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A Galois Connection

Let A be a finite set. Let Op be the graded set of all finitary operations on A
and let Rel be the graded set of all finitary relations on A. The relation

compatibility ⊆ Op× Rel

defined by

(f, R) ∈ compatibility⇐⇒ f(R, R, . . . , R) ⊆ R

determines a Galois connection between Op and Rel.

[I will typically write “f ⊥ R” for “(f, R) ∈ compatibility”. For F ⊆ Op, I
will write F⊥ for {R ∈ Rel | (∀f ∈ F)(f ⊥ R)} andR⊥ for
{f ∈ Op | (∀R ∈ R)(f ⊥ R)}.]
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Example

Example. Let A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩ be the 3-element chain considered
as a lattice expanded by constants.

u
u
u

0

a

1
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What can I calculate?

The operations ∨,∧, 0, a, 1 may be considered to be ‘ ‘fundamental’
operations’ that determine computation in A.

x y z

w

∧

∧

∨

∨

∧

∧
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What are the obstructions to calculation?

It can be shown that the compatible relations of A are those determined (w.r.t.
this Galois connection) by {ρ1, ρ2, ρ3}, where

1 ρ1 = (A×A)− {(0, 1)}.
2 ρ2 = (A×A)− {(0, 1), (a, 1)}.
3 ρ3 = (A×A)− {(0, 1), (0, a)}.

These relations may be considered to be ‘ ‘fundamental’ constraints’ on
computation in A.
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Galois-closed sets

Lemma. (or two research papers, Geiger 1968, B-K-K-R 1969)
A graded subset C of Op is closed in this Galois connection iff it is a
collection of operations closed under

1 composition (comp); and
2 the projections (pn

i ).

A graded subsetR of Rel is closed in this Galois connection iff it is a
collection of relations closed under

1 intersection (∩);
2 product (×);
3 projection onto a subset of coordinates (proj);
4 permutation of coordinates (Π); and
5 the equality relation (=).
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Galois-closed sets, 2

Definition. The closed subsets of Op called clones. The closed subsets of Rel
are called relational clones.

I will use non-indexed algebra to refer to a structure of the form A = ⟨A; C⟩,
where C is a clone on A. I will write A⊥ for ⟨A;R⟩ whereR = C⊥, and I
will refer to such a structure as a non-indexed relational structure.
Note that either of the structures A or A⊥ determines the other.
If one wanted to study local approximations of a non-indexed algebra, A, one
might consider subsets B ⊆ A such that restriction to B is a homomorphism
from the clone of A to the clone of all operations on the set B. Such subsets
are called “subalgebras”. This type of localization theory leads to the study of
an algebra by its system of subalgebras. TCT may be viewed as a theory that
studies local approximations of an algebra considered in its relational form,
A⊥.
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from the clone of A to the clone of all operations on the set B.

Such subsets
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Localizations of non-indexed relational structures

Theorem. If A⊥ = ⟨A;R⟩ and U ⊆ A, then restriction to U is a homomorphism of
the relational clone

R = ⟨R;∩,×, proj, Π, =⟩

into the relational clone of all relations on U iff U = e(A) for some e ∈ C1 for which

A |= e(e(x)) = e(x).

(I.e., iff U is a neighborhood of A.)

Proof. If U ⊆ A is any subset of A, then it is not hard to see that restriction to U
preserves the relational clone operations ∩,×, Π and =. It need not preserve proj, but
we have at least that if R ∈ Rn and I is a subset of the coordinates, then

projI(R|U ) = projI(R ∩ Un) ⊆ projI(R) ∩ U I = projI(R)|U .

To show equality in the middle, choose z̄ ∈ projI(R) ∩ U I . Choose ā ∈ R such that
z̄ = projI(ā). The e(ā) ∈ R ∩ Un = R|U and z̄ = projI(e(ā)) ∈ projI(R|U ).
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The Structure of Finite Algebras: Tame Congruence Theory #2 9 / 18



Localizations of non-indexed relational structures

Theorem. If A⊥ = ⟨A;R⟩ and U ⊆ A,

then restriction to U is a homomorphism of
the relational clone

R = ⟨R;∩,×, proj, Π, =⟩

into the relational clone of all relations on U iff U = e(A) for some e ∈ C1 for which

A |= e(e(x)) = e(x).

