
Talk #5: Pálfy’s Theorem

Talk #5: Pálfy’s Theorem 1 / 11



The structure of ⟨0, 1⟩-minimal algebras

I will consider only finite algebras A = AA that equal their full polynomial
expansion. In this setting C1(AA) = Pol1(A).

A is minimal if it is ⟨0, 1⟩-minimal: |A| > 1 and every p(x) ∈ Pol1(A) is a
permutation of A or is constant.

Observation: Any algebra that is ‘polynomially equivalent’ to one of the
following is minimal.

1 An algebra of size 2.
2 A G-set.
3 A vector space over a finite field.

Pálfy’s Theorem. That’s all.

Proof.
Case 1. If A is essentially unary, then it is polynomially equivalent to a G-set.
2

Remaining Case. If A is minimal, |A| ≥ 3, and not essentially unary, then A
is polynomially equivalent to a vector space over a finite field. ?????
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p(x1, . . . , xi−1, xi, xi+1 . . . , xn) depends on xi.

Say that a polynomially operation p(x1, . . . , xi−1, xi, xi+1 . . . , xn) of A
depends on xi if there exist parameters from A so that

p(a1, . . . , ai−i, x, ai+1, . . . , an)

is a nonconstant function. That is, there exist b ̸= c in A such that

p(a1, . . . , ai−i, b, ai+1, . . . , an) ̸= p(a1, . . . , ai−i, c, ai+1, . . . , an).

Given a polynomial p, a variable xi, and an element a, let D(a, i) be the set of
j such that

p[a, i] := p(x1, . . . , xi−i, a, xi+1, . . . , xn)

depends on xj . (Here p[a, i] is p ‘constrained’ by the condition ‘xi = a’.)
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Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma.

If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2

and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables,

then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof.

If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj ,

then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant,

so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j.

Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1.

(∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2.

If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i).

Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j.

Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j,

p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k.

Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.

Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial

Lemma. If n ≥ 2 and p(x1, . . . , xn) depends on all variables, then there exist
i ̸= j and a, b ∈ A such that p[a, i] and p[b, j] depend on all remaining
variables.

Proof. If p depends on xj , then there exist parameters so that

p(a1, . . . , aj−i, x, aj+1, . . . , an)

is not constant, so j ∈ D(ai, i) for all i ̸= j. Thus:

Fact 1. (∀j ̸= i)(∃a)(j ∈ D(a, i)).

Fact 2. If i ̸= j and j /∈ D(a, i), then for any b we have D(a, i) ⊆ D(b, j).

For Fact 2, choose k ∈ D(a, i). Necessarily i ̸= k ̸= j. Since p[a, i] depends
on k but not j, p[a, i; b, j] still depends on k. Hence p[b, j] depends on k.
Hence k ∈ D(b, j).

Talk #5: Pálfy’s Theorem 4 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2.

If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct

and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i),

then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea —

study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study:

p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .).

2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim.

Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k,

then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i)

and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.

(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)

The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim.

Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not.

Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i).

Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i),

we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j

(̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i).

Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts,

we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2).

We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1.

(ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i),

(iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2),

and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i).

This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim.

2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 2

Continuation of Proof.

Reiterating the argument for Fact 2. If i, j, k are distinct and j /∈ D(a, i)
but k ∈ D(a, i), then for any b we have k ∈ D(b, j).

Underlying idea — study: p(x1, . . . , a︸︷︷︸
i

, . . . , xj , . . . , xk, . . .). 2

Claim. Choose and fix k, then choose (a, i) so that k ∈ D(a, i) and so that
the choice of (a, i) maximizes D(a, i) with respect to ⊆ for this fixed k.
(There will exist at least one pair (a, i) with k ∈ D(a, i) by Fact 1.)
The polynomial p[a, i] depends on all remaining variables.

Proof of Claim. Assume not. Let j ̸= i be such that j /∈ D(a, i). Since
k ∈ D(a, i), we necessarily have i ̸= k ̸= j (̸= i). Gathering all facts, we
have (i) k ∈ D(b, j) for any b (Fact 2). We may choose a particular b so that
i ∈ D(b, j) by Fact 1. (ii) D(a, i) is maximal for k ∈ D(a, i), (iii)
D(a, i) ⊆ D(b, j) (Fact 2), and i ∈ D(b, j) \ D(a, i). This contradiction
proves the Claim. 2

Talk #5: Pálfy’s Theorem 5 / 11



Reducing to an essentially binary polynomial, 3

Completing the Proof.

