Talk #3: Covers

There is a Galois connection between operations and relations determined by the compatibility relation.

There is a Galois connection between operations and relations determined by the compatibility relation.

- There is a Galois connection between operations and relations determined by the compatibility relation.
- 2 The Galois-closed subsets of operations are clones.

- There is a Galois connection between operations and relations determined by the compatibility relation.
- 2 The Galois-closed subsets of operations are clones.

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- S The Galois-closed subsets of relations are relational clones.

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- S The Galois-closed subsets of relations are relational clones.

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **③** The Galois-closed subsets of relations are relational clones. (\mathcal{R})

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **③** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra $\mathbf{A} = \langle A; \mathcal{C} \rangle$ and a subset $U \subseteq A$,

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **③** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra $\mathbf{A} = \langle A; \mathcal{C} \rangle$ and a subset $U \subseteq A$,

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **(3)** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra $\mathbf{A} = \langle A; \mathcal{C} \rangle$ and a subset $U \subseteq A$, the restriction map $f \mapsto f|_U$ is a clone homomorphism iff U is a subuniverse of \mathbf{A} .

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **(3)** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map f → f|U is a clone homomorphism iff U is a subuniverse of A.
- Given the corresponding relation structure A[⊥] = ⟨A; C[⊥]⟩ and a subset U ⊆ A,

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **(3)** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map f → f|U is a clone homomorphism iff U is a subuniverse of A.
- Given the corresponding relation structure A[⊥] = ⟨A; C[⊥]⟩ and a subset U ⊆ A,

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **(3)** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map f → f|U is a clone homomorphism iff U is a subuniverse of A.
- Given the corresponding relation structure A[⊥] = ⟨A; C[⊥]⟩ and a subset U ⊆ A, the restriction map ρ → ρ|U is a relational clone homomorphism iff U is a neighborhood of A.

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **(3)** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map f → f|U is a clone homomorphism iff U is a subuniverse of A.
- Given the corresponding relation structure A[⊥] = ⟨A; C[⊥]⟩ and a subset U ⊆ A, the restriction map ρ → ρ|_U is a relational clone homomorphism iff U is a neighborhood of A. I.e., U = e(A) for some idempotent e ∈ C₁.

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **③** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map f → f|U is a clone homomorphism iff U is a subuniverse of A.
- Given the corresponding relation structure A[⊥] = ⟨A; C[⊥]⟩ and a subset U ⊆ A, the restriction map ρ ↦ ρ|_U is a relational clone homomorphism iff U is a neighborhood of A. I.e., U = e(A) for some idempotent e ∈ C₁.
- $\ \ \, {\rm of}\ \ \, {\rm If}\ \ \rho\in {\mathcal R}\ {\rm and}\ \ U=e(A),\ {\rm then}\ \ \, \rho|_U=\rho\cap U^n$

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **③** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map f → f|U is a clone homomorphism iff U is a subuniverse of A.
- Given the corresponding relation structure A[⊥] = ⟨A; C[⊥]⟩ and a subset U ⊆ A, the restriction map ρ ↦ ρ|_U is a relational clone homomorphism iff U is a neighborhood of A. I.e., U = e(A) for some idempotent e ∈ C₁.
- $\ \ \, {\rm of}\ \ \, {\rm If}\ \ \rho\in {\mathcal R}\ {\rm and}\ \ U=e(A),\ {\rm then}\ \ \, \rho|_U=\rho\cap U^n$

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **③** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map f → f|_U is a clone homomorphism iff U is a subuniverse of A.
- Given the corresponding relation structure A[⊥] = ⟨A; C[⊥]⟩ and a subset U ⊆ A, the restriction map ρ → ρ|_U is a relational clone homomorphism iff U is a neighborhood of A. I.e., U = e(A) for some idempotent e ∈ C₁.
- $If \rho \in \mathcal{R} \text{ and } U = e(A), \text{ then } \rho|_U = \rho \cap U^n = e(\rho).$

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **③** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map f → f|U is a clone homomorphism iff U is a subuniverse of A.
- Given the corresponding relation structure A[⊥] = ⟨A; C[⊥]⟩ and a subset U ⊆ A, the restriction map ρ → ρ|_U is a relational clone homomorphism iff U is a neighborhood of A. I.e., U = e(A) for some idempotent e ∈ C₁.
- **()** If $\rho \in \mathcal{R}$ and U = e(A), then $\rho|_U = \rho \cap U^n = e(\rho)$.

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **③** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map f → f|U is a clone homomorphism iff U is a subuniverse of A.
- Given the corresponding relation structure A[⊥] = ⟨A; C[⊥]⟩ and a subset U ⊆ A, the restriction map ρ → ρ|_U is a relational clone homomorphism iff U is a neighborhood of A. I.e., U = e(A) for some idempotent e ∈ C₁.
- **()** If $\rho \in \mathcal{R}$ and U = e(A), then $\rho|_U = \rho \cap U^n = e(\rho)$.

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **③** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map f → f|U is a clone homomorphism iff U is a subuniverse of A.
- Given the corresponding relation structure A[⊥] = ⟨A; C[⊥]⟩ and a subset U ⊆ A, the restriction map ρ → ρ|_U is a relational clone homomorphism iff U is a neighborhood of A. I.e., U = e(A) for some idempotent e ∈ C₁.
- **(**) If $\rho \in \mathcal{R}$ and U = e(A), then $\rho|_U = \rho \cap U^n = e(\rho)$.

- There is a Galois connection between operations and relations determined by the compatibility relation.
- **2** The Galois-closed subsets of operations are clones. (C)
- **③** The Galois-closed subsets of relations are relational clones. (\mathcal{R})
- Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map f → f|U is a clone homomorphism iff U is a subuniverse of A.
- Given the corresponding relation structure A[⊥] = ⟨A; C[⊥]⟩ and a subset U ⊆ A, the restriction map ρ ↦ ρ|_U is a relational clone homomorphism iff U is a neighborhood of A. I.e., U = e(A) for some idempotent e ∈ C₁.
- $If \rho \in \mathcal{R} \text{ and } U = e(A), \text{ then } \rho|_U = \rho \cap U^n = e(\rho).$

•
$$\mathbf{A}|_U = (\mathbf{A}^{\perp}|_U)^{\perp} = \langle U; e(\mathcal{C}) \rangle$$
 where
 $e(\mathcal{C}) = \{et \mid t \in \mathcal{C}\} = \bigcup_n \{t \in C_n \mid t(U^n) \subseteq U\}.$

Covers

The companion to localization is globalization.