(I.e., iff U is a neighborhood of A.)

Proof. If U ⊆ A is any subset of A, then it is not hard to see that restriction to U
preserves the relational clone operations ∩,×, Π and =. It need not preserve proj, but
we have at least that if R ∈ Rn and I is a subset of the coordinates, then

projI(R|U ) = projI(R ∩ Un) ⊆ projI(R) ∩ U I = projI(R)|U .

To show equality in the middle, choose z̄ ∈ projI(R) ∩ U I . Choose ā ∈ R such that
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Continuation of proof

For the other direction, we need to show that if restriction to U preserves the
projection operation, then there is an e ∈ C1 such that e2 = e and e(A) = U .
Let

T = {(t(ai))i<|A| | t ∈ C1(A)}

be the A-ary relation consisting of graphs of unary operations of the
non-indexed algebra A. Let projU be projection onto the coordinates in U .
Note that projU (T )|U contains the graph of the identity function on U . If
projU (T )|U = projU (T |U ), then projU (T |U ) also contains the graph of the
identity function on U . Thus T must contain the graph of a unary term whose
range is in U and which is the identity function on U ; i.e., an idempotent
unary term with range U . 2
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Definitions

The previous result identifies which subsets are appropriate for localization:

Definition. Let A be an algebra. A set U ⊆ A is a neighborhood if U = e(A)
for some idempotent e ∈ C1.

Definition. Let U, V ⊆ A be neighborhoods of A. U is isomorphic to V
(written U ≃ V ) if ⟨U ;R|U ⟩ ∼= ⟨V ;R|V ⟩. I.e., A⊥|U ∼= A⊥|V .

The Structure of Finite Algebras: Tame Congruence Theory #211 / 18



Definitions

The previous result identifies which subsets are appropriate for localization:

Definition. Let A be an algebra. A set U ⊆ A is a neighborhood if U = e(A)
for some idempotent e ∈ C1.

Definition. Let U, V ⊆ A be neighborhoods of A. U is isomorphic to V
(written U ≃ V ) if ⟨U ;R|U ⟩ ∼= ⟨V ;R|V ⟩. I.e., A⊥|U ∼= A⊥|V .

The Structure of Finite Algebras: Tame Congruence Theory #211 / 18



Definitions

The previous result identifies which subsets are appropriate for localization:

Definition.

Let A be an algebra. A set U ⊆ A is a neighborhood if U = e(A)
for some idempotent e ∈ C1.

Definition. Let U, V ⊆ A be neighborhoods of A. U is isomorphic to V
(written U ≃ V ) if ⟨U ;R|U ⟩ ∼= ⟨V ;R|V ⟩. I.e., A⊥|U ∼= A⊥|V .

The Structure of Finite Algebras: Tame Congruence Theory #211 / 18



Definitions

The previous result identifies which subsets are appropriate for localization:

Definition. Let A be an algebra.

A set U ⊆ A is a neighborhood if U = e(A)
for some idempotent e ∈ C1.

Definition. Let U, V ⊆ A be neighborhoods of A. U is isomorphic to V
(written U ≃ V ) if ⟨U ;R|U ⟩ ∼= ⟨V ;R|V ⟩. I.e., A⊥|U ∼= A⊥|V .

The Structure of Finite Algebras: Tame Congruence Theory #211 / 18



Definitions

The previous result identifies which subsets are appropriate for localization:

Definition. Let A be an algebra. A set U ⊆ A is a neighborhood if U = e(A)
for some idempotent e ∈ C1.

Definition. Let U, V ⊆ A be neighborhoods of A. U is isomorphic to V
(written U ≃ V ) if ⟨U ;R|U ⟩ ∼= ⟨V ;R|V ⟩. I.e., A⊥|U ∼= A⊥|V .

The Structure of Finite Algebras: Tame Congruence Theory #211 / 18



Definitions

The previous result identifies which subsets are appropriate for localization:

Definition. Let A be an algebra. A set U ⊆ A is a neighborhood if U = e(A)
for some idempotent e ∈ C1.

Definition.

Let U, V ⊆ A be neighborhoods of A. U is isomorphic to V
(written U ≃ V ) if ⟨U ;R|U ⟩ ∼= ⟨V ;R|V ⟩. I.e., A⊥|U ∼= A⊥|V .

