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The Prehistory of Tame Congruence Theory

1 Humans reached anatomical modernity 100,000-300,000 years ago.

(braincase anatomy, jaw anatomy, skeletal structure)

2 Humans reached cultural modernity 50,000-65,000 years ago.

(art, symbolic thought, and advanced tool making)

3 Ishango bone dated to 18,000-20,000 years ago.

(were primes known then?)

4 Gauss introduced the word “congruence” in his thesis in 1801. In a review
published in The Monthly Review; or Literary Journal, Enlarged we read:

M. Gauss begins with new names and new signs. If a number a divides the
difference of b and c, then b and c are said to be congruous (congrus)
according to a, which is called the modulus. The sign appropriate to this
congruity is ≡, so that, in this new symbolical language, b ≡ c (modulus a).

The Structure of Finite Algebras: Tame Congruence Theory 2 / 13



Congruences on ⟨Z; ·, +, −⟩

A congruence on Z is an equivalence relation θ that is compatible with the
arithmetic operations:

a1 ≡ a2 (mod θ)
b1 ≡ b2 (mod θ)

a1 ⋄ b1 ≡ a2 ⋄ b2 (mod θ)

where ⋄ ∈ {·, +, −}. Say that θ is compatible with ⋄, or ⋄ is compatible with
θ, or ⋄ is a polymorphism of θ.

One can classify the compatible equivalence relations on Z; they are
congruence modulo n (θn) for some n ∈ {0, 1, 2, . . .}.

These equivalence relations form an algebraic distributive lattice under the
operations θm ∨ θn = θm + θn = θgcd(m,n) and θm ∧ θn = θmθn = θlcm(m,n).
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Congruences on ⟨A; ·, +, −⟩

Dedekind needed to
understand congruences
on more general subrings
A ⊆ C. He called a
subset M ⊆ C a ‘module’
if it could serve as the
modulus of a congruence
of some such ring.

“a ≡ b (mod M)” means a − b ∈ M . Congruence mod M is an
equivalence relation iff M ⊆ C is an additive subgroup.

The collection of ‘modules’ is a ‘lattice’
under inclusion, and Dedekind
investigated the arithmetic of this lattice.
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Some of Dedekind’s results

Thm.
The ‘lattice’ of ‘modules’, Con(C), satisfies the modular law:

x(y + z) ≈ x(y + z(x + y)).

The modular law holds in a lattice iff the lattice contains no pentagon as
a sublattice.
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y (= x(y + z(x + y)))

x (= x(y + z))
z

The sublattice of ‘modules’ generated by X = ⟨10, 1 + 15
√

2⟩,
Y = ⟨15, 1 + 10

√
2⟩, and Z = ⟨15, 1 + 6

√
2⟩ is free and has 28

elements.
A 3-variable identity holds in the lattice of modules iff it is a
consequence of the modular law.
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The Grätzer-Schmidt Theorem

It is not hard to prove that the lattice of congruences of any algebra is an
‘algebraic’ lattice. (That is, it is a complete lattice that is generated under
complete join by its compact elements.)

Grätzer and Schmidt proved the converse.

G-S Thm. (1963) Every algebraic lattice is representable as the congruence
lattice of an algebra.

Their construction produces an infinite algebra even in the case where one
wants to represent a finite lattice.

Open Question. Is every finite lattice the congruence lattice of a finite
algebra?
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The P 5 paper

Péter Pál Pálfy and Pavel Pudlák attacked the preceding open problem and
proved that

P5 Thm. (1980) The following are equivalent:
1 every finite lattice is the congruence lattice of a finite algebra.
2 every finite lattice is the congruence lattice of a finite G-set.
3 every finite lattice is an interval in the subgroup lattice of some finite

group.

Discuss Mn. Smallest undecided cases are M16, M23, M35.
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The History of Tame Congruence Theory

McKenzie used the techniques of the P 5 paper to extend the P 5 results in
Finite Forbidden Lattices (1982). In 1983, Hobby and McKenzie began to
develop these techniques more and they published their results in The
Structure of Finite Algebras (1988). This book uses model-theoretic
inspiration to develop a localization theory for finite algebras.
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Tame Congruence Theory is a Localization Theory

This means that the theory is based on a method for selecting small subsets of
an algebra, restricting structure to that subset, calculating locally, and piecing
together local data to solve globally stated problems.