Covers

The companion to localization is globalization. It is natural to expect to attack a problem with localization by translating the problem into a family of local problems, solving them locally, and then combining the local results into a global result.

Covers

The companion to localization is globalization. It is natural to expect to attack a problem with localization by translating the problem into a family of local problems, solving them locally, and then combining the local results into a global result.

Definition. A *cover* of \mathbf{A} is a set \mathcal{U} of neighborhoods for which

$$\bigwedge_{U \in \mathcal{U}} S|_U = T|_U \Longrightarrow S = T$$

for all $S, T \in \mathcal{R}$.

Picture

Picture

 \mathcal{U} is a cover if the collection of relational clone homomorphisms $|_U : \mathcal{R} \to \mathcal{R}|_U$ is jointly 1-1.

Theorem.

Theorem. The following are equivalent.

Theorem. The following are equivalent.**U** is cover of **A**.

Theorem. The following are equivalent.**U** is cover of **A**.
Theorem. The following are equivalent.

- \mathcal{U} is cover of **A**.
- **2** A satisfies an equation of the form

 $\lambda(e_1\rho_1(x),\ldots,e_m\rho_m(x))=x$

where $e_i(A) \in \mathcal{U}$ for all i and $\lambda, \rho_i \in \mathcal{C}$.

Theorem. The following are equivalent.

- \mathcal{U} is cover of **A**.
- **2** A satisfies an equation of the form

 $\lambda(e_1\rho_1(x),\ldots,e_m\rho_m(x))=x$

where $e_i(A) \in \mathcal{U}$ for all i and $\lambda, \rho_i \in \mathcal{C}$.

Theorem. The following are equivalent.

- \mathcal{U} is cover of **A**.
- **2** A satisfies an equation of the form

$$\lambda(e_1\rho_1(x),\ldots,e_m\rho_m(x))=x$$

where $e_i(A) \in \mathcal{U}$ for all i and $\lambda, \rho_i \in \mathcal{C}$. (This is the decomposition equation.)

Theorem. The following are equivalent.

- \mathcal{U} is cover of **A**.
- **a** satisfies an equation of the form

$$\lambda(e_1\rho_1(x),\ldots,e_m\rho_m(x))=x$$

where $e_i(A) \in \mathcal{U}$ for all i and $\lambda, \rho_i \in \mathcal{C}$. (This is the decomposition equation.)

§ \mathbf{A}^{\perp} is a retract of a product of relational structures from the set

$$\left\{\mathbf{A}^{\perp}|_{U} \mid U \in \mathcal{U}\right\}.$$

Theorem. The following are equivalent.

- \mathcal{U} is cover of **A**.
- **a** satisfies an equation of the form

$$\lambda(e_1\rho_1(x),\ldots,e_m\rho_m(x))=x$$

where $e_i(A) \in \mathcal{U}$ for all i and $\lambda, \rho_i \in \mathcal{C}$. (This is the decomposition equation.)

§ \mathbf{A}^{\perp} is a retract of a product of relational structures from the set

$$\left\{\mathbf{A}^{\perp}|_{U} \mid U \in \mathcal{U}\right\}.$$

Theorem. The following are equivalent.

- \mathcal{U} is cover of **A**.
- **2** A satisfies an equation of the form

$$\lambda(e_1\rho_1(x),\ldots,e_m\rho_m(x))=x$$

where $e_i(A) \in \mathcal{U}$ for all i and $\lambda, \rho_i \in \mathcal{C}$. (This is the decomposition equation.)

§ \mathbf{A}^{\perp} is a retract of a product of relational structures from the set

$$\left\{\mathbf{A}^{\perp}|_{U} \mid U \in \mathcal{U}\right\}.$$

This indicates that A is recoverable from the collection of all localizations $A|_U$, $U \in \mathcal{U}$, provided \mathcal{U} is a cover.

Theorem. The following are equivalent.

- \mathcal{U} is cover of **A**.
- **2** A satisfies an equation of the form

$$\lambda(e_1\rho_1(x),\ldots,e_m\rho_m(x))=x$$

where $e_i(A) \in \mathcal{U}$ for all i and $\lambda, \rho_i \in \mathcal{C}$. (This is the decomposition equation.)

§ \mathbf{A}^{\perp} is a retract of a product of relational structures from the set

$$\left\{\mathbf{A}^{\perp}|_{U} \mid U \in \mathcal{U}\right\}.$$

This indicates that A is recoverable from the collection of all localizations $A|_U, U \in U$, provided U is a cover. (Some 'side data' is needed to complete the reconstruction.)

Theorem. The following are equivalent.

- \mathcal{U} is cover of **A**.
- **2** A satisfies an equation of the form

$$\lambda(e_1\rho_1(x),\ldots,e_m\rho_m(x))=x$$

where $e_i(A) \in \mathcal{U}$ for all i and $\lambda, \rho_i \in \mathcal{C}$. (This is the decomposition equation.)

§ \mathbf{A}^{\perp} is a retract of a product of relational structures from the set

$$\left\{\mathbf{A}^{\perp}|_{U} \mid U \in \mathcal{U}\right\}.$$

This indicates that A is recoverable from the collection of all localizations $A|_U, U \in U$, provided U is a cover. (Some 'side data' is needed to complete the reconstruction.)

For (i) implies (ii):

For (i) implies (ii): Let $T = \{(t(a_i))_{i < |A|} | t \in C_1(\mathbf{A})\}$ be the *A*-ary relation consisting of graphs of unary clone operations.

For (i) implies (ii): Let $T = \{(t(a_i))_{i < |A|} | t \in C_1(\mathbf{A})\}$ be the A-ary relation consisting of graphs of unary clone operations. Let

$$S = \{ (t(a_i))_{i < |A|} \mid t(x) = \lambda(e_1\rho_1(x), \dots, e_m\rho_m(x)) \in C_1(\mathbf{A}), e_i^2 = e_i, e_i(A) \}$$

be the relation consisting of graphs of certain unary clone operations.

