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@ There is a Galois connection between operations and relations
determined by the compatibility relation.

@ The Galois-closed subsets of operations are clones. (C)

© The Galois-closed subsets of relations are relational clones. (R)

© Given an algebra A = (A;C) and a subset U C A, the restriction map
f + flu is a clone homomorphism iff U is a subuniverse of A.

@ Given the corresponding relation structure A+ = (A;C*) and a subset
U C A, the restriction map p +— p|y is a relational clone homomorphism
iff U is a neighborhood of A. Le., U = e(A) for some idempotent
e € (.

Q IfpeRandU =e(A), then p|y = pNU" = e(p).
Q@ Aly = (At|p)*t = (U;e(C)) where
e(C)={et|telCt=U,{teC,|t(U™) CU}.
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The companion to localization is globalization. It is natural to expect to attack
a problem with localization by translating the problem into a family of local
problems, solving them locally, and then combining the local results into a
global result.

Definition. A cover of A is a set U of neighborhoods for which

/\ S|U=T|U:S:T
Ueld

forall S, T € R.
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Picture

U is a cover if the collection of relational clone homomorphisms
| : R — Ry is jointly 1-1.

Talk #3: Covers



A characterization of covers

Talk #3: Covers



A characterization of covers

Theorem.

Talk #3: Covers



A characterization of covers

Theorem. The following are equivalent.

Talk #3: Covers



A characterization of covers

Theorem. The following are equivalent.
@ U is cover of A.

Talk #3: Covers



A characterization of covers

Theorem. The following are equivalent.
@ U is cover of A.

Talk #3: Covers



A characterization of covers

Theorem. The following are equivalent.
© U iscoverof A.
© A satisfies an equation of the form

Aerpr(x), ... empm(x)) =

where e;(A) € U forall i and A, p; € C.

Talk #3: Covers



A characterization of covers

Theorem. The following are equivalent.
© U iscoverof A.
© A satisfies an equation of the form

Aerpr(x), ... empm(x)) =

where e;(A) € U forall i and A, p; € C.

Talk #3: Covers



A characterization of covers

Theorem. The following are equivalent.
© U iscoverof A.
© A satisfies an equation of the form

Aerpr(x), ... empm(x)) =

where e;(A) € U for all i and A, p; € C. (This is the decomposition
equation.)

Talk #3: Covers



A characterization of covers

Theorem. The following are equivalent.
© U iscoverof A.
© A satisfies an equation of the form

Aerpr(x), ... empm(x)) =

where e;(A) € U for all i and A, p; € C. (This is the decomposition
equation.)

@ A"l is aretract of a product of relational structures from the set

{Atly|Ueu}.

Talk #3: Covers



A characterization of covers

Theorem. The following are equivalent.
© U iscoverof A.
© A satisfies an equation of the form

Aerpr(x), ... empm(x)) =

where e;(A) € U for all i and A, p; € C. (This is the decomposition
equation.)

@ A"l is aretract of a product of relational structures from the set

{Atly|Ueu}.

Talk #3: Covers



A characterization of covers

Theorem. The following are equivalent.
© U iscoverof A.
© A satisfies an equation of the form

Aerpr(x), ... empm(x)) =

where e;(A) € U for all i and A, p; € C. (This is the decomposition
equation.)

@ A"l is aretract of a product of relational structures from the set

{Atly|Ueu}.

This indicates that A is recoverable from the collection of all localizations
Aly, U € U, provided U is a cover.

Talk #3: Covers



A characterization of covers

Theorem. The following are equivalent.
© U iscoverof A.
© A satisfies an equation of the form

Aerpr(x), ... empm(x)) =

where e;(A) € U for all i and A, p; € C. (This is the decomposition
equation.)

@ A"l is aretract of a product of relational structures from the set

{Atly|Ueu}.

This indicates that A is recoverable from the collection of all localizations
Aly, U € U, provided U is a cover. (Some ‘side data’ is needed to complete
the reconstruction.)

