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Background

Today I will assume all algebraic or relational structures are finite.

1 An algebra A = ⟨A; C⟩ may be studied as a relational structure
A⊥ = ⟨A; C⊥⟩ = ⟨A; R⟩.

2 Restriction to a subset U ⊆ A is a relational clone homomorphism
R 7→ R|U iff U is a neighborhood (U = e(A), e ∈ C1, e2 = e). The
relational structure ⟨U ; R|U ⟩ is a retract of ⟨A; R⟩.

3 U is a cover of neighborhoods iff ⟨A; R⟩ is isomorphic to a retract of a
product of structures ⟨U ; R|U ⟩, U ∈ U .

Question. How must simpler is A|U compared to A after simplifying as
much as possible?
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The irreducible case

Definitions.

1 An algebra A is irreducible if is not covered by its collection of proper
subneighborhoods.

2 If S ⊊ T are compatible n-relations of A, then A is ⟨S, T ⟩-irreducible
if S|U = T |U for all proper subneighborhoods. (Equivalently, e(T ) ⊆ S
for any idempotent nonpermutation e ∈ E(A) ⊆ C1(A).)

[It is not hard to show that A is irreducible if and only if it is
⟨S, T ⟩-irreducible for some S ̸= T .]

1 A is ⟨S, T ⟩-minimal if f(T ) ⊆ S for any nonpermutation f ∈ C1(A).)

Minimality is formally stronger irreducibility. It is strictly stronger:

Example. If A is a nontrivial finite group, then AA is ⟨0, 1⟩-irreducible if and
only if A is a p-group. AA is ⟨0, 1⟩-minimal if and only if A is an elementary
abelian p-group.
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Classification problems, 1

In a perfect world, the class of ⟨S, T ⟩-irreducible algebras would be
classifiable. The world of 2-element algebras is almost perfect in this sense.

(Summary: Gena Boercker’s Thesis, 2000)
Let V be a variety generated by a 2-element algebra. For each finite B ∈ V , a
minimal irredundant nonrefinable cover of BB is described.

Talk #4: Classification 4 / 12



Classification problems, 1

In a perfect world, the class of ⟨S, T ⟩-irreducible algebras would be
classifiable.

The world of 2-element algebras is almost perfect in this sense.

(Summary: Gena Boercker’s Thesis, 2000)
Let V be a variety generated by a 2-element algebra. For each finite B ∈ V , a
minimal irredundant nonrefinable cover of BB is described.

Talk #4: Classification 4 / 12



Classification problems, 1

In a perfect world, the class of ⟨S, T ⟩-irreducible algebras would be
classifiable. The world of 2-element algebras is almost perfect in this sense.

(Summary: Gena Boercker’s Thesis, 2000)
Let V be a variety generated by a 2-element algebra. For each finite B ∈ V , a
minimal irredundant nonrefinable cover of BB is described.

Talk #4: Classification 4 / 12



Classification problems, 1

In a perfect world, the class of ⟨S, T ⟩-irreducible algebras would be
classifiable. The world of 2-element algebras is almost perfect in this sense.

(Summary: Gena Boercker’s Thesis, 2000)

Let V be a variety generated by a 2-element algebra. For each finite B ∈ V , a
minimal irredundant nonrefinable cover of BB is described.

Talk #4: Classification 4 / 12



Classification problems, 1

In a perfect world, the class of ⟨S, T ⟩-irreducible algebras would be
classifiable. The world of 2-element algebras is almost perfect in this sense.

(Summary: Gena Boercker’s Thesis, 2000)
Let V be a variety generated by a 2-element algebra.

For each finite B ∈ V , a
minimal irredundant nonrefinable cover of BB is described.

Talk #4: Classification 4 / 12



Classification problems, 1

In a perfect world, the class of ⟨S, T ⟩-irreducible algebras would be
classifiable. The world of 2-element algebras is almost perfect in this sense.

(Summary: Gena Boercker’s Thesis, 2000)
Let V be a variety generated by a 2-element algebra. For each finite B ∈ V , a
minimal irredundant nonrefinable cover of BB is described.

Talk #4: Classification 4 / 12



Classification problems, 1

In a perfect world, the class of ⟨S, T ⟩-irreducible algebras would be
classifiable. The world of 2-element algebras is almost perfect in this sense.

