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Recall (|A| < ω)

1 There is a Galois connection between operations and relations
determined by the compatibility relation.

2 The Galois-closed subsets of operations are clones. (C)
3 The Galois-closed subsets of relations are relational clones. (R)
4 Given an algebra A = ⟨A; C⟩ and a subset U ⊆ A, the restriction map

f 7→ f |U is a clone homomorphism iff U is a subuniverse of A.
5 Given the corresponding relation structure A⊥ = ⟨A; C⊥⟩ and a subset

U ⊆ A, the restriction map ρ 7→ ρ|U is a relational clone homomorphism
iff U is a neighborhood of A. I.e., U = e(A) for some idempotent
e ∈ C1.

6 If ρ ∈ R and U = e(A), then ρ|U = ρ ∩ Un = e(ρ).
7 A|U = (A⊥|U )⊥ = ⟨U ; e(C)⟩ where

e(C) = {et | t ∈ C} =
⋃

n{t ∈ Cn | t(Un) ⊆ U}.
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Covers

The companion to localization is globalization. It is natural to expect to attack
a problem with localization by translating the problem into a family of local
problems, solving them locally, and then combining the local results into a
global result.

Definition. A cover of A is a set U of neighborhoods for which∧
U∈U

S|U = T |U =⇒ S = T

for all S, T ∈ R.
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U is a cover if the collection of relational clone homomorphisms
|U : R → R|U is jointly 1-1.
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A characterization of covers

Theorem. The following are equivalent.

1 U is cover of A.
2 A satisfies an equation of the form

λ(e1ρ1(x), . . . , emρm(x)) = x

where ei(A) ∈ U for all i and λ, ρi ∈ C. (This is the decomposition
equation.)

3 A⊥ is a retract of a product of relational structures from the set{
A⊥|U | U ∈ U

}
.

This indicates that A is recoverable from the collection of all localizations
A|U , U ∈ U , provided U is a cover. (Some ‘side data’ is needed to complete
the reconstruction.)
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Proof, 1

For (i) implies (ii): Let T = {(t(ai))i<|A| | t ∈ C1(A)} be the A-ary relation
consisting of graphs of unary clone operations. Let

S = {(t(ai))i<|A| | t(x) = λ(e1ρ1(x), . . . , emρm(x)) ∈ C1(A), e2
i = ei, ei(A) ∈ U}

be the relation consisting of graphs of certain unary clone operations. (Note:
For any Ui = ei(A) the relation T |Ui consists of the graphs of unary clone
operations eiρi, where ρi ∈ C1 is an arbitrary unary clone operation. Thus, S
is the compatible relation of A generated by all sets T |Ui . As such we have
T |Ui ⊆ S ⊆ T for all i.)

We have S|U = T |U for all U ∈ U . If (i) holds than this implies that S = T ,
so S contains the graph of the identity function. This implies that (ii) holds.
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Proof, 2

If (ii) holds, then Λ = λ(x1, . . . , xm) and ER = (e1ρ1(x), . . . , emρm(x)) are
morphisms between the relational structures A⊥|U1 × · · · × A⊥|Um and A⊥,
which I consider to be structures in the language R, and these morphisms
satisfy Λ ◦ ER = idA. Thus, ER ◦ Λ is a retraction of the relational structure
A⊥|U1 × · · · × A⊥|Um onto the relational structure A⊥. This shows that (iii)
holds.

Now assume that (iii) holds. Choose compatible relations S ⊆ T such that
S|U = T |U for all U ∈ U . Thus S = T in A⊥|U1 × · · · × A⊥|Um , and hence
in any retract. From (iii) we get that S = T , establishing that U is a cover. 2
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S|U = T |U for all U ∈ U . Thus S = T in A⊥|U1 × · · · × A⊥|Um , and hence
in any retract. From (iii) we get that S = T , establishing that U is a cover.
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Example

Let M be an R-module. For each idempotent e ∈ R, there is a unary clone
operation E(x) = ex. The set U = E(M) is a neighborhood. The structure
M |U is that of a eRe-module with universe U .

The neighborhoods of the previous paragraph are special in that they contain
0 ∈ M . It can be shown that every neighborhood of M is isomorphic to one
of this form.

A set U = {U1 = E1(M) = e1M, U2 = E2(M) = e2M, . . .} of
neighborhoods of this form is a cover of M iff the ideal generated by the set
{ei | i ∈ I} ⊆ R is the unit ideal. In this case, there exists elements ℓi, ri ∈ R
such that

1 = ℓ1e1r1 + ℓ2e2r2 + · · · + ℓnenrn.