For (i) implies (ii): Let $T = \{(t(a_i))_{i < |A|} | t \in C_1(\mathbf{A})\}$ be the A-ary relation consisting of graphs of unary clone operations. Let

$$S = \{ (t(a_i))_{i < |A|} \mid t(x) = \lambda(e_1\rho_1(x), \dots, e_m\rho_m(x)) \in C_1(\mathbf{A}), e_i^2 = e_i, e_i(A) \}$$

be the relation consisting of graphs of certain unary clone operations. (Note:

For (i) implies (ii): Let $T = \{(t(a_i))_{i < |A|} | t \in C_1(\mathbf{A})\}$ be the A-ary relation consisting of graphs of unary clone operations. Let

$$S = \{ (t(a_i))_{i < |A|} \mid t(x) = \lambda(e_1\rho_1(x), \dots, e_m\rho_m(x)) \in C_1(\mathbf{A}), e_i^2 = e_i, e_i(A) \}$$

be the relation consisting of graphs of *certain* unary clone operations. (Note: For any $U_i = e_i(A)$ the relation $T|_{U_i}$ consists of the graphs of unary clone operations $e_i \rho_i$, where $\rho_i \in C_1$ is an arbitrary unary clone operation.

For (i) implies (ii): Let $T = \{(t(a_i))_{i < |A|} | t \in C_1(\mathbf{A})\}$ be the A-ary relation consisting of graphs of unary clone operations. Let

$$S = \{ (t(a_i))_{i < |A|} \mid t(x) = \lambda(e_1\rho_1(x), \dots, e_m\rho_m(x)) \in C_1(\mathbf{A}), e_i^2 = e_i, e_i(A) \}$$

be the relation consisting of graphs of *certain* unary clone operations. (Note: For any $U_i = e_i(A)$ the relation $T|_{U_i}$ consists of the graphs of unary clone operations $e_i\rho_i$, where $\rho_i \in C_1$ is an arbitrary unary clone operation. Thus, Sis the compatible relation of **A** generated by all sets $T|_{U_i}$.

For (i) implies (ii): Let $T = \{(t(a_i))_{i < |A|} | t \in C_1(\mathbf{A})\}$ be the A-ary relation consisting of graphs of unary clone operations. Let

$$S = \{ (t(a_i))_{i < |A|} \mid t(x) = \lambda(e_1\rho_1(x), \dots, e_m\rho_m(x)) \in C_1(\mathbf{A}), e_i^2 = e_i, e_i(A) \}$$

be the relation consisting of graphs of *certain* unary clone operations. (Note: For any $U_i = e_i(A)$ the relation $T|_{U_i}$ consists of the graphs of unary clone operations $e_i\rho_i$, where $\rho_i \in C_1$ is an arbitrary unary clone operation. Thus, Sis the compatible relation of **A** generated by all sets $T|_{U_i}$. As such we have $T|_{U_i} \subseteq S \subseteq T$ for all i.)

For (i) implies (ii): Let $T = \{(t(a_i))_{i < |A|} | t \in C_1(\mathbf{A})\}$ be the A-ary relation consisting of graphs of unary clone operations. Let

$$S = \{ (t(a_i))_{i < |A|} \mid t(x) = \lambda(e_1\rho_1(x), \dots, e_m\rho_m(x)) \in C_1(\mathbf{A}), e_i^2 = e_i, e_i(A) \}$$

be the relation consisting of graphs of *certain* unary clone operations. (Note: For any $U_i = e_i(A)$ the relation $T|_{U_i}$ consists of the graphs of unary clone operations $e_i\rho_i$, where $\rho_i \in C_1$ is an arbitrary unary clone operation. Thus, Sis the compatible relation of **A** generated by all sets $T|_{U_i}$. As such we have $T|_{U_i} \subseteq S \subseteq T$ for all i.)

We have $S|_U = T|_U$ for all $U \in \mathcal{U}$.

For (i) implies (ii): Let $T = \{(t(a_i))_{i < |A|} | t \in C_1(\mathbf{A})\}$ be the A-ary relation consisting of graphs of unary clone operations. Let

$$S = \{ (t(a_i))_{i < |A|} \mid t(x) = \lambda(e_1\rho_1(x), \dots, e_m\rho_m(x)) \in C_1(\mathbf{A}), e_i^2 = e_i, e_i(A) \}$$

be the relation consisting of graphs of *certain* unary clone operations. (Note: For any $U_i = e_i(A)$ the relation $T|_{U_i}$ consists of the graphs of unary clone operations $e_i\rho_i$, where $\rho_i \in C_1$ is an arbitrary unary clone operation. Thus, Sis the compatible relation of **A** generated by all sets $T|_{U_i}$. As such we have $T|_{U_i} \subseteq S \subseteq T$ for all i.)

We have $S|_U = T|_U$ for all $U \in \mathcal{U}$. If (i) holds than this implies that S = T,

For (i) implies (ii): Let $T = \{(t(a_i))_{i < |A|} | t \in C_1(\mathbf{A})\}$ be the A-ary relation consisting of graphs of unary clone operations. Let

$$S = \{ (t(a_i))_{i < |A|} \mid t(x) = \lambda(e_1\rho_1(x), \dots, e_m\rho_m(x)) \in C_1(\mathbf{A}), e_i^2 = e_i, e_i(A) \}$$

be the relation consisting of graphs of *certain* unary clone operations. (Note: For any $U_i = e_i(A)$ the relation $T|_{U_i}$ consists of the graphs of unary clone operations $e_i\rho_i$, where $\rho_i \in C_1$ is an arbitrary unary clone operation. Thus, Sis the compatible relation of **A** generated by all sets $T|_{U_i}$. As such we have $T|_{U_i} \subseteq S \subseteq T$ for all i.)

We have $S|_U = T|_U$ for all $U \in \mathcal{U}$. If (i) holds than this implies that S = T, so S contains the graph of the identity function. This implies that (ii) holds.