(Summary: Gena Boercker’s Thesis, 2000)
Let V be a variety generated by a 2-element algebra. For each finite B ∈ V , a
minimal irredundant nonrefinable cover of BB is described.

Talk #4: Classification 4 / 12



Classification problems, 2

Moving away from varieties generated by 2-element algebras, one of the strongest
classification theorems we have is the following:
Theorem. Let A = ⟨A; C⟩ be a finite algebra. If A has no nontrivial, proper

1 subalgebras,
2 congruences, or
3 neighborhoods,

then ⟨A; C⟩ belongs to one of the following four classes, each of which has been fully
described in four papers:

1 (Pálfy) the class of finite, simple, ⟨0, 1⟩-minimal algebras,
2 (Szendrei) the class of finite, idempotent, strictly simple algebras,
3 (Szendrei) the class of finite, simple G-algebras,
4 (Szendrei) the class of finite, simple G0-algebras.

This is sufficient to understand the localizations to minimal neighborhoods of finite
strictly simple algebras. To go beyond that, we have to be satisfied with only a partial
understanding of A|U .
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A sketch of an application of the Szendrei & Pálfy results

Problem: Classify all minimal varieties that contain a nontrivial finite member.

Stages.

1 Choose a strictly simple A ∈ V . E.g., a least-size nontrivial algebra in the
variety. V = V(A).

2 Choose a minimal neighborhood U = e(A) of A.
3 The algebra A|U satisfies the hypotheses of the theorem on the previous slide,

so it is classified.
4 Localization is a functor e : V 7→ e(V) = V(e(A)) : B 7→ e(B).
5 e ≃ id in general, while e ≡ id when A is abelian. (I.e., {U} covers A when A

is abelian.) The condition e ≡ id is equivalent to the property that the
localization functor is a categorical equivalence, so all possibilities for V are
reconstructible from e(V).

6 Even the condition e ≃ id is strong enough to be useful:

1 V has a unique strictly simple algebra up to isomorphism.
2 The unique strictly simple algebra is projective in V .
3 The unique strictly simple algebra embeds in every member of V .
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Tame congruence theory

TCT studies polynomial expansions of finite algebras, AA, by way of a partial
classification of ⟨α, β⟩-minimal algebras, A|U , where α, β ∈ R are
compatible equivalence relations (=congruences) usually assumed to satisfy
α ≺ β.

I plan to speak only about the case when α ≺ β, but the book by
Hobby-McKenzie shows that similar results can be obtained for some other
cases when α < β. Roughly speaking, a congruence interval [α, β] is “tame”
if it behaves as if it were a covering α ≺ β with respect to localization. (All
covering intervals are tame, and some other intervals are tame.)
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⟨α, β⟩-minimal sets

Let A = AA be the polynomial expansion of a finite algebra. (C1(A) = Pol1(A).)
Assume that α ≺ β are congruences of A.

Definition. MA(α, β) is the set of ⟨α, β⟩-minimal sets. (= The set of minimal images
f(A) for f ∈ C1(A) where f(β) ̸⊆ α.)

Facts. (See Theorem 2.6 of Hobby-McKenzie)

1 Each ⟨α, β⟩-minimal set is a neighborhood. (Covering intervals are “tame”.)

2 All members of MA(α, β) are isomorphic.

3 If U ∈ MA(α, β), f ∈ C1(A), and f(β|U ) ̸⊆ α, then f(U) ∼= U .

4 (Separation) If (x, y) ∈ β − α and U ∈ MA(α, β), then ∃f ∈ C1(A) such that
(f(x), f(y)) ∈ β|U − α.

5 (Density/Connectedness) If N is a β|U -class of U ∈ MA(α, β), then the
compatible relation generated by α ∪ (N × N) has transitive closure equal to β.

6 If f ∈ C1(A) satisfies f(β) ̸⊆ α, then ∃U ∈ MA(α, β) such that f(U) ∼= U .
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Facts. (See Theorem 2.6 of Hobby-McKenzie)

1 Each ⟨α, β⟩-minimal set is a neighborhood. (Covering intervals are “tame”.)

2 All members of MA(α, β) are isomorphic.

3 If U ∈ MA(α, β), f ∈ C1(A), and f(β|U ) ̸⊆ α, then f(U) ∼= U .

4 (Separation) If (x, y) ∈ β − α and U ∈ MA(α, β), then ∃f ∈ C1(A) such that
(f(x), f(y)) ∈ β|U − α.

