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Remaining Case. If A is minimal, |A| > 3, and not essentially unary, then A
is polynomially equivalent to a vector space over a finite field. 7?77?77
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depends on z;. (Here p[a, 7] is p ‘constrained’ by the condition ‘z; = a’.)
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Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)

is not constant, so j € D(a;, 1) for all i # j.

Talk #5: Palfy’s Theorem



Reducing to an essentially binary polynomial

Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)

is not constant, so j € D(a;, 1) forall i # j. Thus:

Talk #5: Palfy’s Theorem



Reducing to an essentially binary polynomial

Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)

is not constant, so j € D(a;, 1) forall i # j. Thus:
Fact 1.

Talk #5: Pilfy’s Theorem



Reducing to an essentially binary polynomial

Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)

is not constant, so j € D(a;, 1) forall i # j. Thus:
Fact 1. (Vj # i)(Ja)(j € D(a,1i)).

Talk #5: Pilfy’s Theorem



Reducing to an essentially binary polynomial

Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)

is not constant, so j € D(a;, 1) forall i # j. Thus:
Fact 1. (Vj # i)(Ja)(j € D(a,1i)).
Fact 2.

Talk #5: Pilfy’s Theorem



Reducing to an essentially binary polynomial

Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)

is not constant, so j € D(a;, 1) forall i # j. Thus:
Fact 1. (Vj # i)(Ja)(j € D(a,1i)).
Fact 2. If i # j and j ¢ D(a, 1), then for any b we have D(a,i) C D(b, j).

Talk #5: Pilfy’s Theorem



Reducing to an essentially binary polynomial

Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)
is not constant, so j € D(a;, 1) forall i # j. Thus:
Fact 1. (Vj # i)(Ja)(j € D(a,1i)).
Fact 2. If i # j and j ¢ D(a, 1), then for any b we have D(a,i) C D(b, j).
For Fact 2, choose k € D(a,1).

Talk #5: Pilfy’s Theorem



Reducing to an essentially binary polynomial

Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)
is not constant, so j € D(a;, 1) forall i # j. Thus:
Fact 1. (Vj # i)(Ja)(j € D(a,1i)).
Fact 2. If i # j and j ¢ D(a, 1), then for any b we have D(a,i) C D(b, j).
For Fact 2, choose k € D(a, ). Necessarily i # k # j.

Talk #5: Pilfy’s Theorem



Reducing to an essentially binary polynomial

Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)
is not constant, so j € D(a;, 1) forall i # j. Thus:
Fact 1. (Vj # i)(Ja)(j € D(a,1i)).
Fact 2. If i # j and j ¢ D(a, 1), then for any b we have D(a,i) C D(b, j).

For Fact 2, choose k € D(a, ). Necessarily i # k # j. Since p[a, i| depends
on k but not j,

Talk #5: Pilfy’s Theorem



Reducing to an essentially binary polynomial

Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)
is not constant, so j € D(a;, 1) forall i # j. Thus:
Fact 1. (Vj # i)(Ja)(j € D(a,1i)).
Fact 2. If i # j and j ¢ D(a, 1), then for any b we have D(a,i) C D(b, j).

For Fact 2, choose k € D(a, ). Necessarily i # k # j. Since p[a, i| depends
on k but not j, pla, i; b, j] still depends on k.

Talk #5: Pilfy’s Theorem



Reducing to an essentially binary polynomial

Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)
is not constant, so j € D(a;, 1) forall i # j. Thus:
Fact 1. (Vj # i)(Ja)(j € D(a,1i)).
Fact 2. If i # j and j ¢ D(a, 1), then for any b we have D(a,i) C D(b, j).

For Fact 2, choose k € D(a, ). Necessarily i # k # j. Since p[a, i| depends
on k but not j, pla, i; b, j] still depends on k. Hence p[b, j| depends on k.

Talk #5: Pilfy’s Theorem



Reducing to an essentially binary polynomial

Lemma. If n > 2 and p(x1, . .., z,) depends on all variables, then there exist
i # j and a,b € A such that p[a, 7] and p[b, j] depend on all remaining
variables.

Proof. If p depends on z;, then there exist parameters so that
p(at, ..., G5, T, g1, ..., 0n)
is not constant, so j € D(a;, 1) forall i # j. Thus:
Fact 1. (Vj # i)(Ja)(j € D(a,1i)).
Fact 2. If i # j and j ¢ D(a, 1), then for any b we have D(a,i) C D(b, j).

For Fact 2, choose k € D(a, ). Necessarily i # k # j. Since p[a, i| depends
on k but not j, pla, i; b, j] still depends on k. Hence p[b, j| depends on k.
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have (i) k € D(b, j) for any b (Fact 2).
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i€ D(b,j) by Fact 1.
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D(a,i) € D(b,j) (Fact2),and i € D(b,j) \ D(a,i).
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D(a,i) € D(b,j) (Fact2),and i € D(b,j) \ D(a,i). This contradiction
proves the Claim.
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We have shown that for any k there is a pair (a, ¢) with ¢ # k such that pla, 7]
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then it has a polynomial that depends on k variables for any £ satisfying
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Corollary.
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Completing the Proof.