If (ii) holds,

If (ii) holds, then $\Lambda = \lambda(x_1, \ldots, x_m)$ and $ER = (e_1\rho_1(x), \ldots, e_m\rho_m(x))$ are morphisms between the relational structures $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ and \mathbf{A}^{\perp} ,

If (ii) holds, then $\Lambda = \lambda(x_1, \ldots, x_m)$ and $ER = (e_1\rho_1(x), \ldots, e_m\rho_m(x))$ are morphisms between the relational structures $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ and \mathbf{A}^{\perp} , which I consider to be structures in the language \mathcal{R} ,

If (ii) holds, then $\Lambda = \lambda(x_1, \ldots, x_m)$ and $ER = (e_1\rho_1(x), \ldots, e_m\rho_m(x))$ are morphisms between the relational structures $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ and \mathbf{A}^{\perp} , which I consider to be structures in the language \mathcal{R} , and these morphisms satisfy $\Lambda \circ ER = \mathrm{id}_A$.

If (ii) holds, then $\Lambda = \lambda(x_1, \ldots, x_m)$ and $ER = (e_1\rho_1(x), \ldots, e_m\rho_m(x))$ are morphisms between the relational structures $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ and \mathbf{A}^{\perp} , which I consider to be structures in the language \mathcal{R} , and these morphisms satisfy $\Lambda \circ ER = \mathrm{id}_A$. Thus, $ER \circ \Lambda$ is a retraction of the relational structure $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ onto the relational structure \mathbf{A}^{\perp} .

If (ii) holds, then $\Lambda = \lambda(x_1, \ldots, x_m)$ and $ER = (e_1\rho_1(x), \ldots, e_m\rho_m(x))$ are morphisms between the relational structures $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ and \mathbf{A}^{\perp} , which I consider to be structures in the language \mathcal{R} , and these morphisms satisfy $\Lambda \circ ER = \mathrm{id}_A$. Thus, $ER \circ \Lambda$ is a retraction of the relational structure $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ onto the relational structure \mathbf{A}^{\perp} . This shows that (iii) holds.

If (ii) holds, then $\Lambda = \lambda(x_1, \ldots, x_m)$ and $ER = (e_1\rho_1(x), \ldots, e_m\rho_m(x))$ are morphisms between the relational structures $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ and \mathbf{A}^{\perp} , which I consider to be structures in the language \mathcal{R} , and these morphisms satisfy $\Lambda \circ ER = \mathrm{id}_A$. Thus, $ER \circ \Lambda$ is a retraction of the relational structure $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ onto the relational structure \mathbf{A}^{\perp} . This shows that (iii) holds.

Now assume that (iii) holds.

If (ii) holds, then $\Lambda = \lambda(x_1, \ldots, x_m)$ and $ER = (e_1\rho_1(x), \ldots, e_m\rho_m(x))$ are morphisms between the relational structures $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ and \mathbf{A}^{\perp} , which I consider to be structures in the language \mathcal{R} , and these morphisms satisfy $\Lambda \circ ER = \mathrm{id}_A$. Thus, $ER \circ \Lambda$ is a retraction of the relational structure $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ onto the relational structure \mathbf{A}^{\perp} . This shows that (iii) holds.

Now assume that (iii) holds. Choose compatible relations $S \subseteq T$ such that $S|_U = T|_U$ for all $U \in \mathcal{U}$.

If (ii) holds, then $\Lambda = \lambda(x_1, \ldots, x_m)$ and $ER = (e_1\rho_1(x), \ldots, e_m\rho_m(x))$ are morphisms between the relational structures $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ and \mathbf{A}^{\perp} , which I consider to be structures in the language \mathcal{R} , and these morphisms satisfy $\Lambda \circ ER = \mathrm{id}_A$. Thus, $ER \circ \Lambda$ is a retraction of the relational structure $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ onto the relational structure \mathbf{A}^{\perp} . This shows that (iii) holds.

Now assume that (iii) holds. Choose compatible relations $S \subseteq T$ such that $S|_U = T|_U$ for all $U \in \mathcal{U}$. Thus S = T in $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$, and hence in any retract.

If (ii) holds, then $\Lambda = \lambda(x_1, \ldots, x_m)$ and $ER = (e_1\rho_1(x), \ldots, e_m\rho_m(x))$ are morphisms between the relational structures $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ and \mathbf{A}^{\perp} , which I consider to be structures in the language \mathcal{R} , and these morphisms satisfy $\Lambda \circ ER = \mathrm{id}_A$. Thus, $ER \circ \Lambda$ is a retraction of the relational structure $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ onto the relational structure \mathbf{A}^{\perp} . This shows that (iii) holds.

Now assume that (iii) holds. Choose compatible relations $S \subseteq T$ such that $S|_U = T|_U$ for all $U \in \mathcal{U}$. Thus S = T in $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$, and hence in any retract. From (iii) we get that S = T, establishing that \mathcal{U} is a cover.

If (ii) holds, then $\Lambda = \lambda(x_1, \ldots, x_m)$ and $ER = (e_1\rho_1(x), \ldots, e_m\rho_m(x))$ are morphisms between the relational structures $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ and \mathbf{A}^{\perp} , which I consider to be structures in the language \mathcal{R} , and these morphisms satisfy $\Lambda \circ ER = \mathrm{id}_A$. Thus, $ER \circ \Lambda$ is a retraction of the relational structure $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$ onto the relational structure \mathbf{A}^{\perp} . This shows that (iii) holds.

Now assume that (iii) holds. Choose compatible relations $S \subseteq T$ such that $S|_U = T|_U$ for all $U \in \mathcal{U}$. Thus S = T in $\mathbf{A}^{\perp}|_{U_1} \times \cdots \times \mathbf{A}^{\perp}|_{U_m}$, and hence in any retract. From (iii) we get that S = T, establishing that \mathcal{U} is a cover. \Box

Let M be an R-module.

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex.

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood.

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.
Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$.

