) \subseteq 0.)$

Claim 1. If $c \in A \setminus \{a\}$, then p(x, c) is collapsing. Assume not. Choose elements $a' \neq a$ and $b' \neq b$ such that $\{a, a'\}$ is contained in a trace and $\{b, b'\}$ is contained in a trace. (Here, using that $a, b \in B$)

p	a	a'	•••	b	b'	•••	c	•••
a	a	a					a	• • • •
a'	a'	a'	•••				a'	• • •
:								
b	b	b		u	u		b	• • •
b'	b'	b'		u	u		b'	• • •
:								
c	c	c					c	• • • •
÷								

p	a	a'	 b	b'	•••	С	• • •
a	a	a				a	• • •
a'	a'	a'				a'	• • •
÷							
b	b	b	 u	u		b	• • •
b'	b'	b'	 u	u		b'	• • •
÷							
c	c	c				c	• • •
÷							

• *a*- and *c*-columns are the identity.

p	a	a'	 b	b'	•••	С	• • •
a	a	a				a	• • •
a'	a'	a'				a'	• • •
÷							
b	b	b	 u	u		b	• • •
b'	b'	b'	 u	u		b'	• • •
÷							
c	c	c				c	• • •
÷							

• *a*- and *c*-columns are the identity.

p	a	a'	•••	b	b'	•••	c	•••
a	a	a					a	
a'	a'	a'	•••				a'	• • •
:								
b	b	b		u	u		b	
b'	b'	b'		u	u		b'	
:								
c	c	c					c	• • •
÷								

• *a*- and *c*-columns are the identity.

All rows are collapsing.

p	a	a'	•••	b	b'	•••	c	•••
a	a	a					a	
a'	a'	a'	•••				a'	• • •
:								
b	b	b		u	u		b	
b'	b'	b'		u	u		b'	
:								
c	c	c					c	• • •
÷								

• *a*- and *c*-columns are the identity.

All rows are collapsing.

p	a	a'	•••	b	b'	•••	c	•••
a	a	a					a	
a'	a'	a'	•••				a'	• • •
:								
b	b	b		u	u		b	
b'	b'	b'		u	u		b'	
÷								
c	c	c					c	• • •
:								

- a- and c-columns are the identity.
- All rows are collapsing.
- **(3)** q(x) = p(x, x) is neither permutational nor collapsing.

p	a	a'	•••	b	b'	•••	c	•••
a	a	a					a	
a'	a'	a'	•••				a'	• • •
:								
b	b	b		u	u		b	
b'	b'	b'		u	u		b'	
÷								
c	c	c					c	• • •
:								

- a- and c-columns are the identity.
- All rows are collapsing.
- **(3)** q(x) = p(x, x) is neither permutational nor collapsing.

p	a	a'	 b	b'	•••	С	• • •
a	a	a				a	• • •
a'	a'	a'				a'	• • •
÷							
b	b	b	 u	u		b	• • •
b'	b'	b'	 u	u		b'	• • •
÷							
c	c	c				c	• • •
÷							

- a- and c-columns are the identity.
- All rows are collapsing.
- q(x) = p(x, x) is neither permutational nor collapsing. $(q(x) = x \text{ on } a/\beta \text{ and } q$ is constant on b/β)

p	a	a'	 b	b'	•••	С	• • •
a	a	a				a	• • •
a'	a'	a'				a'	• • •
÷							
b	b	b	 u	u		b	
b'	b'	b'	 u	u		b'	• • •
÷							
c	c	c				c	• • •
÷							•••

- a- and c-columns are the identity.
- All rows are collapsing.
- Q(x) = p(x, x) is neither permutational nor collapsing. (q(x) = x on a/β and q is constant on b/β) ⇒ ⇐

p	a	a'	 b	b'	•••	С	•••
a	a	a				a	
a'	a'	a'			•••	a'	• • •
÷							
b	b	b	 u	u		b	
b'	b'	b'	 u	u	• • •	b'	
÷							
c	c	c			•••	c	• • •
:							

- a- and c-columns are the identity.
- All rows are collapsing.
- q(x) = p(x, x) is neither permutational nor collapsing. (q(x) = x on a/β and q is constant on b/β) ⇒ ⇐
 □ (Claim 1)

Claim 2.

Claim 2. |B| = 2.

Claim 2. |B| = 2. Assume not.

Claim 2. |B| = 2.

Assume not. If |B| > 2, then B contains more than one trace or B contains one trace with more than 2-elements.
Claim 2. |B| = 2.

Assume not. If |B| > 2, then *B* contains more than one trace or *B* contains one trace with more than 2-elements. Therefore, we may assume that there exist distinct $a, b, c \in B$ such that $(b, c) \in \beta$, p(x, a) = x, and such that p(x, b) and p(x, c) are collapsing.

Claim 2. |B| = 2.