The Structure of Finite Algebras: Tame Congruence Theory #211 / 18



Definitions

The previous result identifies which subsets are appropriate for localization:

Definition. Let A be an algebra. A set U ⊆ A is a neighborhood if U = e(A)
for some idempotent e ∈ C1.

Definition. Let U, V ⊆ A be neighborhoods of A.

U is isomorphic to V
(written U ≃ V ) if ⟨U ;R|U ⟩ ∼= ⟨V ;R|V ⟩. I.e., A⊥|U ∼= A⊥|V .

The Structure of Finite Algebras: Tame Congruence Theory #211 / 18



Definitions

The previous result identifies which subsets are appropriate for localization:

Definition. Let A be an algebra. A set U ⊆ A is a neighborhood if U = e(A)
for some idempotent e ∈ C1.

Definition. Let U, V ⊆ A be neighborhoods of A. U is isomorphic to V

(written U ≃ V ) if ⟨U ;R|U ⟩ ∼= ⟨V ;R|V ⟩. I.e., A⊥|U ∼= A⊥|V .

The Structure of Finite Algebras: Tame Congruence Theory #211 / 18



Definitions

The previous result identifies which subsets are appropriate for localization:

Definition. Let A be an algebra. A set U ⊆ A is a neighborhood if U = e(A)
for some idempotent e ∈ C1.

Definition. Let U, V ⊆ A be neighborhoods of A. U is isomorphic to V
(written U ≃ V )

if ⟨U ;R|U ⟩ ∼= ⟨V ;R|V ⟩. I.e., A⊥|U ∼= A⊥|V .

The Structure of Finite Algebras: Tame Congruence Theory #211 / 18



Definitions

The previous result identifies which subsets are appropriate for localization:

Definition. Let A be an algebra. A set U ⊆ A is a neighborhood if U = e(A)
for some idempotent e ∈ C1.

Definition. Let U, V ⊆ A be neighborhoods of A. U is isomorphic to V
(written U ≃ V ) if ⟨U ;R|U ⟩ ∼= ⟨V ;R|V ⟩.

I.e., A⊥|U ∼= A⊥|V .

The Structure of Finite Algebras: Tame Congruence Theory #211 / 18



Definitions

The previous result identifies which subsets are appropriate for localization:

Definition. Let A be an algebra. A set U ⊆ A is a neighborhood if U = e(A)
for some idempotent e ∈ C1.

Definition. Let U, V ⊆ A be neighborhoods of A. U is isomorphic to V
(written U ≃ V ) if ⟨U ;R|U ⟩ ∼= ⟨V ;R|V ⟩. I.e., A⊥|U ∼= A⊥|V .

The Structure of Finite Algebras: Tame Congruence Theory #211 / 18



Characterizing isomorphism

We can identify isomorphic localizations of an algebra A without computing
A⊥ and trying to verify that A⊥|U ∼= A⊥|V .

Lemma. U is isomorphic to V if and only if there exist s, t ∈ C1 such that
s : U → V and t : V → U are inverse bijections.

Proof. If such s, t ∈ C1 exist, then they are inverse relational morphisms
s : ⟨U ;R|U ⟩ → ⟨V ;R|V ⟩ and t : ⟨V ;R|V ⟩ → ⟨U ;R|U ⟩.

Conversely, assume that U = e(A) and V = f(A) for idempotents e, f ∈ C1.
If one has inverse relational morphisms σ : ⟨U ;R|U ⟩ → ⟨V ;R|V ⟩ and
τ : ⟨V ;R|V ⟩ → ⟨U ;R|U ⟩, then the functions s = σ ◦ e and t = τ ◦ f are
morphisms from A⊥ to itself which restrict to U and V to give σ and τ
respectively. Since clones are the closed objects of the Galois connection
between operations and relations, morphisms from A⊥ to itself are realized
by elements of C1. Hence s, t ∈ C1 restrict to U and V to give the desired
isomorphism. 2
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Localization on the algebra side

It is clear how to restrict the relational structure of A⊥ = ⟨A;R⟩ to a
neighborhood U : simply restrict each relation S ∈ Rn to U in the usual way
(S|U = S ∩ Un). Thus A⊥|U = ⟨U ;R|U ⟩. Since U is a neighborhood the
restriction map is a relational clone homomorphism, soR|U is a relational
clone on U . As such it corresponds to an algebra (A⊥|U )⊥ on U .