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set \mathcal{U}

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set $\mathcal{U} = \{U_1 = E_1(M) = e_1 M,$

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set $\mathcal{U} = \{U_1 = E_1(M) = e_1M, U_2 = E_2(M) = e_2M,$

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set $\mathcal{U} = \{U_1 = E_1(M) = e_1M, U_2 = E_2(M) = e_2M, \ldots\}$

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set $\mathcal{U} = \{U_1 = E_1(M) = e_1M, U_2 = E_2(M) = e_2M, \ldots\}$ of neighborhoods of this form is a cover of M

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set $\mathcal{U} = \{U_1 = E_1(M) = e_1M, U_2 = E_2(M) = e_2M, \ldots\}$ of neighborhoods of this form is a cover of M iff the ideal generated by the set $\{e_i \mid i \in I\} \subseteq R$ is the unit ideal.

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set $\mathcal{U} = \{U_1 = E_1(M) = e_1M, U_2 = E_2(M) = e_2M, \ldots\}$ of neighborhoods of this form is a cover of M iff the ideal generated by the set $\{e_i \mid i \in I\} \subseteq R$ is the unit ideal. In this case, there exists elements $\ell_i, r_i \in R$ such that

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set $\mathcal{U} = \{U_1 = E_1(M) = e_1M, U_2 = E_2(M) = e_2M, \ldots\}$ of neighborhoods of this form is a cover of M iff the ideal generated by the set $\{e_i \mid i \in I\} \subseteq R$ is the unit ideal. In this case, there exists elements $\ell_i, r_i \in R$ such that

$$1 = \ell_1 e_1 r_1 + \ell_2 e_2 r_2 + \dots + \ell_n e_n r_n.$$

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set $\mathcal{U} = \{U_1 = E_1(M) = e_1M, U_2 = E_2(M) = e_2M, \ldots\}$ of neighborhoods of this form is a cover of M iff the ideal generated by the set $\{e_i \mid i \in I\} \subseteq R$ is the unit ideal. In this case, there exists elements $\ell_i, r_i \in R$ such that

$$1 = \ell_1 e_1 r_1 + \ell_2 e_2 r_2 + \dots + \ell_n e_n r_n.$$

Then define $\lambda(x_1, \ldots, x_n) = \ell_1 x_1 + \cdots + \ell_n x_n$

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set $\mathcal{U} = \{U_1 = E_1(M) = e_1M, U_2 = E_2(M) = e_2M, \ldots\}$ of neighborhoods of this form is a cover of M iff the ideal generated by the set $\{e_i \mid i \in I\} \subseteq R$ is the unit ideal. In this case, there exists elements $\ell_i, r_i \in R$ such that

$$1 = \ell_1 e_1 r_1 + \ell_2 e_2 r_2 + \dots + \ell_n e_n r_n.$$

Then define $\lambda(x_1, \ldots, x_n) = \ell_1 x_1 + \cdots + \ell_n x_n$ and $\rho_i(x) = r_i x$.

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set $\mathcal{U} = \{U_1 = E_1(M) = e_1M, U_2 = E_2(M) = e_2M, \ldots\}$ of neighborhoods of this form is a cover of M iff the ideal generated by the set $\{e_i \mid i \in I\} \subseteq R$ is the unit ideal. In this case, there exists elements $\ell_i, r_i \in R$ such that

$$1 = \ell_1 e_1 r_1 + \ell_2 e_2 r_2 + \dots + \ell_n e_n r_n.$$

Then define $\lambda(x_1, \ldots, x_n) = \ell_1 x_1 + \cdots + \ell_n x_n$ and $\rho_i(x) = r_i x$. We get $\lambda(e_1 \rho_1(x), \ldots, e_n \rho_n(x)) = 1x = x$, as desired.

Let M be an R-module. For each idempotent $e \in R$, there is a unary clone operation E(x) = ex. The set U = E(M) is a neighborhood. The structure $M|_U$ is that of a eRe-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain $0 \in M$. It can be shown that every neighborhood of M is isomorphic to one of this form.

A set $\mathcal{U} = \{U_1 = E_1(M) = e_1M, U_2 = E_2(M) = e_2M, \ldots\}$ of neighborhoods of this form is a cover of M iff the ideal generated by the set $\{e_i \mid i \in I\} \subseteq R$ is the unit ideal. In this case, there exists elements $\ell_i, r_i \in R$ such that

$$1 = \ell_1 e_1 r_1 + \ell_2 e_2 r_2 + \dots + \ell_n e_n r_n.$$

Then define $\lambda(x_1, \ldots, x_n) = \ell_1 x_1 + \cdots + \ell_n x_n$ and $\rho_i(x) = r_i x$. We get $\lambda(e_1 \rho_1(x), \ldots, e_n \rho_n(x)) = 1x = x$, as desired.

This provides an avenue to reduce the study of modules to the study of modules over local rings.

Let A be a finite algebra with a Maltsev polynomial.

Let **A** be a finite algebra with a Maltsev polynomial. (p(x, y, y) = x = p(y, y, x)).

Let **A** be a finite algebra with a Maltsev polynomial. (p(x, y, y) = x = p(y, y, x)).Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A .

Let \mathbf{A} be a finite algebra with a Maltsev polynomial.

(p(x, y, y) = x = p(y, y, x)).

Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A . Assume that, for every covering pair of congruences,

Let **A** be a finite algebra with a Maltsev polynomial.

(p(x, y, y) = x = p(y, y, x)).

Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A . Assume that, for every covering pair of congruences, $\alpha \prec \beta$,

Let \mathbf{A} be a finite algebra with a Maltsev polynomial.

(p(x, y, y) = x = p(y, y, x)).

Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A . Assume that, for every covering pair of congruences, $\alpha \prec \beta$, there is some $U \in \mathcal{U}$ such that $\alpha|_U \neq \beta|_U$.

Let \mathbf{A} be a finite algebra with a Maltsev polynomial.

(p(x, y, y) = x = p(y, y, x)).

Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A . Assume that, for every covering pair of congruences, $\alpha \prec \beta$, there is some $U \in \mathcal{U}$ such that $\alpha|_U \neq \beta|_U$. Then the set \mathcal{U} covers \mathbf{A}_A .

Let \mathbf{A} be a finite algebra with a Maltsev polynomial.

(p(x, y, y) = x = p(y, y, x)).

Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A . Assume that, for every covering pair of congruences, $\alpha \prec \beta$, there is some $U \in \mathcal{U}$ such that $\alpha|_U \neq \beta|_U$. Then the set \mathcal{U} covers \mathbf{A}_A .

Special case.

Let \mathbf{A} be a finite algebra with a Maltsev polynomial.

(p(x, y, y) = x = p(y, y, x)).

Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A . Assume that, for every covering pair of congruences, $\alpha \prec \beta$, there is some $U \in \mathcal{U}$ such that $\alpha|_U \neq \beta|_U$. Then the set \mathcal{U} covers \mathbf{A}_A .

Special case.

Let A be a finite group

Let \mathbf{A} be a finite algebra with a Maltsev polynomial.

(p(x, y, y) = x = p(y, y, x)).

Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A . Assume that, for every covering pair of congruences, $\alpha \prec \beta$, there is some $U \in \mathcal{U}$ such that $\alpha|_U \neq \beta|_U$. Then the set \mathcal{U} covers \mathbf{A}_A .

Special case.

Let A be a finite group and let \mathcal{U} be a set of Sylow subgroups

Let \mathbf{A} be a finite algebra with a Maltsev polynomial.

(p(x, y, y) = x = p(y, y, x)).

Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A . Assume that, for every covering pair of congruences, $\alpha \prec \beta$, there is some $U \in \mathcal{U}$ such that $\alpha|_U \neq \beta|_U$. Then the set \mathcal{U} covers \mathbf{A}_A .

Special case.

Let A be a finite group and let \mathcal{U} be a set of Sylow subgroups containing at least *p*-subgroup one for each prime *p*.

Let \mathbf{A} be a finite algebra with a Maltsev polynomial.

(p(x, y, y) = x = p(y, y, x)).

Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A . Assume that, for every covering pair of congruences, $\alpha \prec \beta$, there is some $U \in \mathcal{U}$ such that $\alpha|_U \neq \beta|_U$. Then the set \mathcal{U} covers \mathbf{A}_A .

Special case.

Let A be a finite group and let \mathcal{U} be a set of Sylow subgroups containing at least *p*-subgroup one for each prime *p*. Then A_A is covered by \mathcal{U} .

Let \mathbf{A} be a finite algebra with a Maltsev polynomial.

(p(x, y, y) = x = p(y, y, x)).

Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A . Assume that, for every covering pair of congruences, $\alpha \prec \beta$, there is some $U \in \mathcal{U}$ such that $\alpha|_U \neq \beta|_U$. Then the set \mathcal{U} covers \mathbf{A}_A .

Special case.

Let **A** be a finite group and let \mathcal{U} be a set of Sylow subgroups containing at least *p*-subgroup one for each prime *p*. Then \mathbf{A}_A is covered by \mathcal{U} . This implies that the polynomial structure of a finite group can be recovered from the structure induced on its Sylow subgroups. Each of these localizations, $\mathbf{A}_A|_P$, is equipped with the group structure on *P*,

Let \mathbf{A} be a finite algebra with a Maltsev polynomial.

(p(x, y, y) = x = p(y, y, x)).

Let \mathcal{U} be a set of neighborhoods of \mathbf{A}_A . Assume that, for every covering pair of congruences, $\alpha \prec \beta$, there is some $U \in \mathcal{U}$ such that $\alpha|_U \neq \beta|_U$. Then the set \mathcal{U} covers \mathbf{A}_A .

Special case.

Let **A** be a finite group and let \mathcal{U} be a set of Sylow subgroups containing at least *p*-subgroup one for each prime *p*. Then \mathbf{A}_A is covered by \mathcal{U} . This implies that the polynomial structure of a finite group can be recovered from the structure induced on its Sylow subgroups. Each of these localizations, $\mathbf{A}_A|_P$, is equipped with the group structure on *P*, with possibly some additional structure.

From now on A is finite.

From now on A is finite. If $\mathcal{U} = \{U_1, \ldots, U_m\}$ covers A, then A is "reconstructible" from $\mathbf{A}|_{U_1}, \ldots, \mathbf{A}|_{U_m}$.

From now on **A** is finite. If $\mathcal{U} = \{U_1, \ldots, U_m\}$ covers **A**, then **A** is "reconstructible" from $\mathbf{A}|_{U_1}, \ldots, \mathbf{A}|_{U_m}$. We may try to further decompose each $\mathbf{A}|_{U_i}$ by the same method.

From now on **A** is finite. If $\mathcal{U} = \{U_1, \ldots, U_m\}$ covers **A**, then **A** is "reconstructible" from $\mathbf{A}|_{U_1}, \ldots, \mathbf{A}|_{U_m}$. We may try to further decompose each $\mathbf{A}|_{U_i}$ by the same method. This leads to the concept of a refinement of a cover.

From now on **A** is finite. If $\mathcal{U} = \{U_1, \ldots, U_m\}$ covers **A**, then **A** is "reconstructible" from $\mathbf{A}|_{U_1}, \ldots, \mathbf{A}|_{U_m}$. We may try to further decompose each $\mathbf{A}|_{U_i}$ by the same method. This leads to the concept of a refinement of a cover.

Definition.

From now on **A** is finite. If $\mathcal{U} = \{U_1, \ldots, U_m\}$ covers **A**, then **A** is "reconstructible" from $\mathbf{A}|_{U_1}, \ldots, \mathbf{A}|_{U_m}$. We may try to further decompose each $\mathbf{A}|_{U_i}$ by the same method. This leads to the concept of a refinement of a cover.

Definition. The set \mathcal{V} of neighborhoods *covers* the neighborhood U if

$$\bigwedge_{V \in \mathcal{V}} S|_V = T|_V \Longrightarrow S|_U = T|_U$$

for all $S, T \in \mathcal{R}$.
From now on **A** is finite. If $\mathcal{U} = \{U_1, \ldots, U_m\}$ covers **A**, then **A** is "reconstructible" from $\mathbf{A}|_{U_1}, \ldots, \mathbf{A}|_{U_m}$. We may try to further decompose each $\mathbf{A}|_{U_i}$ by the same method. This leads to the concept of a refinement of a cover.

Definition. The set \mathcal{V} of neighborhoods *covers* the neighborhood U if

$$\bigwedge_{V \in \mathcal{V}} S|_V = T|_V \Longrightarrow S|_U = T|_U$$

for all $S, T \in \mathcal{R}$.