We have shown that for any k there is a pair (a, ¢) with ¢ # k such that pla, 7]
depends on all remaining variables. Repeat this starting at ¢ instead of k.
There must be a (b, j) with j # i such that p[b, j] depends on all remaining
variables. O

Corollary. If an algebra has a polynomial that depends on n-variables, n > 0,
then it has a polynomial that depends on k variables for any £ satisfying
1<k<n.O

For emphasis:

Corollary. Any minimal algebra A that is not essentially unary will have an
essentially binary polynomial g(x1, z2).

Talk #5: Palfy’s Theorem



Reducing to an essentially binary polynomial, 3

Completing the Proof.

We have shown that for any k there is a pair (a, ¢) with ¢ # k such that pla, 7]
depends on all remaining variables. Repeat this starting at ¢ instead of k.
There must be a (b, j) with j # i such that p[b, j] depends on all remaining
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Corollary. If an algebra has a polynomial that depends on n-variables, n > 0,
then it has a polynomial that depends on k variables for any £ satisfying
1<k<n.O

For emphasis:

Corollary. Any minimal algebra A that is not essentially unary will have an
essentially binary polynomial ¢(z1, 22). Moreover, there will be elements
a,b € Asuch that g[a, 1] = g(a,y) and and ¢[b, 2] = ¢(x, b) are permutations
of A.
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We have shown that for any k there is a pair (a, ¢) with ¢ # k such that pla, 7]
depends on all remaining variables. Repeat this starting at ¢ instead of k.
There must be a (b, j) with j # i such that p[b, j] depends on all remaining
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For emphasis:

Corollary. Any minimal algebra A that is not essentially unary will have an
essentially binary polynomial ¢(z1, 22). Moreover, there will be elements
a,b € Asuch that g[a, 1] = g(a,y) and and ¢[b, 2] = ¢(x, b) are permutations
of A.

I will call such a binary polynomial a “g-polynomial”,
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Completing the Proof.

We have shown that for any k there is a pair (a, ¢) with ¢ # k such that pla, 7]
depends on all remaining variables. Repeat this starting at ¢ instead of k.
There must be a (b, j) with j # i such that p[b, j] depends on all remaining
variables. O

Corollary. If an algebra has a polynomial that depends on n-variables, n > 0,
then it has a polynomial that depends on k variables for any £ satisfying
1<k<n.O

For emphasis:

Corollary. Any minimal algebra A that is not essentially unary will have an
essentially binary polynomial ¢(z1, 22). Moreover, there will be elements
a,b € Asuch that g[a, 1] = g(a,y) and and ¢[b, 2] = ¢(x, b) are permutations
of A.

I will call such a binary polynomial a “g-polynomial”, because when A is
minimal and |A| > 2 we will see that ¢ must be a quasigroup multiplication.
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gla, 1](x2) = q(a,z2).
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Let q(z1,x2) be a binary polynomial of A. Write g, (x2) for
qla, 1](z2) = q(a, z2). We may repeatedly compose this unary function of the
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groups. In particular

© Nonabelianness can be witnessed by a binary polynomial ¢(x,y) and
elements a, b, ¢, d € A such that

q(a,c) = q(a,d) & q(b,c) # q(b,d).
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@ Every finite multiplication quasigroup (A; xy) has left and right division
terms: (A; vy, z/y,y\z)

(zy)/y ==z, (z/y)y =z, z\(vy) =y, z(z\y) =y.

© Every ‘complete’ quasigroup has a Maltsev term:
m(z,y,z) = (x/(y\y))(y\2)-

© Maltsev algebras support a commutator theory similar to the theory for
groups. In particular

© Nonabelianness can be witnessed by a binary polynomial ¢(x,y) and
elements a, b, ¢, d € A such that

q(a,c) = q(a,d) & q(b,c) # q(b,d).

@ Abelian Maltsev algebras are polynomially equivalent to modules.
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Employing commutator theory, we get that any minimal algebra of more than
two elements that is not essentially unary must be polynomially equivalent to
a module. That means that a typical polynomial operation of A will have the
‘affine representation’

Q(z,y) = ax +biyr + - + by + ¢

Every element of the associated ring occurs as the coefficient of x a binary
polynomial operation with with affine representation

q(z,y) =ax+ (1 —a)y.

If a € R\ {0, 1}, then this will be essentially binary, hence a quasigroup
polynomial. This forces a to be invertible in R. Hence R is a finite division
ring. A finite division ring is a field, so A is polynomially equivalent to a
vector space over a finite field.
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