A −→ A⊥ = ⟨A;R⟩
↓

A|U = (A⊥|U )⊥ ←− A⊥|U = ⟨U ;R|U ⟩

This leads us to our definition of the induced algebra on U .

Definition. If U = e(A) is a neighborhood of A, then the algebra that A
induces on U , written A|U or e(A) is (A⊥|U )⊥.

Lemma. A|U = ⟨U ; e(C)⟩ where
e(C) = {et | t ∈ C} =

⋃
n{t ∈ Cn | t(Un) ⊆ U}.
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Example

Example. Let A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩ be the 3-element chain considered
as a lattice expanded by constants.

u
u
u

0

a

1

1 Trivial nhoods: {0}, {a}, {1}.
2 Improper nhoods: A = {0, a, 1}. (e(x) = x)
3 Interesting nhoods: U = {0, a} = e(A) for e(x) = x ∧ a.

V = {a, 1} = f(A) for f(x) = x ∨ a.
4 U ̸≃ V .
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Information loss

The passage from A to A|U typically involves information loss. Namely,
there may exist relations R, S ∈ R such that R ̸= S but R|U = S|U . The
localization A|U no longer knows the difference between R and S.

In our example, A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩, the neighborhood U = {0, a}
does not see the difference between ρ1 = (A×A)− {(0, 1)} and
ρ2 = (A×A)− {(0, 1), (a, 1)}. (ρ1|U = ρ2|U .) The neighborhood
V = {a, 1} DOES see the diffference between ρ1 and ρ2, but it does not see
the difference between ρ1 = (A×A)− {(0, 1)} and
ρ3 = (A×A)− {(0, 1), (0, a)}. (ρ1|V = ρ3|V .) Neither U nor V can see the
difference between ρ1 = (A×A)− {(0, 1)} and A×A. This is enough to
conclude that A|A contains more information than the collection of all proper
localizations together:

A|U , A|V , A|{0}, A|{a}, A|{1}.

The Structure of Finite Algebras: Tame Congruence Theory #215 / 18



Information loss

The passage from A to A|U typically involves information loss.

Namely,
there may exist relations R, S ∈ R such that R ̸= S but R|U = S|U . The
localization A|U no longer knows the difference between R and S.

In our example, A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩, the neighborhood U = {0, a}
does not see the difference between ρ1 = (A×A)− {(0, 1)} and
ρ2 = (A×A)− {(0, 1), (a, 1)}. (ρ1|U = ρ2|U .) The neighborhood
V = {a, 1} DOES see the diffference between ρ1 and ρ2, but it does not see
the difference between ρ1 = (A×A)− {(0, 1)} and
ρ3 = (A×A)− {(0, 1), (0, a)}. (ρ1|V = ρ3|V .) Neither U nor V can see the
difference between ρ1 = (A×A)− {(0, 1)} and A×A. This is enough to
conclude that A|A contains more information than the collection of all proper
localizations together:

A|U , A|V , A|{0}, A|{a}, A|{1}.

The Structure of Finite Algebras: Tame Congruence Theory #215 / 18



Information loss

The passage from A to A|U typically involves information loss. Namely,
there may exist relations R, S ∈ R such that R ̸= S but R|U = S|U .

The
localization A|U no longer knows the difference between R and S.

In our example, A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩, the neighborhood U = {0, a}
does not see the difference between ρ1 = (A×A)− {(0, 1)} and
ρ2 = (A×A)− {(0, 1), (a, 1)}. (ρ1|U = ρ2|U .) The neighborhood
V = {a, 1} DOES see the diffference between ρ1 and ρ2, but it does not see
the difference between ρ1 = (A×A)− {(0, 1)} and
ρ3 = (A×A)− {(0, 1), (0, a)}. (ρ1|V = ρ3|V .) Neither U nor V can see the
difference between ρ1 = (A×A)− {(0, 1)} and A×A. This is enough to
conclude that A|A contains more information than the collection of all proper
localizations together:

A|U , A|V , A|{0}, A|{a}, A|{1}.

The Structure of Finite Algebras: Tame Congruence Theory #215 / 18



Information loss

The passage from A to A|U typically involves information loss. Namely,
there may exist relations R, S ∈ R such that R ̸= S but R|U = S|U . The
localization A|U no longer knows the difference between R and S.