Assume not. If |B| > 2, then B contains more than one trace or B contains one trace with more than 2-elements. Therefore, we may assume that there exist distinct $a, b, c \in B$ such that $(b, c) \in \beta$, p(x, a) = x, and such that p(x, b) and p(x, c) are collapsing.

Subclaim.

Claim 2. |B| = 2.

Assume not. If |B| > 2, then *B* contains more than one trace or *B* contains one trace with more than 2-elements. Therefore, we may assume that there exist distinct $a, b, c \in B$ such that $(b, c) \in \beta$, p(x, a) = x, and such that p(x, b) and p(x, c) are collapsing.

Subclaim. If $(u, v) \in \beta|_B$, then p(u, y) and p(v, y) have the same character.

Claim 2. |B| = 2.

Assume not. If |B| > 2, then *B* contains more than one trace or *B* contains one trace with more than 2-elements. Therefore, we may assume that there exist distinct $a, b, c \in B$ such that $(b, c) \in \beta$, p(x, a) = x, and such that p(x, b) and p(x, c) are collapsing.

Subclaim. If $(u, v) \in \beta|_B$, then p(u, y) and p(v, y) have the same character. *Proof of Subclaim.*

Claim 2. |B| = 2.

Assume not. If |B| > 2, then *B* contains more than one trace or *B* contains one trace with more than 2-elements. Therefore, we may assume that there exist distinct $a, b, c \in B$ such that $(b, c) \in \beta$, p(x, a) = x, and such that p(x, b) and p(x, c) are collapsing.

Subclaim. If $(u, v) \in \beta|_B$, then p(u, y) and p(v, y) have the same character.

Proof of Subclaim. Assume that p(u, y) is collapsing.

Claim 2. |B| = 2.

Assume not. If |B| > 2, then *B* contains more than one trace or *B* contains one trace with more than 2-elements. Therefore, we may assume that there exist distinct $a, b, c \in B$ such that $(b, c) \in \beta$, p(x, a) = x, and such that p(x, b) and p(x, c) are collapsing.

Subclaim. If $(u, v) \in \beta|_B$, then p(u, y) and p(v, y) have the same character.

Proof of Subclaim. Assume that p(u, y) is collapsing. Then p(v, b) = p(u, b) = p(u, c) = p(v, c), so p(v, y) is collapsing.

Claim 2. |B| = 2.

Assume not. If |B| > 2, then *B* contains more than one trace or *B* contains one trace with more than 2-elements. Therefore, we may assume that there exist distinct $a, b, c \in B$ such that $(b, c) \in \beta$, p(x, a) = x, and such that p(x, b) and p(x, c) are collapsing.

Subclaim. If $(u, v) \in \beta|_B$, then p(u, y) and p(v, y) have the same character.

Proof of Subclaim. Assume that p(u, y) is collapsing. Then p(v, b) = p(u, b) = p(u, c) = p(v, c), so p(v, y) is collapsing. \Box (Subclaim)

To finish Claim 2, notice that since p(x, a) = x we have p(a, a) = a.

To finish Claim 2, notice that since p(x, a) = x we have p(a, a) = a. If $N := a/\beta$ and $a', a'' \in N$, then $p(a', a'') \equiv_{\beta} p(a, a) = a \in a/\beta = N$.

To finish Claim 2, notice that since p(x, a) = x we have p(a, a) = a. If $N := a/\beta$ and $a', a'' \in N$, then $p(a', a'') \equiv_{\beta} p(a, a) = a \in a/\beta = N$. That is, $p(N, N) \subseteq N$.

$p _N$	a	a'	$a^{\prime\prime}$	
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
:				·

To finish Claim 2, notice that since p(x, a) = x we have p(a, a) = a. If $N := a/\beta$ and $a', a'' \in N$, then $p(a', a'') \equiv_{\beta} p(a, a) = a \in a/\beta = N$. That is, $p(N, N) \subseteq N$. Thus, $p|_N(x, y)$ is a binary operation on N.

$p _N$	a	a'	$a^{\prime\prime}$	• • •
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
÷				·

All columns are constant except the *a*-column.

To finish Claim 2, notice that since p(x, a) = x we have p(a, a) = a. If $N := a/\beta$ and $a', a'' \in N$, then $p(a', a'') \equiv_{\beta} p(a, a) = a \in a/\beta = N$. That is, $p(N, N) \subseteq N$. Thus, $p|_N(x, y)$ is a binary operation on N.

$p _N$	a	a'	$a^{\prime\prime}$	• • •
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
÷				·

All columns are constant except the *a*-column.

$p _N$	a	a'	$a^{\prime\prime}$	
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
:				·

- All columns are constant except the *a*-column.
- 2 At most 1 row can be a permutation.

$p _N$	a	a'	$a^{\prime\prime}$	
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
:				·

- All columns are constant except the *a*-column.
- 2 At most 1 row can be a permutation.