We have shown that for any k there is a pair (a, i) with i ̸= k such that p[a, i]
depends on all remaining variables. Repeat this starting at i instead of k.
There must be a (b, j) with j ̸= i such that p[b, j] depends on all remaining
variables. 2

Corollary. If an algebra has a polynomial that depends on n-variables, n > 0,
then it has a polynomial that depends on k variables for any k satisfying
1 ≤ k ≤ n. 2

For emphasis:

Corollary. Any minimal algebra A that is not essentially unary will have an
essentially binary polynomial q(x1, x2). Moreover, there will be elements
a, b ∈ A such that q[a, 1] = q(a, y) and and q[b, 2] = q(x, b) are permutations
of A.

I will call such a binary polynomial a “q-polynomial”, because when A is
minimal and |A| > 2 we will see that q must be a quasigroup multiplication.
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Minimal algebras with an essentially binary polynomial

Let q(x1, x2) be a binary polynomial of A. Write qa(x2) for
q[a, 1](x2) = q(a, x2). We may repeatedly compose this unary function of the
variable x2 with itself:

qa(x2) = q(a, x2)
q2

a(x2) = q(a, q(a, x2))
q3

a(x2) = qa(q(a, q(a, x2)))

In fact, we don’t have to specify the parameter a; let qk
x1(x2) be the binary

polynomial obtained by iterating q in the second variable with the first
variable fixed. We will use this notation when proving

Theorem. If A is a minimal algebra with more than two elements, and
q = q(x, y) is an essentially binary polynomial, then q is a quasigroup
operation on A. (q(a, x) and q(x, a) are permutations for every a.)
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Minimal algebras with an essentially binary polynomial

If q(x, y) is essentially binary, then there exists a, b ∈ A such that q(a, y) and q(x, b)
depend on their variables, hence are permutations. We would like to show that this
statement is true in a way that is independent of the choices of a and b.

Assume that, for some a, q(a, y) is a permutation while, for some b, q(b, y) is
constant. There must exist k such that qk

a(y) = y. In fact, , there must exist some K
such that r(x, y) := qK

x (y) is idempotent for any x: r(x, r(x, y)) = r(x, y), while
r(a, y) = y and r(b, y) = e for some e. The table for r:

r a b c d e · · ·
a a b c d e
b e e e e e
c ? e
d
e
...

. . .

Choose c /∈ {a, b} and d ∈ {a, b} \ {e}. What is r(c, d)? (There is no valid choice, so
“q(a, y) a permutation implies q(b, y) a permutation” for all a, b.)
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Now cite known results

We have that every essentially binary polynomial of a minimal algebra of size
> 2 is a quasigroup polynomial. Now we cite results:

1 Every finite multiplication quasigroup ⟨A; xy⟩ has left and right division
terms: ⟨A; xy, x/y, y\x⟩

(xy)/y = x, (x/y)y = x, x\(xy) = y, x(x\y) = y.

2 Every ‘complete’ quasigroup has a Maltsev term:
m(x, y, z) = (x/(y\y))(y\z).

3 Maltsev algebras support a commutator theory similar to the theory for
groups. In particular

1 Nonabelianness can be witnessed by a binary polynomial q(x, y) and
elements a, b, c, d ∈ A such that

q(a, c) = q(a, d) & q(b, c) ̸= q(b, d).

2 Abelian Maltsev algebras are polynomially equivalent to modules.
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Summary

Employing commutator theory, we get that any minimal algebra of more than
two elements that is not essentially unary must be polynomially equivalent to
a module. That means that a typical polynomial operation of A will have the
‘affine representation’

Q(x, ȳ) = ax + b1y1 + · · · + bkyk + c.

Every element of the associated ring occurs as the coefficient of x a binary
polynomial operation with with affine representation

q(x, y) = ax + (1 − a)y.

If a ∈ R \ {0, 1}, then this will be essentially binary, hence a quasigroup
polynomial. This forces a to be invertible in R. Hence R is a finite division
ring. A finite division ring is a field, so A is polynomially equivalent to a
vector space over a finite field.
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Appendix

I have been ignoring the 2-element case. The clones on {0, 1} were classified
by Emil Post – there are countably many isomorphisms types. There are only
six of them up to ‘polynomial equivalence’ (= the polynomial expansions of
the associated algebras are weakly isomorphic). They are:

1 ⟨{0, 1}; 0, 1⟩. A G-set with |G| = 1.
2 ⟨{0, 1}; x′, 0, 1⟩. A G-set with |G| = 2.
3 ⟨{0, 1}; +, 0, 1⟩. An F2-vector space.
4 ⟨{0, 1}; ∧, 0, 1⟩ or ⟨{0, 1}; ∨, 0, 1⟩. A semilattice.
5 ⟨{0, 1}; ∧, ∨, 0, 1⟩. A lattice.
6 ⟨{0, 1}; ∧, ∨, x′, 0, 1⟩. A Boolean algebra.
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5 ⟨{0, 1}; ∧, ∨, 0, 1⟩.

A lattice.

6 ⟨{0, 1}; ∧, ∨, x′, 0, 1⟩. A Boolean algebra.
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