Then define λ(x1, . . . , xn) = ℓ1x1 + · · · + ℓnxn and ρi(x) = rix. We get
λ(e1ρ1(x), . . . , enρn(x)) = 1x = x, as desired.

This provides an avenue to reduce the study of modules to the study of
modules over local rings.
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Example

Let A be a finite algebra with a Maltsev polynomial.
(p(x, y, y) = x = p(y, y, x)).
Let U be a set of neighborhoods of AA. Assume that, for every covering pair
of congruences, α ≺ β, there is some U ∈ U such that α|U ̸= β|U . Then the
set U covers AA.

Special case.
Let A be a finite group and let U be a set of Sylow subgroups containing at
least p-subgroup one for each prime p. Then AA is covered by U . This
implies that the polynomial structure of a finite group can be recovered from
the structure induced on its Sylow subgroups. Each of these localizations,
AA|P , is equipped with the group structure on P , with possibly some
additional structure.
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least p-subgroup one for each prime p. Then AA is covered by U . This
implies that the polynomial structure of a finite group can be recovered from
the structure induced on its Sylow subgroups. Each of these localizations,
AA|P , is equipped with the group structure on P , with possibly some
additional structure.
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Refinements

From now on A is finite. If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

. We may try to further decompose each A|Ui
by the same

method. This leads to the concept of a refinement of a cover.

Definition. The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,
A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition. V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Refinements

From now on A is finite.

If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

. We may try to further decompose each A|Ui
by the same

method. This leads to the concept of a refinement of a cover.

Definition. The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,
A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition. V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Refinements

From now on A is finite. If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

.

We may try to further decompose each A|Ui
by the same

method. This leads to the concept of a refinement of a cover.

Definition. The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,
A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition. V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Refinements

From now on A is finite. If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

. We may try to further decompose each A|Ui
by the same

method.

This leads to the concept of a refinement of a cover.

Definition. The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,
A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition. V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Refinements

From now on A is finite. If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

. We may try to further decompose each A|Ui
by the same

method. This leads to the concept of a refinement of a cover.

Definition. The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,
A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition. V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Refinements

From now on A is finite. If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

. We may try to further decompose each A|Ui
by the same

method. This leads to the concept of a refinement of a cover.

Definition.

The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,
A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition. V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Refinements

From now on A is finite. If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

. We may try to further decompose each A|Ui
by the same

method. This leads to the concept of a refinement of a cover.

Definition. The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,
A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition. V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Refinements

From now on A is finite. If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

. We may try to further decompose each A|Ui
by the same

method. This leads to the concept of a refinement of a cover.

Definition. The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,

A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition. V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Refinements

From now on A is finite. If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

. We may try to further decompose each A|Ui
by the same

method. This leads to the concept of a refinement of a cover.

Definition. The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,
A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition. V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Refinements

From now on A is finite. If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

. We may try to further decompose each A|Ui
by the same

method. This leads to the concept of a refinement of a cover.

Definition. The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,
A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition.

V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Refinements

From now on A is finite. If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

. We may try to further decompose each A|Ui
by the same

method. This leads to the concept of a refinement of a cover.

Definition. The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,
A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition. V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Refinements

From now on A is finite. If U = {U1, . . . , Um} covers A, then A is “reconstructible”
from A|U1 , . . . , A|Um

. We may try to further decompose each A|Ui
by the same

method. This leads to the concept of a refinement of a cover.

Definition. The set V of neighborhoods covers the neighborhood U if∧
V ∈V

S|V = T |V =⇒ S|U = T |U

for all S, T ∈ R.

Equivalently,
A |= λ(e1ρ1(x), . . . , enρn(x)) = e(x)

with ei(A) ∈ V and e(A) = U .

Definition. V refines U if each V ∈ V is contained in some U ∈ U and V covers each
U ∈ U .

Talk #3: Covers 10 / 12



Uniqueness

Theorem. Any finite algebra has a unique irredundant nonrefinable cover up
to isomorphism.

Proof sketch. For each n, and each join irreducible relation T with lower
cover S in the meet semilattice Rn, choose a neighborhood U ⊆ A that
separates S and T . Show that the choice of U is determined up to
isomorphism by ⟨S, T ⟩. Let U be the set of maximal neighborhoods from this
collection. Show that every cover can be refined to one like this one. 2

Possible Interpretation. Every finite algebra can be decomposed into (and
reconstructed from) a unique ‘optimal’ collection of localizations of the form
A|U . Each such A|U has the property that U is “⟨S, T ⟩-irreducible” for some
join-irreducible relation T with lower cover S. The set U must appear in any
cover of the algebra A|U .
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