Talk #3: Covers



A characterization of covers

Theorem. The following are equivalent.
© U iscoverof A.
© A satisfies an equation of the form

Aerpr(x), ... empm(x)) =

where e;(A) € U for all i and A, p; € C. (This is the decomposition
equation.)

@ A"l is aretract of a product of relational structures from the set

{Atly|Ueu}.

This indicates that A is recoverable from the collection of all localizations
Aly, U € U, provided U is a cover. (Some ‘side data’ is needed to complete
the reconstruction.)

Talk #3: Covers



Talk #3: Covers



For (i) implies (ii):

Talk #3: Covers



For (i) implies (ii): Let T' = {(t(a;))i<|| | t € C1(A)} be the A-ary relation
consisting of graphs of unary clone operations.

Talk #3: Covers



For (i) implies (ii): Let T' = {(t(a;))i<|| | t € C1(A)} be the A-ary relation
consisting of graphs of unary clone operations. Let

S ={(t(a)icia | tx) = Ae1p1(2), .., empm(z)) € C1(A), € = ei,ei(A)

be the relation consisting of graphs of certain unary clone operations.

Talk #3: Covers



For (i) implies (ii): Let T' = {(t(a;))i<|| | t € C1(A)} be the A-ary relation
consisting of graphs of unary clone operations. Let

S ={(t(a)icia | tx) = Ae1p1(2), .., empm(z)) € C1(A), € = ei,ei(A)

be the relation consisting of graphs of certain unary clone operations. (Note:

Talk #3: Covers



For (i) implies (ii): Let T' = {(t(a;))i<|| | t € C1(A)} be the A-ary relation
consisting of graphs of unary clone operations. Let

S ={(t(a)icia | tx) = Ae1p1(2), .., empm(z)) € C1(A), € = ei,ei(A)

be the relation consisting of graphs of certain unary clone operations. (Note:
For any U; = e;(A) the relation T'|, consists of the graphs of unary clone
operations e;p;, where p; € C; is an arbitrary unary clone operation.

Talk #3: Covers



For (i) implies (ii): Let T' = {(t(a;))i<|| | t € C1(A)} be the A-ary relation
consisting of graphs of unary clone operations. Let

S ={(t(a)icia | tx) = Ae1p1(2), .., empm(z)) € C1(A), € = ei,ei(A)

be the relation consisting of graphs of certain unary clone operations. (Note:
For any U; = e;(A) the relation T'|, consists of the graphs of unary clone
operations e;p;, where p; € C; is an arbitrary unary clone operation. Thus, .S
is the compatible relation of A generated by all sets T'|,.

Talk #3: Covers



For (i) implies (ii): Let T' = {(t(a;))i<|| | t € C1(A)} be the A-ary relation
consisting of graphs of unary clone operations. Let

S ={(t(a)icia | tx) = Ae1p1(2), .., empm(z)) € C1(A), € = ei,ei(A)

be the relation consisting of graphs of certain unary clone operations. (Note:
For any U; = e;(A) the relation T'|, consists of the graphs of unary clone
operations e;p;, where p; € C; is an arbitrary unary clone operation. Thus, .S
is the compatible relation of A generated by all sets T'|y,. As such we have
Ty, €S CT foralli.)

Talk #3: Covers



For (i) implies (ii): Let T' = {(t(a;))i<|| | t € C1(A)} be the A-ary relation
consisting of graphs of unary clone operations. Let

S ={(t(a)icia | tx) = Ae1p1(2), .., empm(z)) € C1(A), € = ei,ei(A)

be the relation consisting of graphs of certain unary clone operations. (Note:
For any U; = e;(A) the relation T'|, consists of the graphs of unary clone
operations e;p;, where p; € C; is an arbitrary unary clone operation. Thus, .S
is the compatible relation of A generated by all sets T'|y,. As such we have
Ty, €S CT foralli.)