5 (Density/Connectedness) If N is a β|U -class of U ∈ MA(α, β), then the
compatible relation generated by α ∪ (N × N) has transitive closure equal to β.

6 If f ∈ C1(A) satisfies f(β) ̸⊆ α, then ∃U ∈ MA(α, β) such that f(U) ∼= U .
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Traces, Bodies, Tails

We do not know the full structure of A|U when U ∈ MA(α, β), but we know a
portion. Call N ⊆ U a ⟨α, β⟩-trace if N is a β|U -class that differs from an
α|U -class. The ⟨α, β⟩-body, B, of U is the union of the ⟨α, β⟩-traces and the
⟨α, β⟩-tail, T , of U is the remainder (= U − B).

Facts. (See Chapter 4 of Hobby-McKenzie)

1 There is a complete classification of trace algebras (A|N )/α|N . (Think “simple
composition factors”.) Each is one of the following types of structures.

1 (Type 1) A simple G-set.
2 (Type 2) A 1-dimensional vector space.
3 (Type 3) A 2-element Boolean algebra.
4 (Type 4) A 2-element lattice.
5 (Type 5) A 2-element semilattice.

2 There is a partial classification of body algebras (A|B)/α|B .

1 (Type 1) Not classified yet.
2 (Type 2) E-minimal, nilpotent, Maltsev.
3 (Types 3-5) Body=trace: see above.

3 Very little is known about the structure on the tail, A|T .
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Example

Let A = ⟨{0, 1, 2, 3, 4}; ∗, 0, 1, 2, 3, 4⟩ be the polynomial expansion of a
semigroup whose multiplication operation is given by the table

∗ 0 1 2 3 4
0 0 1 2 3 4
1 1 0 3 2 4
2 2 3 0 1 4
3 3 2 1 0 4
4 4 4 4 4 4
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Details

Let α partition the algebra as |0|1|2|3|4| and let β partition the algebra as
|01|23|4|. α ≺ β. A is ⟨α, β⟩-minimal, so A = U ∈ MA(α, β).

1 ⟨α, β⟩-traces:
N1 = 0/β|U = {0, 1} ≠ 0/α|U , and
N2 = 2/β|U = {2, 3} ≠ 2/α|U .
A|N1

∼= A|N2 = 1-dimensional vector space over F2. (The type is 2.)
2 ⟨α, β⟩-body: B = N1 ∪ N2 = {0, 1, 2, 3}. A|B is polynomially

equivalent to KK where K is the Klein group, or to a 2-dimensional
vector space over F2.

3 Tail = T = {4}.

This example is the polynomial expansion of the semigroup obtained from the
Klein group by adding an absorbing element. One can create similar examples
with more interesting bodies by taking the polynomial expansion of the
semigroup obtained from the any p-group (=body) by adding an entire
semilattice of absorbing elements (=tail).
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N2 = 2/β|U = {2, 3} ≠ 2/α|U .
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A|N1

∼= A|N2 = 1-dimensional vector space over F2. (The type is 2.)
2 ⟨α, β⟩-body: B = N1 ∪ N2 = {0, 1, 2, 3}. A|B is polynomially

equivalent to KK where K is the Klein group, or to a 2-dimensional
vector space over F2.

3 Tail = T = {4}.

This example is the polynomial expansion of the semigroup obtained from the
Klein group by adding an absorbing element. One can create similar examples
with more interesting bodies by taking the polynomial expansion of the
semigroup obtained from the any p-group (=body) by adding an entire
semilattice of absorbing elements (=tail).

Talk #4: Classification 12 / 12



Details

Let α partition the algebra as |0|1|2|3|4| and let β partition the algebra as
|01|23|4|. α ≺ β. A is ⟨α, β⟩-minimal,

so A = U ∈ MA(α, β).

1 ⟨α, β⟩-traces:
N1 = 0/β|U = {0, 1} ≠ 0/α|U , and
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