A

U U

"!
# q -"!

# q

There are three main ingredients to a localization theory.
1 Localization: Identify subsets which support good local approximations.

Describe how to restrict structure to these “neighborhoods”.
2 Classification: Describe how to calculate locally.
3 Globalization: Describe how to combine local results.
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The ‘simplest’ setting

Assume that A is a finite simple algebra. (“Simple” means: the only nontrivial proper
congruences are the trivial and the total congruences.) TCT defines a subset U ⊆ A
to be a neighborhood of A if U = e(A) is the image of an idempotent unary
polynomial operation e of A. (e(x) ∈ Pol1(A), e(e(x)) = e(x).) TCT asserts that:

1 minimal neighborhoods of A exist and any two are polynomially isomorphic.

2 the points of A are separated by the unary polynomials whose ranges are
minimal neighborhoods.

3 A is the connected union of its minimal neighborhoods.

4 the minimal localizations A|U = ⟨U ; {ef | f ∈ Pol(A)}⟩ are pairwise
polynomially isomorphic.

5 each minimal localization is one of the following types:
1 (type 1) a simple G-set.
2 (type 2) a 1-dimensional vector space over a finite field.
3 (type 3) a 2-element Boolean algebra.
4 (type 4) a 2-element lattice.
5 (type 5) a 2-element semilattice.

The Structure of Finite Algebras: Tame Congruence Theory 10 / 13



An example

Let F be a finite field. Let M = F2 be a module over the ring R = M2(F). M
is a finite simple R-module. The idempotent unary polynomials of M have
the form E(x) = ex + v where e ∈ R satisfies e2 = e and ev = 0.

The identity polynomial E(x) = x on M is one of these, so M itself is a
neighborhood of itself. Any constant polynomial E(x) = v is idempotent, so
singleton subsets of M are neighborhoods.

Else E(x) = ex + v for an idempotent element e ∈ R of rank one. The image
E(M) = U is a coset of a 1-dimensional subspace of F2. (Conversely, every
coset of a 1-dimensional subspace is a neighborhood. The ‘geometry of
neighborhoods’ is the ordinary plane geometry consisting of points, lines,
whole plane.) The structure M |U is that of an eRe-module on the set U . eRe
is a field isomorphic to F, so M |U is a 1-dimensional vector space. (The type
of M |U is 2: ‘vector space type’ or ‘affine type’.)
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Nonsimple examples

Let L = ⟨L; ∨, ∧⟩ be a lattice. Restriction to an interval, [a, b], a < b, is an
instance of localization. The function e(x) = a ∨ (b ∧ x) is an idempotent
unary polynomial whose image is [a, b], so intervals are neighborhoods. This
implies that intervals of L are good local approximations of L. Here,
U = e(L) will have lattice polynomial operations ∨|U and ∧|U , and possibly
more induced polynomial operations.

Similarly, restriction to a principal ideal [0, b] in a Boolean, B, algebra is an
instance of localization. e(x) = b ∧ x. U = e(B) has underlying Boolean
algebra polynomials ∨|U , ∧|U , e(¬x), 0, b.

A Sylow p-subgroup P of a finite group G is an example of a neighborhood
of G. It need not be a minimal neighborhood, but it will be minimal if G is
nilpotent. The localization G|P includes the group operations on P , but will
typically contain additional structure (unless P is a direct factor of G).
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Applications

Applications from the book. (All assume some finiteness conditions.)

1 Classication of varieties by Maltsev conditions.
2 Understanding the structure of residually small varieties.
3 Understanding the structure of decidable varieties.
4 Understanding the free spectrum function.
5 Understanding the structure of simple algebras.

Some later applications.

1 Classification of minimal (abelian) varieties.
2 Understanding congruence identities.
3 CSP applications.
4 Growth rates of finite algebras.
5 Understanding the structure of varieties with many projective and free

algebras.
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