We have S|y = T|y forall U € U.

Talk #3: Covers



For (i) implies (ii): Let T' = {(t(a;))i<|| | t € C1(A)} be the A-ary relation
consisting of graphs of unary clone operations. Let

S ={(t(a)icia | tx) = Ae1p1(2), .., empm(z)) € C1(A), € = ei,ei(A)

be the relation consisting of graphs of certain unary clone operations. (Note:
For any U; = e;(A) the relation T'|, consists of the graphs of unary clone
operations e;p;, where p; € C; is an arbitrary unary clone operation. Thus, .S
is the compatible relation of A generated by all sets T'|y,. As such we have
Ty, €S CT foralli.)

We have S|y = T'|y for all U € Y. If (i) holds than this implies that S = T,

Talk #3: Covers



For (i) implies (ii): Let T' = {(t(a;))i<|| | t € C1(A)} be the A-ary relation
consisting of graphs of unary clone operations. Let

S ={(t(a)icia | tx) = Ae1p1(2), .., empm(z)) € C1(A), € = ei,ei(A)

be the relation consisting of graphs of certain unary clone operations. (Note:
For any U; = e;(A) the relation T'|, consists of the graphs of unary clone
operations e;p;, where p; € C; is an arbitrary unary clone operation. Thus, .S
is the compatible relation of A generated by all sets T'|y,. As such we have
Ty, €S CT foralli.)

We have S|y = T'|y for all U € Y. If (i) holds than this implies that S = T,
so S contains the graph of the identity function. This implies that (ii) holds.
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Let M be an R-module. For each idempotent e € R, there is a unary clone
operation E(z) = ex. The set U = E(M) is a neighborhood. The structure
M|y is that of a e Re-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain
0 € M. It can be shown that every neighborhood of M is isomorphic to one
of this form.

AsetU = {U; = Ey(M) = e1 M,
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Let M be an R-module. For each idempotent e € R, there is a unary clone
operation E(z) = ex. The set U = E(M) is a neighborhood. The structure
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Let M be an R-module. For each idempotent e € R, there is a unary clone
operation E(z) = ex. The set U = E(M) is a neighborhood. The structure
M|y is that of a e Re-module with universe U.

The neighborhoods of the previous paragraph are special in that they contain
0 € M. It can be shown that every neighborhood of M is isomorphic to one
of this form.

AsetUd = {Uy = By (M) = e1M,Us = Ey(M) = esM, ...} of
neighborhoods of this form is a cover of M iff the ideal generated by the set
{e; | i € I'} C R is the unit ideal. In this case, there exists elements ¢;,r; € R
such that

1 =1/lieir1 + boearg + -+ - + Lpenrn.

Then define )\(1’1, ERE) :En) = flxl + -+ gnl‘n and pl(x) =r;x. We get
Aerpi(x),...,enpn(z)) = 1z = x, as desired.

This provides an avenue to reduce the study of modules to the study of
modules over local rings.
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least p-subgroup one for each prime p. Then A 4 is covered by .
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implies that the polynomial structure of a finite group can be recovered from
the structure induced on its Sylow subgroups. Each of these localizations,

A 4|p, is equipped with the group structure on P,
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Let A be a finite algebra with a Maltsev polynomial.

(z,y,y) =z = p(y,y, x)).

Let U be a set of neighborhoods of A 4. Assume that, for every covering pair
of congruences, a < /3, there is some U € U such that «|y # (. Then the
set U covers A 4.

Special case.

Let A be a finite group and let U be a set of Sylow subgroups containing at
least p-subgroup one for each prime p. Then A 4 is covered by U/. This
implies that the polynomial structure of a finite group can be recovered from
the structure induced on its Sylow subgroups. Each of these localizations,

A 4|p, is equipped with the group structure on P, with possibly some
additional structure.
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Possible Interpretation. Every finite algebra can be decomposed into (and
reconstructed from) a unique ‘optimal’ collection of localizations of the form
A|y. Each such A|y has the property that U is “(S, T')-irreducible” for some
join-irreducible relation T" with lower cover S.
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Uniqueness

Theorem. Any finite algebra has a unique irredundant nonrefinable cover up
to isomorphism.