In our example, A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩, the neighborhood U = {0, a}
does not see the difference between ρ1 = (A×A)− {(0, 1)} and
ρ2 = (A×A)− {(0, 1), (a, 1)}. (ρ1|U = ρ2|U .) The neighborhood
V = {a, 1} DOES see the diffference between ρ1 and ρ2, but it does not see
the difference between ρ1 = (A×A)− {(0, 1)} and
ρ3 = (A×A)− {(0, 1), (0, a)}. (ρ1|V = ρ3|V .) Neither U nor V can see the
difference between ρ1 = (A×A)− {(0, 1)} and A×A. This is enough to
conclude that A|A contains more information than the collection of all proper
localizations together:

A|U , A|V , A|{0}, A|{a}, A|{1}.

The Structure of Finite Algebras: Tame Congruence Theory #215 / 18



Information loss

The passage from A to A|U typically involves information loss. Namely,
there may exist relations R, S ∈ R such that R ̸= S but R|U = S|U . The
localization A|U no longer knows the difference between R and S.

In our example, A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩, the neighborhood U = {0, a}
does not see the difference between ρ1 = (A×A)− {(0, 1)} and
ρ2 = (A×A)− {(0, 1), (a, 1)}.

(ρ1|U = ρ2|U .) The neighborhood
V = {a, 1} DOES see the diffference between ρ1 and ρ2, but it does not see
the difference between ρ1 = (A×A)− {(0, 1)} and
ρ3 = (A×A)− {(0, 1), (0, a)}. (ρ1|V = ρ3|V .) Neither U nor V can see the
difference between ρ1 = (A×A)− {(0, 1)} and A×A. This is enough to
conclude that A|A contains more information than the collection of all proper
localizations together:

A|U , A|V , A|{0}, A|{a}, A|{1}.

The Structure of Finite Algebras: Tame Congruence Theory #215 / 18



Information loss

The passage from A to A|U typically involves information loss. Namely,
there may exist relations R, S ∈ R such that R ̸= S but R|U = S|U . The
localization A|U no longer knows the difference between R and S.

In our example, A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩, the neighborhood U = {0, a}
does not see the difference between ρ1 = (A×A)− {(0, 1)} and
ρ2 = (A×A)− {(0, 1), (a, 1)}. (ρ1|U = ρ2|U .) The neighborhood
V = {a, 1} DOES see the diffference between ρ1 and ρ2, but it does not see
the difference between ρ1 = (A×A)− {(0, 1)} and
ρ3 = (A×A)− {(0, 1), (0, a)}.

(ρ1|V = ρ3|V .) Neither U nor V can see the
difference between ρ1 = (A×A)− {(0, 1)} and A×A. This is enough to
conclude that A|A contains more information than the collection of all proper
localizations together:

A|U , A|V , A|{0}, A|{a}, A|{1}.

The Structure of Finite Algebras: Tame Congruence Theory #215 / 18



Information loss

The passage from A to A|U typically involves information loss. Namely,
there may exist relations R, S ∈ R such that R ̸= S but R|U = S|U . The
localization A|U no longer knows the difference between R and S.

In our example, A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩, the neighborhood U = {0, a}
does not see the difference between ρ1 = (A×A)− {(0, 1)} and
ρ2 = (A×A)− {(0, 1), (a, 1)}. (ρ1|U = ρ2|U .) The neighborhood
V = {a, 1} DOES see the diffference between ρ1 and ρ2, but it does not see
the difference between ρ1 = (A×A)− {(0, 1)} and
ρ3 = (A×A)− {(0, 1), (0, a)}. (ρ1|V = ρ3|V .)

Neither U nor V can see the
difference between ρ1 = (A×A)− {(0, 1)} and A×A. This is enough to
conclude that A|A contains more information than the collection of all proper
localizations together:

A|U , A|V , A|{0}, A|{a}, A|{1}.

The Structure of Finite Algebras: Tame Congruence Theory #215 / 18



Information loss

The passage from A to A|U typically involves information loss. Namely,
there may exist relations R, S ∈ R such that R ̸= S but R|U = S|U . The
localization A|U no longer knows the difference between R and S.