Equivalently,

From now on **A** is finite. If $\mathcal{U} = \{U_1, \dots, U_m\}$ covers **A**, then **A** is "reconstructible" from $\mathbf{A}|_{U_1}, \dots, \mathbf{A}|_{U_m}$. We may try to further decompose each $\mathbf{A}|_{U_i}$ by the same method. This leads to the concept of a refinement of a cover.

Definition. The set \mathcal{V} of neighborhoods *covers* the neighborhood U if

$$\bigwedge_{V \in \mathcal{V}} S|_V = T|_V \Longrightarrow S|_U = T|_U$$

for all $S, T \in \mathcal{R}$.

Equivalently,

$$\mathbf{A} \models \lambda(e_1\rho_1(x), \dots, e_n\rho_n(x)) = e(x)$$

with $e_i(A) \in \mathcal{V}$ and e(A) = U.

From now on **A** is finite. If $\mathcal{U} = \{U_1, \ldots, U_m\}$ covers **A**, then **A** is "reconstructible" from $\mathbf{A}|_{U_1}, \ldots, \mathbf{A}|_{U_m}$. We may try to further decompose each $\mathbf{A}|_{U_i}$ by the same method. This leads to the concept of a refinement of a cover.

Definition. The set \mathcal{V} of neighborhoods *covers* the neighborhood U if

$$\bigwedge_{V \in \mathcal{V}} S|_V = T|_V \Longrightarrow S|_U = T|_U$$

for all $S, T \in \mathcal{R}$.

Equivalently,

$$\mathbf{A} \models \lambda(e_1\rho_1(x), \dots, e_n\rho_n(x)) = e(x)$$

with $e_i(A) \in \mathcal{V}$ and e(A) = U.

Definition.

From now on **A** is finite. If $\mathcal{U} = \{U_1, \ldots, U_m\}$ covers **A**, then **A** is "reconstructible" from $\mathbf{A}|_{U_1}, \ldots, \mathbf{A}|_{U_m}$. We may try to further decompose each $\mathbf{A}|_{U_i}$ by the same method. This leads to the concept of a refinement of a cover.

Definition. The set \mathcal{V} of neighborhoods *covers* the neighborhood U if

$$\bigwedge_{V \in \mathcal{V}} S|_V = T|_V \Longrightarrow S|_U = T|_U$$

for all $S, T \in \mathcal{R}$.

Equivalently,

$$\mathbf{A} \models \lambda(e_1\rho_1(x), \dots, e_n\rho_n(x)) = e(x)$$

with $e_i(A) \in \mathcal{V}$ and e(A) = U.

Definition. \mathcal{V} refines \mathcal{U} if each $V \in \mathcal{V}$ is contained in some $U \in \mathcal{U}$ and \mathcal{V} covers each $U \in \mathcal{U}$.

From now on **A** is finite. If $\mathcal{U} = \{U_1, \ldots, U_m\}$ covers **A**, then **A** is "reconstructible" from $\mathbf{A}|_{U_1}, \ldots, \mathbf{A}|_{U_m}$. We may try to further decompose each $\mathbf{A}|_{U_i}$ by the same method. This leads to the concept of a refinement of a cover.

Definition. The set \mathcal{V} of neighborhoods *covers* the neighborhood U if

$$\bigwedge_{V \in \mathcal{V}} S|_V = T|_V \Longrightarrow S|_U = T|_U$$

for all $S, T \in \mathcal{R}$.

Equivalently,

$$\mathbf{A} \models \lambda(e_1\rho_1(x), \dots, e_n\rho_n(x)) = e(x)$$

with $e_i(A) \in \mathcal{V}$ and e(A) = U.

Definition. \mathcal{V} refines \mathcal{U} if each $V \in \mathcal{V}$ is contained in some $U \in \mathcal{U}$ and \mathcal{V} covers each $U \in \mathcal{U}$.

Uniqueness

Theorem.

Proof sketch.

Proof sketch. For each n, and each join irreducible relation T with lower cover S in the meet semilattice R_n ,

Proof sketch. For each n, and each join irreducible relation T with lower cover S in the meet semilattice R_n , choose a neighborhood $U \subseteq A$ that separates S and T.

Proof sketch. For each n, and each join irreducible relation T with lower cover S in the meet semilattice R_n , choose a neighborhood $U \subseteq A$ that separates S and T. Show that the choice of U is determined up to isomorphism by $\langle S, T \rangle$.

Proof sketch. For each n, and each join irreducible relation T with lower cover S in the meet semilattice R_n , choose a neighborhood $U \subseteq A$ that separates S and T. Show that the choice of U is determined up to isomorphism by $\langle S, T \rangle$. Let \mathcal{U} be the set of maximal neighborhoods from this collection.

Proof sketch. For each n, and each join irreducible relation T with lower cover S in the meet semilattice R_n , choose a neighborhood $U \subseteq A$ that separates S and T. Show that the choice of U is determined up to isomorphism by $\langle S, T \rangle$. Let \mathcal{U} be the set of maximal neighborhoods from this collection. Show that every cover can be refined to one like this one.

Proof sketch. For each n, and each join irreducible relation T with lower cover S in the meet semilattice R_n , choose a neighborhood $U \subseteq A$ that separates S and T. Show that the choice of U is determined up to isomorphism by $\langle S, T \rangle$. Let \mathcal{U} be the set of maximal neighborhoods from this collection. Show that every cover can be refined to one like this one. \Box

Proof sketch. For each n, and each join irreducible relation T with lower cover S in the meet semilattice R_n , choose a neighborhood $U \subseteq A$ that separates S and T. Show that the choice of U is determined up to isomorphism by $\langle S, T \rangle$. Let \mathcal{U} be the set of maximal neighborhoods from this collection. Show that every cover can be refined to one like this one. \Box

Possible Interpretation.