$p _N$	a	a'	$a^{\prime\prime}$	• • •
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
:				·

- All columns are constant except the *a*-column.
- At most 1 row can be a permutation.
- 3 At least 1 row is collapsing.

$p _N$	a	a'	$a^{\prime\prime}$	• • •
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
:				·

- All columns are constant except the *a*-column.
- At most 1 row can be a permutation.
- 3 At least 1 row is collapsing.

$p _N$	a	a'	$a^{\prime\prime}$	• • •
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
:				·

- All columns are constant except the *a*-column.
- 2 At most 1 row can be a permutation.
- S At least 1 row is collapsing.
- By the Subclaim, all rows have the same character.

$p _N$	a	a'	$a^{\prime\prime}$	• • •
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
:				·

- All columns are constant except the *a*-column.
- 2 At most 1 row can be a permutation.
- S At least 1 row is collapsing.
- By the Subclaim, all rows have the same character.
- Solution At least one column is constant, so $p|_N$ is constant.

$p _N$	a	a'	$a^{\prime\prime}$	• • •
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
:				·

- All columns are constant except the *a*-column.
- 2 At most 1 row can be a permutation.
- S At least 1 row is collapsing.
- By the Subclaim, all rows have the same character.
- Solution At least one column is constant, so $p|_N$ is constant.

$p _N$	a	a'	$a^{\prime\prime}$	• • •
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
:				·

- All columns are constant except the *a*-column.
- 2 At most 1 row can be a permutation.
- S At least 1 row is collapsing.
- By the Subclaim, all rows have the same character.
- Solution At least one column is constant, so $p|_N$ is constant.
 - But it is not.

$p _N$	a	a'	$a^{\prime\prime}$	• • •
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
:				·

- All columns are constant except the *a*-column.
- 2 At most 1 row can be a permutation.
- S At least 1 row is collapsing.
- By the Subclaim, all rows have the same character.
- Solution At least one column is constant, so $p|_N$ is constant.
 - But it is not.

$p _N$	a	a'	$a^{\prime\prime}$	• • •
a	a	r	s	
a'	a'	r	s	
$a^{\prime\prime}$	a''	r	s	
:				·

- All columns are constant except the *a*-column.
- 2 At most 1 row can be a permutation.
- S At least 1 row is collapsing.
- By the Subclaim, all rows have the same character.
- Solution At least one column is constant, so $p|_N$ is constant.
- Solution \square (Claim 2)

It remains to show that $\mathbf{A}|_B$ has a semilattice polynomial.

It remains to show that $\mathbf{A}|_B$ has a semilattice polynomial.

Necessarily $B = \{a, b\} = a/\beta = N$.

It remains to show that $\mathbf{A}|_B$ has a semilattice polynomial.

Necessarily $B = \{a, b\} = a/\beta = N$. We know that p(x, a) = x and that p(x, b) is collapsing.

It remains to show that $\mathbf{A}|_B$ has a semilattice polynomial.

Necessarily $B = \{a, b\} = a/\beta = N$. We know that p(x, a) = x and that p(x, b) is collapsing. We also know that $p(N, N) \subseteq N$.

It remains to show that $\mathbf{A}|_B$ has a semilattice polynomial.

Necessarily $B = \{a, b\} = a/\beta = N$. We know that p(x, a) = x and that p(x, b) is collapsing. We also know that $p(N, N) \subseteq N$. The only possibilities for $p|_B$ are

It remains to show that $\mathbf{A}|_B$ has a semilattice polynomial.

Necessarily $B = \{a, b\} = a/\beta = N$. We know that p(x, a) = x and that p(x, b) is collapsing. We also know that $p(N, N) \subseteq N$. The only possibilities for $p|_B$ are

It remains to show that $\mathbf{A}|_B$ has a semilattice polynomial.

Necessarily $B = \{a, b\} = a/\beta = N$. We know that p(x, a) = x and that p(x, b) is collapsing. We also know that $p(N, N) \subseteq N$. The only possibilities for $p|_B$ are

In the first case, p(x, y) is a semilattice operation on B with absorbing element b.

It remains to show that $\mathbf{A}|_B$ has a semilattice polynomial.

Necessarily $B = \{a, b\} = a/\beta = N$. We know that p(x, a) = x and that p(x, b) is collapsing. We also know that $p(N, N) \subseteq N$. The only possibilities for $p|_B$ are

In the first case, p(x, y) is a semilattice operation on B with absorbing element b. In the second case, p(x, p(b, y)) is a semilattice operation on B with absorbing element a.

It remains to show that $\mathbf{A}|_B$ has a semilattice polynomial.

Necessarily $B = \{a, b\} = a/\beta = N$. We know that p(x, a) = x and that p(x, b) is collapsing. We also know that $p(N, N) \subseteq N$. The only possibilities for $p|_B$ are

In the first case, p(x, y) is a semilattice operation on B with absorbing element b. In the second case, p(x, p(b, y)) is a semilattice operation on B with absorbing element a. \Box (Twin Lemma)