In our example, A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩, the neighborhood U = {0, a}
does not see the difference between ρ1 = (A×A)− {(0, 1)} and
ρ2 = (A×A)− {(0, 1), (a, 1)}. (ρ1|U = ρ2|U .) The neighborhood
V = {a, 1} DOES see the diffference between ρ1 and ρ2, but it does not see
the difference between ρ1 = (A×A)− {(0, 1)} and
ρ3 = (A×A)− {(0, 1), (0, a)}. (ρ1|V = ρ3|V .) Neither U nor V can see the
difference between ρ1 = (A×A)− {(0, 1)} and A×A.

This is enough to
conclude that A|A contains more information than the collection of all proper
localizations together:

A|U , A|V , A|{0}, A|{a}, A|{1}.

The Structure of Finite Algebras: Tame Congruence Theory #215 / 18



Information loss

The passage from A to A|U typically involves information loss. Namely,
there may exist relations R, S ∈ R such that R ̸= S but R|U = S|U . The
localization A|U no longer knows the difference between R and S.

In our example, A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩, the neighborhood U = {0, a}
does not see the difference between ρ1 = (A×A)− {(0, 1)} and
ρ2 = (A×A)− {(0, 1), (a, 1)}. (ρ1|U = ρ2|U .) The neighborhood
V = {a, 1} DOES see the diffference between ρ1 and ρ2, but it does not see
the difference between ρ1 = (A×A)− {(0, 1)} and
ρ3 = (A×A)− {(0, 1), (0, a)}. (ρ1|V = ρ3|V .) Neither U nor V can see the
difference between ρ1 = (A×A)− {(0, 1)} and A×A. This is enough to
conclude that A|A contains more information than the collection of all proper
localizations together:

A|U , A|V , A|{0}, A|{a}, A|{1}.

The Structure of Finite Algebras: Tame Congruence Theory #215 / 18



Information loss

The passage from A to A|U typically involves information loss. Namely,
there may exist relations R, S ∈ R such that R ̸= S but R|U = S|U . The
localization A|U no longer knows the difference between R and S.

In our example, A = ⟨{0, a, 1};∨,∧, 0, a, 1⟩, the neighborhood U = {0, a}
does not see the difference between ρ1 = (A×A)− {(0, 1)} and
ρ2 = (A×A)− {(0, 1), (a, 1)}. (ρ1|U = ρ2|U .) The neighborhood
V = {a, 1} DOES see the diffference between ρ1 and ρ2, but it does not see
the difference between ρ1 = (A×A)− {(0, 1)} and
ρ3 = (A×A)− {(0, 1), (0, a)}. (ρ1|V = ρ3|V .) Neither U nor V can see the
difference between ρ1 = (A×A)− {(0, 1)} and A×A. This is enough to
conclude that A|A contains more information than the collection of all proper
localizations together:

A|U , A|V , A|{0}, A|{a}, A|{1}.

The Structure of Finite Algebras: Tame Congruence Theory #215 / 18



Globalization

The companion to a localization theory is a globalization theory. It is natural
to expect to attack a problem with a localization theory by translating the
problem into a family of local problems, solving them locally, and then
combining the local results into a global result.

Definition. A cover of A is a set U of neighborhoods for which∧
U∈U

S|U = T |U =⇒ S = T

for all S, T ∈ R.
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Globalization picture
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So, U is a cover if the sequence of relational clone homomorphisms
ρU : R → R|U is jointly 1-1.

The Structure of Finite Algebras: Tame Congruence Theory #217 / 18



Globalization picture

&%
'$

��
��

h
���� ��

��

So, U is a cover if the sequence of relational clone homomorphisms
ρU : R → R|U is jointly 1-1.

The Structure of Finite Algebras: Tame Congruence Theory #217 / 18



Globalization picture

&%
'$

��
��

h
���� ��

��

So, U is a cover if the sequence of relational clone homomorphisms
ρU : R → R|U is jointly 1-1.

The Structure of Finite Algebras: Tame Congruence Theory #217 / 18



Globalization, 3

Theorem. The following are equivalent.

1 U is cover of A.
2 A satisfies an equation of the form

λ(e1ρ1(x), . . . , emρm(x)) = x

where ei(A) ∈ U for all i.
3 A⊥ is a retract of a product of relational structures from the set{

A⊥|U | U ∈ U
}

.

This indicates that A is recoverable from the collection of all localizations
A|U , U ∈ U , provided U is a cover. (Some ‘side data’ is needed to complete
the reconstruction.)
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