Proof sketch. For each n, and each join irreducible relation T with lower cover S in the meet semilattice R_n , choose a neighborhood $U \subseteq A$ that separates S and T. Show that the choice of U is determined up to isomorphism by $\langle S, T \rangle$. Let \mathcal{U} be the set of maximal neighborhoods from this collection. Show that every cover can be refined to one like this one. \Box

Possible Interpretation. Every finite algebra can be decomposed into (and reconstructed from) a unique 'optimal' collection of localizations of the form $\mathbf{A}|_U$.

Proof sketch. For each n, and each join irreducible relation T with lower cover S in the meet semilattice R_n , choose a neighborhood $U \subseteq A$ that separates S and T. Show that the choice of U is determined up to isomorphism by $\langle S, T \rangle$. Let \mathcal{U} be the set of maximal neighborhoods from this collection. Show that every cover can be refined to one like this one. \Box

Possible Interpretation. Every finite algebra can be decomposed into (and reconstructed from) a unique 'optimal' collection of localizations of the form $\mathbf{A}|_U$. Each such $\mathbf{A}|_U$ has the property that U is " $\langle S, T \rangle$ -irreducible" for some join-irreducible relation T with lower cover S.

Proof sketch. For each n, and each join irreducible relation T with lower cover S in the meet semilattice R_n , choose a neighborhood $U \subseteq A$ that separates S and T. Show that the choice of U is determined up to isomorphism by $\langle S, T \rangle$. Let \mathcal{U} be the set of maximal neighborhoods from this collection. Show that every cover can be refined to one like this one. \Box

Possible Interpretation. Every finite algebra can be decomposed into (and reconstructed from) a unique 'optimal' collection of localizations of the form $A|_U$. Each such $A|_U$ has the property that U is " $\langle S, T \rangle$ -irreducible" for some join-irreducible relation T with lower cover S. The set U must appear in any cover of the algebra $A|_U$.

In a perfect world, the class of $\langle S,T\rangle\text{-irreducible algebras would be classifiable.$

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following:

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.**

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

subalgebras,

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

subalgebras,

- subalgebras,
- 2 congruences, or

- subalgebras,
- 2 congruences, or

- subalgebras,
- 2 congruences, or
- neighborhoods,

- subalgebras,
- 2 congruences, or
- neighborhoods,

- subalgebras,
- 2 congruences, or
- neighborhoods,
- then $\langle A; \mathcal{C} \rangle$ belongs to one of the following four classes,

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; C \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

- subalgebras,
- 2 congruences, or
- Ineighborhoods,

then $\langle A; \mathcal{C} \rangle$ belongs to one of the following four classes, each of which has been fully described:

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

- subalgebras,
- 2 congruences, or
- Ineighborhoods,

then $\langle A; \mathcal{C} \rangle$ belongs to one of the following four classes, each of which has been fully described:

(Pálfy) the class of finite, simple, minimal algebras,

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

- subalgebras,
- 2 congruences, or
- Ineighborhoods,

then $\langle A; \mathcal{C} \rangle$ belongs to one of the following four classes, each of which has been fully described:

(Pálfy) the class of finite, simple, minimal algebras,

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

- subalgebras,
- 2 congruences, or
- Ineighborhoods,

then $\langle A; \mathcal{C} \rangle$ belongs to one of the following four classes, each of which has been fully described:

- (Pálfy) the class of finite, simple, minimal algebras,
- 2 (Szendrei) the class of finite, idempotent, strictly simple algebras,
In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

- subalgebras,
- 2 congruences, or
- Ineighborhoods,

- (Pálfy) the class of finite, simple, minimal algebras,
- 2 (Szendrei) the class of finite, idempotent, strictly simple algebras,

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

- subalgebras,
- 2 congruences, or
- Ineighborhoods,

- (Pálfy) the class of finite, simple, minimal algebras,
- (Szendrei) the class of finite, idempotent, strictly simple algebras,
- (Szendrei) the class of finite, simple *G*-algebras,

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

- subalgebras,
- 2 congruences, or
- Ineighborhoods,

- (Pálfy) the class of finite, simple, minimal algebras,
- (Szendrei) the class of finite, idempotent, strictly simple algebras,
- (Szendrei) the class of finite, simple *G*-algebras,

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

- subalgebras,
- 2 congruences, or
- Ineighborhoods,

- (Pálfy) the class of finite, simple, minimal algebras,
- (Szendrei) the class of finite, idempotent, strictly simple algebras,
- (Szendrei) the class of finite, simple *G*-algebras,
- (Szendrei) the class of finite, simple G^0 -algebras.

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

- subalgebras,
- 2 congruences, or
- Ineighborhoods,

- (Pálfy) the class of finite, simple, minimal algebras,
- (Szendrei) the class of finite, idempotent, strictly simple algebras,
- (Szendrei) the class of finite, simple *G*-algebras,
- (Szendrei) the class of finite, simple G^0 -algebras.

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

- subalgebras,
- 2 congruences, or
- Ineighborhoods,

then $\langle A; \mathcal{C} \rangle$ belongs to one of the following four classes, each of which has been fully described:

- (Pálfy) the class of finite, simple, minimal algebras,
- 2 (Szendrei) the class of finite, idempotent, strictly simple algebras,
- (Szendrei) the class of finite, simple *G*-algebras,
- (Szendrei) the class of finite, simple G^0 -algebras.

This is sufficient to understand the localizations to minimal neighborhoods of finite strictly simple algebras.

In a perfect world, the class of $\langle S, T \rangle$ -irreducible algebras would be classifiable. At present, one of the strongest classification theorems we have is the following: **Theorem.** Let $\mathbf{A} = \langle A; \mathcal{C} \rangle$ be a finite algebra. If \mathbf{A} has no nontrivial, proper

- subalgebras,
- 2 congruences, or
- Ineighborhoods,

then $\langle A; \mathcal{C} \rangle$ belongs to one of the following four classes, each of which has been fully described:

- (Pálfy) the class of finite, simple, minimal algebras,
- (Szendrei) the class of finite, idempotent, strictly simple algebras,
- (Szendrei) the class of finite, simple *G*-algebras,
- \bigcirc (Szendrei) the class of finite, simple G^0 -algebras.

This is sufficient to understand the localizations to minimal neighborhoods of finite strictly simple algebras. To go beyond that, we have to be satisfied with only a partial understanding of $\mathbf{A}|_U$.