Proof sketch. For each n, and each join irreducible relation 7" with lower
cover S in the meet semilattice R, choose a neighborhood U C A that
separates S and 7T'. Show that the choice of U is determined up to
isomorphism by (S, T'). Let U be the set of maximal neighborhoods from this
collection. Show that every cover can be refined to one like this one. O

Possible Interpretation. Every finite algebra can be decomposed into (and
reconstructed from) a unique ‘optimal’ collection of localizations of the form
A|y. Each such A|y has the property that U is “(S, T')-irreducible” for some
join-irreducible relation 7" with lower cover .S. The set U must appear in any
cover of the algebra A |y .

Talk #3: Covers



Classification problems

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable.

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem.

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra.

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,

© congruences, or

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,

© congruences, or

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,
© congruences, or
@ neighborhoods,

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,
© congruences, or
@ neighborhoods,

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,
© congruences, or
@ neighborhoods,

then (A; C) belongs to one of the following four classes,

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,
© congruences, or
@ neighborhoods,

then (A; C) belongs to one of the following four classes, each of which has been fully
described:

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,
© congruences, or
@ neighborhoods,

then (A; C) belongs to one of the following four classes, each of which has been fully
described:

@ (Pdlfy) the class of finite, simple, minimal algebras,

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,
© congruences, or
@ neighborhoods,

then (A; C) belongs to one of the following four classes, each of which has been fully
described:

@ (Pdlfy) the class of finite, simple, minimal algebras,

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,
© congruences, or
@ neighborhoods,

then (A; C) belongs to one of the following four classes, each of which has been fully
described:

@ (Pdlfy) the class of finite, simple, minimal algebras,

© (Szendrei) the class of finite, idempotent, strictly simple algebras,

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,
© congruences, or
@ neighborhoods,

then (A; C) belongs to one of the following four classes, each of which has been fully
described:

@ (Pdlfy) the class of finite, simple, minimal algebras,

© (Szendrei) the class of finite, idempotent, strictly simple algebras,

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,
© congruences, or
@ neighborhoods,

then (A; C) belongs to one of the following four classes, each of which has been fully
described:

@ (Pdlfy) the class of finite, simple, minimal algebras,
© (Szendrei) the class of finite, idempotent, strictly simple algebras,

© (Szendrei) the class of finite, simple GG-algebras,

Talk #3: Covers



Classification problems

In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,
© congruences, or
@ neighborhoods,

then (A; C) belongs to one of the following four classes, each of which has been fully
described:

@ (Pdlfy) the class of finite, simple, minimal algebras,
© (Szendrei) the class of finite, idempotent, strictly simple algebras,

© (Szendrei) the class of finite, simple GG-algebras,
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This is sufficient to understand the localizations to minimal neighborhoods of finite
strictly simple algebras.
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In a perfect world, the class of (S, T')-irreducible algebras would be classifiable. At
present, one of the strongest classification theorems we have is the following:

Theorem. Let A = (A;C) be a finite algebra. If A has no nontrivial, proper
@ subalgebras,
© congruences, or
@ neighborhoods,

then (A; C) belongs to one of the following four classes, each of which has been fully
described:

@ (Pdlfy) the class of finite, simple, minimal algebras,
© (Szendrei) the class of finite, idempotent, strictly simple algebras,
© (Szendrei) the class of finite, simple GG-algebras,
© (Szendrei) the class of finite, simple Go—algebras.
This is sufficient to understand the localizations to minimal neighborhoods of finite

strictly simple algebras. To go beyond that, we have to be satisfied with only a partial
understanding of A|y.
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